广西2018-2020年中考数学试题分类(10)——圆(含解析)

合集下载

2018年广西南宁市中考数学试卷含答案解析(PDF版)

2018年广西南宁市中考数学试卷含答案解析(PDF版)

3 33 2018 年广西六市同城初中毕业升学统一考试试卷解析数学(考试时间:120 分钟 满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。

2. 答题前,请认真阅读答题卡上的注意事项。

3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。

一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。

因此-3 的倒数为-1【点评】主要考察倒数的定义2.下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形。

【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.3.2018 年俄罗斯世界杯开幕式于6 月14 日在莫斯科卢日尼基球场举行,该球场可容纳81000 名观众,其中数据81000 用科学计数法表示为()A. 81⨯103B. 8.1⨯104C. 8.1⨯105D. 0.81⨯105【答案】B【考点】科学计数法【解析】81000 = 8.1⨯104,故选B【点评】科学计数法的表示形式为a ⨯10n的形式,其中1 ≤a < 10,n为整数4.某球员参加一场篮球比赛,比赛分4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】B【考点】求平均分【解析】12 + 4 +10 + 6 = 84【点评】本题考查用折线图求数据的平均分问题5.下列运算正确的是A. a(a+1)=a2+1B. (a2)3=a5C. 3a2+a=4a3D. a5÷a2=a3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得a(a+1)=a2+a;选项B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a2)3=a6;选项C 错误,直接运用整式的加法法则,3a2 和a 不是同类项,不可以合并;选项D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得a5÷a2=a3.【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。

2018-2020年广西中考数学试题分类(9)——四边形

2018-2020年广西中考数学试题分类(9)——四边形

2018-2020年广西中考数学试题分类(9)——四边形一.多边形(共1小题)1.(2019•百色)四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.二.多边形内角与外角(共1小题)2.(2019•梧州)正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°三.平行四边形的性质(共5小题)3.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5√2B.6√2C.4√5D.5√54.(2019•柳州)如图,在▱ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对5.(2019•梧州)如图,▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.6.(2018•百色)平行四边形ABCD中,∠A=60°,AB=2AD,BD的中垂线分别交AB,CD于点E,F,垂足为O.(1)求证:OE=OF;(2)若AD=6,求tan∠ABD的值.7.(2018•梧州)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.四.平行四边形的判定(共3小题)8.(2019•河池)如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF9.(2018•玉林)在四边形ABCD 中:▱AB ∥CD ▱AD ∥BC ▱AB =CD ▱AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有( )A .3种B .4种C .5种D .6种10.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD 中,AB =CD ,AD =BC .求证:四边形ABCD 是平行四边形.证明:五.平行四边形的判定与性质(共1小题)11.(2020•玉林)已知:点D ,E 分别是△ABC 的边AB ,AC 的中点,如图所示.求证:DE ∥BC ,且DE =12BC . 证明:延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF ,又AE =EC ,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程:▱∴DF ∥=BC ;▱∴CF ∥=AD .即CF ∥=BD ;▱∴四边形DBCF 是平行四边形;▱∴DE ∥BC ,且DE =12BC . 则正确的证明顺序应是:( )A .▱→▱→▱→▱B .▱→▱→▱→▱C .▱→▱→▱→▱D .▱→▱→▱→▱六.菱形的性质(共5小题)12.(2020•河池)如图,菱形ABCD 的周长为16,AC ,BD 交于点O ,点E 在BC 上,OE ∥AB ,则OE 的长是 .13.(2019•广西)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO =4,S菱形ABCD=24,则AH=.14.(2020•桂林)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=√3,∠C=60°,求菱形ABCD的面积.15.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.16.(2018•柳州)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.七.菱形的判定(共1小题)17.(2018•河池)如图,要判定▱ABCD是菱形,需要添加的条件是()A.AB=AC B.BC=BD C.AC=BD D.AB=BC18.(2020•玉林)如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 菱形(填“是”或“不是”).19.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB 交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=34,求BC的长.20.(2018•南宁)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.九.矩形的性质(共2小题)21.(2019•玉林)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB边的碰撞次数是.22.(2019•贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.23.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.一十一.正方形的性质(共5小题)24.(2019•河池)如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A.1B.2C.3D.425.(2019•贵港)如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=35 26.(2018•梧州)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)27.(2018•河池)如图,四边形OABC为正方形,点D(3,1)在AB上,把△CBD绕点C顺时针旋转90°,则点D旋转后的对应点D′的坐标是.28.(2019•玉林)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F 点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2√2,EB=4,tan∠GEH=2√3,求四边形EHFG的周长.2018-2020年广西中考数学试题分类(9)——四边形参考答案与试题解析一.多边形(共1小题)1.【解答】解:∵S平行四边形S′S′S′S′=12S矩形SSSS,∴平行四边形A'B'C'D'的底边A′D′边上的高等于A′B′的一半,∴∠A'=30°.故答案为:30°二.多边形内角与外角(共1小题)2.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°9=140°.故选:D.三.平行四边形的性质(共5小题)3.【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE=√SS2+SS2=√42+82=4√5.故选:C.4.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);▱同理可得出△AOB≌△COD(SAS);▱∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);▱同理可得:△ACD≌△CAB(SSS).▱因此本题共有4对全等三角形.故选:C.5.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵∠ADC=119°,DF⊥BC,∴∠ADF=90°,则∠EDH=29°,∵BE⊥DC,∴∠DEH=90°,∴∠DHE=∠BHF=90°﹣29°=61°.故答案为:61.6.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠1=∠2,∵EF是BD的中垂线,∴OD =OB ,∠3=∠4=90°,∴△DOF ≌△BOE ,∴OE =OF ;(2)作DG ⊥AB ,垂足为G ,∵∠A =60°,AD =6,∴∠ADG =30°,∴AG =12AD =3,∴DG =√62−32=3√3,∵AB =2AD ,∴AB =2×6=12,BG =AB ﹣AG =12﹣3=9,∴tan ∠ABD =SS SS =3√39=√33 7.【解答】证明:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,AD ∥BC ,∴∠EAC =∠FCO ,在△AOE 和△COF 中 {∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOE ≌△COF (ASA ),∴AE =CF .四.平行四边形的判定(共3小题)8.【解答】解:∵在△ABC 中,D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥12AC 且DE =12AC ,A 、根据∠B =∠F 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B 、根据∠B =∠BCF 可以判定CF ∥AB ,即CF ∥AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C 、根据AC =CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D 、根据AD =CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误.故选:B .9.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:▱▱、▱▱、▱▱、▱▱. 故选:B .10.【解答】证明:连接AC ,如图所示:在△ABC 和△CDA 中,{SS =SS SS =SS SS =SS ,∴△ABC ≌△CDA (SSS ),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形.五.平行四边形的判定与性质(共1小题)11.【解答】证明:延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF , ∵点D ,E 分别是△ABC 的边AB ,AC 的中点,∴AD =BD ,AE =EC ,∴四边形ADCF 是平行四边形,∴CF ∥=AD .即CF ∥=BD ,∴四边形DBCF 是平行四边形,∴DF ∥=BC , ∴DE ∥BC ,且DE =12BC . ∴正确的证明顺序是▱→▱→▱→▱,故选:A .六.菱形的性质(共5小题)12.【解答】解:∵菱形ABCD 的周长为16,∴AB =BC =CD =AD =4,OA =OC ,∵OE ∥AB ,∴BE =CE ,∴OE 是△ABC 的中位线,∴OE =12AB =2,故答案为:2.13.【解答】解:∵四边形ABCD 是菱形,∴BO =DO =4,AO =CO ,AC ⊥BD ,∴BD =8,∵S 菱形ABCD =12AC ×BD =24,∴AC =6,∴OC =12AC =3,∴BC =√SS 2+SS 2=5,∵S 菱形ABCD =BC ×AH =24,∴AH =245; 故答案为:245.14.【解答】(1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∵点E ,F 分别是边AD ,AB 的中点,∴AF =AE ,在△ABE 和△ADF 中,{SS =SSSS =SS SS =SS ,∴△ABE ≌△ADF (SAS );(2)解:连接BD ,如图:∵四边形ABCD 是菱形,∴AB =AD ,∠A =∠C =60°,∴△ABD 是等边三角形,∵点E 是边AD 的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=tan30°BE=√33BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×√3=2√3.15.【解答】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=216.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=√SS2−SS2=√22−12=√3,∴BD=2√3七.菱形的判定(共1小题)17.【解答】解:根据邻边相等的平行四边形是菱形,可知选项D正确,故选:D.八.菱形的判定与性质(共3小题)18.【解答】解:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,作AE⊥BC于点E,AF⊥DC于点F,∵两张等宽的长方形纸条交叉叠放在一起,∴AE=AF,∴S平行四边形ABCD=BC•AE=DC•AF,∴BC=DC,∴▱ABCD是菱形.故答案为:是.19.【解答】(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO =∠ECO ,在△AOD 和△COE 中,{∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOD ≌△COE (ASA ),∴AD =CE ,∵CE ∥AB ,∴四边形AECD 是平行四边形,又∵CD 是Rt △ABC 斜边AB 上的中线,∴CD =AD ,∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形,∴AC ⊥ED ,在Rt △AOD 中,tan ∠DAO =SS SS =SSSSSSS =34,设OD =3x ,OA =4x ,则ED =2OD =6x ,AC =2OA =8x ,由题意可得:12×6S ×8S =24,解得:x =1,∴OD =3,∵O ,D 分别是AC ,AB 的中点,∴OD 是△ABC 的中位线,∴BC =2OD =6.20.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∵BE =DF ,∴△AEB ≌△AFD∴AB =AD ,∴四边形ABCD 是菱形.(2)连接BD 交AC 于O .∵四边形ABCD 是菱形,AC =6,∴AC ⊥BD ,AO =OC =12AC =12×6=3,∵AB =5,AO =3,∴BO =√SS 2−SS 2=√52−32=4,∴BD =2BO =8,∴S 平行四边形ABCD =12×AC ×BD =24. 九.矩形的性质(共2小题)21.【解答】解:如图以AB 为x 轴,AD 为y 轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB 边的碰撞有2次,∵2019÷6=336…3,当点P 第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P 的坐标为(6,4)∴它与AB 边的碰撞次数是=336×2+1=673次故答案为67322.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB =CD ,AD =BC ,AD ∥BC ,在Rt △ABE 和Rt △CDF 中,{SS =SS SS =SS , ∴Rt △ABE ≌Rt △CDF (HL );(2)解:当AC ⊥EF 时,四边形AECF 是菱形,理由如下:∵△ABE ≌△CDF ,∴BE =DF ,∵BC =AD ,∴CE =AF ,∵CE ∥AF ,∴四边形AECF 是平行四边形,又∵AC ⊥EF ,∴四边形AECF 是菱形.一十.矩形的判定与性质(共1小题)23.【解答】解:(1)证明:过点E 、F 分别作AD 、BC 的垂线,垂足分别是G 、H .∵∠3=∠4,∠1=∠2,EG ⊥AD ,EM ⊥CD ,EM ′⊥AB∴EG =ME ,EG =EM ′∴EG =ME =M ′E =12MM ′同理可证:FH =NF =N ′F =12NN ′ ∵CD ∥AB ,MM ′⊥CD ,NN ′⊥CD ,∴MM ′=NN ′∴ME =NF =EG =FH又∵MM ′∥NN ′,MM ′⊥CD∴四边形EFNM 是矩形.(2)∵DC ∥AB ,∴∠CDA +∠DAB =180°,∵∠3=12SSSS ,∠2=12∠DAB∴∠3+∠2=90°在Rt △DEA ,∵AE =4,DE =3,∴AD =√3+4=5.∵四边形ABCD 是平行四边形,∴∠DAB =∠DCB ,又∵∠2=12∠DAB ,∠5=12∠DCB ,∴∠2=∠5由(1)知GE =NF在Rt △GEA 和Rt △CNF 中 {∠2=∠5SSSS =SSSS =90°SS =SS∴△GEA ≌△CNF∴AG =CN在Rt △DME 和Rt △DGE 中∵DE =DE ,ME =EG∴△DME ≌△DGE∴DG =DM∴DM +CN =DG +AG =AD =5∴MN =CD ﹣DM ﹣CN =9﹣5=4.∵四边形EFNM 是矩形.∴EF =MN =4一十一.正方形的性质(共5小题)24.【解答】证明:∵四边形ABCD 是正方形,∴AB ∥CD ,AD ∥BC ,AB =BC ,∠ABE =∠BCF =90°,在△ABE 和△BCF 中,{SS =SS SSSS =SSSS SS =SS ,∴△ABE ≌△BCF (SAS ),∴∠BFC =∠AEB ,∵AD ∥BC ,AB ∥CD ,∴∠DAE =∠AEB ,∠BFC =∠ABF ,故图中与∠AEB 相等的角的个数是3.故选:C .25.【解答】解:∵正方形ABCD ,DPMN 的面积分别为S 1,S 2,∴S 1=CD 2,S 2=PD 2,在Rt △PCD 中,PC 2=CD 2+PD 2,∴S 1+S 2=CP 2,故A 结论正确;连接CF ,∵点H 与B 关于CE 对称,∴CH =CB ,∠BCE =∠ECH ,在△BCE 和△HCE 中,{SS =SS SSSS =SSSS SS =SS∴△BCE ≌△HCE (SAS ),∴BE =EH ,∠EHC =∠B =90°,∠BEC =∠HEC ,∴CH =CD ,在Rt △FCH 和Rt △FCD 中{SS =SS SS =SS ∴Rt △FCH ≌Rt △FCD (HL ),∴∠FCH =∠FCD ,FH =FD ,∴∠ECH +∠FCH =12∠BCD =45°,即∠ECF =45°,作FG ⊥EC 于G ,∴△CFG 是等腰直角三角形,∴FG =CG ,∵∠BEC =∠HEC ,∠B =∠FGE =90°,∴△FEG ∽△CEB ,∴SS SS =SS SS =12, ∴FG =2EG ,设EG =x ,则FG =2x ,∴CG =2x ,CF =2√2x ,∴EC =3x ,∵EB 2+BC 2=EC 2,∴54BC 2=9x 2,∴BC 2=365x 2, ∴BC =6√55x , 在Rt △FDC 中,FD =√SS 2−SS 2=√(2√2S )2−365S 2=2√55x , ∴3FD =AD ,∴AF =2FD ,故B 结论正确;∵AB ∥CN ,∴SS SS =SS SS =12, ∵PD =ND ,AE =12CD , ∴CD =4PD ,故C 结论正确;∵EG =x ,FG =2x ,∴EF =√5x ,∵FH =FD =2√55x , ∵BC =6√55x ,∴AE =3√55x ,作HQ ⊥AD 于Q ,HS ⊥CD 于S ,∴HQ ∥AB ,∴SS SS =SS SS ,即3√55S =2√55S √5S ,∴HQ =6√525x , ∴CS =CD ﹣HQ =6√55x −6√525x =24√525x∴cos ∠HCD =SS SS =24√525S 655S=45,故结论D 错误, 故选:D .26.【解答】解:∵在正方形ABCD 中,A 、B 、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D (﹣3,2),∴将正方形ABCD 向右平移3个单位,则平移后点D 的坐标是(0,2),故选:B .27.【解答】解:△CBD 绕点C 顺时针旋转90°得到的图形如上图所示.∵D 的坐标为(3,1),∴OA =3,AD =1∵在正方形OABC 中,OA =AB ,∴AB =3,∴BD =AB ﹣AD =2,∴OD '=BD =2,∴D '的坐标为(﹣2,0),故答案为(﹣2,0).28.【解答】解:(1)∵四边形ABCD 是正方形,∴AB =CD ,AB ∥CD ,∴∠DCA =∠BAC ,∵DF ∥BE ,∴∠CFD =∠BEA ,∵∠BAC =∠BEA +∠ABE ,∠DCA =∠CFD +∠CDF ,∴∠ABE =∠CDF ,在△ABE 和△CDF 中,∵{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△ABE ≌△CDF (AAS ),∴BE =DF ,∵BH =DG ,∴BE +BH =DF +DG ,即EH =GF ,∵EH ∥GF ,∴四边形EHFG 是平行四边形;(2)如图,连接BD ,交EF 于O ,∵四边形ABCD 是正方形,∴BD ⊥AC ,∴∠AOB =90°,∵AB =2√2,∴OA =OB =2,Rt △BOE 中,EB =4,∴∠OEB =30°,∴EO =2√3,∵OD =OB ,∠EOB =∠DOF ,∵DF ∥EB ,∴∠DFC =∠BEA ,∴△DOF ≌△BOE (AAS ),∴OF =OE =2√3,∴EF =4√3,∴FM =2√3,EM =6,过F 作FM ⊥EH 于M ,交EH 的延长线于M , ∵EG ∥FH ,∴∠FHM =∠GEH ,∵tan ∠GEH =tan ∠FHM =SS SS =2√3, ∴2√3SS =2√3,∴HM =1,∴EH =EM ﹣HM =6﹣1=5,FH =√SS 2+SS 2=√(2√3)2+12=√13, ∴四边形EHFG 的周长=2EH +2FH =2×5+2√13=10+2√13.。

2018年广西地区中考数学考题分类汇编【几何综合】含解析

2018年广西地区中考数学考题分类汇编【几何综合】含解析

2018年广西地区中考数学考题分类汇编【几何综合】一.选择题(共8小题)1.(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.2.(2018•桂林)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C.D.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.3.(2018•广西)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.4.(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,=x,设S△AEF∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,故选:B.5.(2018•梧州)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:5解:过点D作DF∥CA交BE于F,如图,∵DF∥CE,∴=,而BD:DC=2:3,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴==.故选:D.6.(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2D.4.5解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.7.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.8.(2018•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为()A.B.C.D.解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵sin∠CDB=,BD=5,∴BH=4,∴DH==4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;∴AH=OA+OH=,故选:B.二.填空题(共9小题)9.(2018•柳州)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为 2 .解:过A作AE⊥CD,交CD的延长线于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE﹣DE=﹣=,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD=,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BC=2,故答案为:2.10.(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′M D=50°,则∠BEF的度数为70°.解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.11.(2018•梧州)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE ,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.解:如图,过E作EH⊥GF于H,过B作BP⊥GF于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴=,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴==,==1,∴EH=CF,BP=CF,∴=,∴=,故答案为:.12.(2018•玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10 cm.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.13.(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为4π(结果保留π).解:∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△ABC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.14.(2018•玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是2<AD<8 .解:如图,延长BC交AD的延长线于E,作BF⊥AD于F.在Rt△ABE中,∵∠E=30°,AB=4,∴AE=2AB=8,在Rt△ABF中,AF=AB=2,∴AD的取值范围为2<AD<8,故答案为2<AD<8.15.(2018•贺州)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B ′B=20°,则∠A的度数是65°.解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.16.(2018•玉林)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= 12+4.解:过A作AM⊥BF于M,连接O1F、O1A、O1B,∵六边形ABCDEF是正六边形,∴∠A==120°,AF=AB,∴∠AFB=∠ABF=(180°﹣120°)=30°,∴△AFB边BF上的高AM=AF=(6+4)=3+2,FM=BM=AM=3+6,∴BF=3+6+3+6=12+6,设△AFB的内切圆的半径为r,∵S△AFB=S+S+S,∴×(3+2)×(3+6)=×r+×r+×(12+6)×r,解得:r=3,即O1M=r=3,∴O1O2=2×3+6+4=12+4,故答案为:12+4.17.(2018•贺州)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为2.解:作QM⊥EF于点M,作PN⊥EF于点N,作QH⊥PN交PN的延长线于点H,如右图所示,∵正方形ABCD的边长为12,BE=8,EF∥BC,点P、Q分别为DG、CE的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM⊥EF,PN⊥EF,BE=8,DF=4,∴△EGB∽△FGD,∴,即,解得,FG=4,∴FN=2,∴MN=6﹣2=4,∴QH=4,∵PH=PN+QM,∴PH=6,∴PQ==,故答案为:2.三.解答题(共11小题)18.(2018•广西)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.19.(2018•柳州)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.20.(2018•广西)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E 作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.解:(1)如图,连接OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,∴∠GBC=∠BDC,∵CD是⊙O的直径,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连接OA,则∠AOM=∠COM=∠AOC,∵=,∴∠ABC=∠AOC,又∵∠EFB=∠OMA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,∴=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,∴=,=,∴可设EF=x,则EC=2x、FC=x,∴BF=8﹣x,在Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,∴x=6﹣,∴EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4..(2018•桂林)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C ,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH ∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.22.(2018•贵港)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.23.(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.(1)证明:∵BC为⊙M切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB是⊙M的直径∴∠AGB=90°即:BG⊥AE∴∠CBD=∠A∴△ABE∽△BCD(2)解:过点G作GH⊥BC于H∵MB=BE=1∴AB=2∴AE=由(1)根据面积法AB•BE=BG•AE∴BG=由勾股定理:AG=,GE=∵GH∥AB∴∴∴GH=又∵GH∥AB①同理:②①+②,得∴∴CD=24.(2018•贵港)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在A O的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=325.(2018•玉林)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.26.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO=∠ECO,在△AOD和△COE中,,∴△AOD≌△COE(ASA),∴AD=CE,∵CE∥AB,∴四边形AECD是平行四边形,又∵CD是Rt△ABC斜边AB上的中线,∴CD=AD,∴四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,∴AC⊥ED,在Rt△AOD中,tan∠DAO=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:,解得:x=1,∴OD=3,∵O,D分别是AC,AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.27.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′∴EG=ME=ME′=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AB==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中∴△GEA≌△CNF∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG∴△DME≌△DGE∴DG=DM∴DM+CN=DG+AG=AB=5∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=428.(2018•贺州)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交C E的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.(1)证明:∵OA=OB,DB=DE,∴∠A=∠OBA,∠DEB=∠DBE,∵EC⊥OA,∠DEB=∠AEC,∴∠A+∠DEB=90°,∴∠OBA+∠DBE=90°,∴∠OBD=90°,∵OB是圆的半径,∴BD是⊙O的切线;(2)过点D作DF⊥AB于点F,连接OE,∵点E是AB的中点,AB=12,∴AE=EB=6,OE⊥AB,又∵DE=DB,DF⊥BE,DB=5,DB=DE,∴EF=BF=3,∴DF==4,∵∠AEC=∠DEF,∴∠A=∠EDF,∵OE⊥AB,DF⊥AB,∴∠AEO=∠DFE=90°,∴△AEO∽△DFE,∴,即,得EO=4.5,∴△AOB的面积是:=27.。

圆的基本性质(解析版)2018年数学全国中考真题-2

圆的基本性质(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题圆的基本性质(试题二)解析版一、选择题1. (2018广西省柳州市,8,3分)如图,A ,B ,C ,D 是⊙O 上的四个点,⊙A =60°,⊙B =24°,则⊙C 的度数为( )第8题图 A .84° B.60°C .36°D .24°【答案】D【解析】∵AD 所对的圆周角是∠B 和∠C ,∴∠C =∠B =24°.【知识点】圆周角定理2. (2018广西贵港,9,3分)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是 A .24° B .28° C .33° D .48°【答案】A【解析】∵∠A =66°,∴∠BOC =2∠A =132°,又OC =OB ,∴∠OCB =12(180°-∠BOC )=24°,故选A .3. (2018贵州铜仁,5,4)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( ) A.55° B.110° C.120° D.125°【答案】D ,【解析】设点E 是优弧AB 上的一点,连接EA 、EB ,根据同弧所对的圆周角是圆心角的一半可得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【解答过程】设点E 是优弧AB 上的一点,连接EA 、EB ,如图, ∵∠AOB=110°,∴∠AEB=12∠AOB=55°,∴∠ACB=180°-∠E=125°.4. (2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC=40°,则∠D 的度数为 A .100° B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .5. (2018内蒙古通辽,7,3分)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对圆周角的度数是 A .30° B .60° C .30°或150° D .60°或120° 【答案】D【解析】如答图,连接OA 、OB ,∵OC ⊥AB ,∴OC =5,OA =OB =10,又OC =12OA ,∴cos ∠AOC =12,∴∠AOC =60°∴∠AOB =120°,∴弦AB 所对的圆周角的度数是60°或120°. 故选D .6.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8 C. D.【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD , ∴AE DC ,∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质7. (2018湖北黄石,8,3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( )第8题图A .23πB .43πC .2πD .83π FE【答案】D 【解析】连接OD ,则∠AOD =2∠B =60°,∴∠BOD =120°.∴l BD =120180π×4=83π.8. (2018湖南邵阳,6,3分)如图(二)所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°图(二)【答案】B ,【解析】根据“圆内接四边形的对角互补”可得∠BCD +∠A =180°,因为∠BCD =120°所以∠A =60°.又根据“在同圆中,同弧所对的圆心角等于圆周角的2倍”,所以∠BOD =2∠A =120°.故选B .9.(2018四川眉山,6,3分)如图所示,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C ,连结BC ,若∠P =36°,则∠B 等于( )A .27°B .32°C .36°D .54°【答案】A ,【解析】由P A 是⊙O 的切线,可得⊙OAP =90°,∴∠AOP =54°,根据同弧所对的圆周角等于圆心角的一半,可得∠B =27°10. (2018辽宁锦州,7,3分)如图:在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF 、CF ,若∠EDC=135°,CF=22,则AE 2+BE 2的值为A 、8B 、12C 、16D 、20D【答案】C,【解析】:如图,∠EDC=1350,∠ACB=90°,得△ACB是等腰直角三角形,ECF是等腰直角三角形,得△AEC与△BFC是全等三角形,AE=BF,△EBF是直角三角形,AE2+BE2=FE2=2FC2.二、填空题100,则弧AB所对的圆周角是°.1.(2018广东省,11,3)同圆中,已知弧AB所对的圆心角是【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系2. (2018海南省,18,4分)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C , D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.【答案】(2,6)【思路分析】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,由题意可知OB 及圆的半径长,OB =CD ,由垂径定理可求得MN 的长,CN =EM ,从而求出OE 的长,进而得到点C 的坐标.【解题过程】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,点A 的坐标是(20,0),所以CM =OM =10,点B 的坐标是(16,0),所以CD =OB =16,由垂径定理可知,821==CD CN ,在Rt⊙CMN 中,CM =10,CN =8,由勾股定理可知MN =6,所以CE =MN =6,OE =OM ﹣EM =10﹣8=2,所以点C 的坐标为(2,6).【知识点】垂径定理,勾股定理,平行四边形的性质3. (2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理4.(2018黑龙江绥化,16,3分)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是.(结果用含π的式子表示)【答案】4π-.【解析】解:连接OA,OB,OC,过O点作OD⊥BC于点D.∵△ABC为等边三角形,∴∠OBD=30°.∵⊙O的半径为2,∴OB=2,∴OD=1,∴∴S△ABC=3S△OBC=3×12BC·OD=D∴S阴影=4π-故答案为:4π-【知识点】含30°角的直角三角形的性质,垂径定理,三角形面积计算,圆的面积计算5.(2018黑龙江绥化,20,3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm【答案】10或70.【解析】解:作半径OD⊥AB于C,连接OB,由垂径定理得:BC=12AB=30,在Rt△OBC中,当水位上升到圆心以下时水面宽80 cm则OC′,水面上升的高度为:40-30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【知识点】垂径定理,勾股定理6.7.(2018浙江嘉兴,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:xCE =OE8. (2018贵州省毕节市,19,3分)如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E , ∠ACE 的度数为______.【答案】30°.【解题过程】∵AB 是⊙O 的直径,C 、D 为半圆的三等分点,∴∠A =∠BOD =13×180°=60°,又∵CE ⊥AB ,∴∠ACE =90°-60°=30°.【知识点】圆的性质;直角三角形的性质9.(2018吉林省,13, 2分)如图,A ,B ,C ,D 是⊙O 上的四个点,=⌒BC ,,若∠AOB=58°,则∠BDC=___ 度.BO【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系10.(2018江苏扬州,15,3)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .2【答案】2【思路分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的2倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解题过程】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为2.【知识点】三角形的外接圆和外心,圆内接四边形对边互补,圆周角的性质11.(2018青海,9,2分)如图5,A、B、C是⊙O上的三点,若∠AOC=110°,则∠ABC= . 【答案】125°.【解析】如图所示:优弧AC上任取一点D,连接AD、CD,∵∠AOC=110°,∴∠ADC=∠AOC=×110°=55°,∵四边形ABCD内接与⊙O,∴∠ABC=180°﹣∠ADC=180°﹣55°=125°.【知识点】圆内接四边形的性质,圆周角的性质12. (2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.13. (2018内蒙古通辽,17,3分)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象与半径为5的⊙O 相交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 .【答案】52【解析】设M (a ,b ),则N (b ,a ),依题意,得:a 2+b 2=52……①(第9题答图)(第9题图)a 2-ab -12(a -b )2=3.5……②①、②联立解得a =572,b =432所以M 、N 的坐标分别为(572,432),(432,572) 作M 关于x 轴的对称点M ′,则M ′的坐标为(572,-432), 则M ′N 的距离即为PM +PN 的最小值.由于M ′N 2=(572-432)2+(-432-572)2=50, 所以M ′N =52,故应填:52.14. (2018山东莱芜,16,3分)如图,正方形ABCD 的边长为2a ,E 为BC 边的中点,⌒AE 、⌒DE 的圆心分别在边AB 、CD 上,这两段圆弧在正方形内交于点F ,则E 、F 间的距离为_______.【答案】32a【思路分析】先用勾股定理求出⌒DFE 的所在圆的半径,再由垂径定理求出EF 的长.【解题过程】解:如图,设⌒DFE 的圆心为G ,作GH ⊥EF 于H ,连接EG .设⌒DFE 所在圆的半径为x ,在Rt △CEG 中,EG 2=CG 2+CE 2,则x 2=(2a -x )2+a 2,解得x =54a ;由垂径定理,得EF =2EH =2⎝ ⎛⎭⎪⎫54a 2-a 2=32a .故答案为32a .【知识点】正方形的性质;勾股定理;垂径定理;15. (2018湖北随州12,3分)如图,点A ,B ,C 在⊙O 上,∠A =40度,∠C =20度,则∠B =______度.EEA D【答案】60.【解析】如图,连接OA ,根据“同圆的半径相等”可得OA =OC =OB ,所以∠C =∠OAC ,∠OAB =∠B ,故∠B =∠OAB =∠OAC +∠BAC =∠C +∠BAC =20°+40°=60°.16.(2018湖北随州16,3分)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出下列判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC ·BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A 、B 、C 、D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是______________.(写出所有正确判断的序号)【答案】①③④.【解析】根据“到线段两个端点的距离相等的点在这条线段的垂直平分线上”可知,A ,C 两点都在线段BD 的垂直平分线上,又“两点确定一条直线”,所以AC 垂直平分BD ,故①正确; 如图1,取AC ,BD 的交点为点O ,则由①知OB ⊥AC ,OD ⊥AC ,所以S 四边形ABCD =S △ABC +S △ADC =12AC ·OB +12AC ·OD =12AC ·(OB +OD )= 12AC ·BD ,故②错误; 如图2,取AB ,BC ,CD ,AD 四边的中点分别为P ,Q ,M ,N ,则由三角形的中位线定理得PQ ∥AC ∥MN ,PQ =MN =12AC ,PN ∥BD ∥QM ,PN =QM =12BD ,于是知四边形PQMN 及阴影四边形都是平行四边形.又由①知AC ⊥BC ,所以可证∠AOB =∠QPN =90°,故四边形PQMN 为矩形.若AC =BD ,则有PQ =PN ,四边O ABCCBAO ABDC形PQMN 是正方形,所以顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形,故③正确;当A 、B 、C 、D 四点在同一个圆上时,四边形ABCD 是这个圆的内接四边形,则∠ABC +∠ADC =180°.根据“SSS ”可证△ABC ≌△ADC ,所以∠ABC =∠ADC =90°,则AC 是这个圆的直径.由①知BO =OD =12BD =4,在Rt △AOB 中,根据勾股定理,求得AO=3.然后,证明△AOB ∽△ABC ,得到AB 2=AO ·AC ,所以AC =253,该圆的半径为256,故④正确; 如图1,过点F 作FG ⊥AB 于点G ,过点E 作EH ⊥AB 于点H ,由折叠知,AE =2AO =6,BE =BA =5.由于BF ⊥CD ,AE ⊥BD ,可证得△BOE ∽△BFD ,所以BO BF =BE BD ,即4BF =58,BF =325.因为S △ABE =12AB ·EH=12AE ·BO ,所以EH =645⨯=245.又可证△BEH ∽△BFG ,所以EH FG =BE BF ,即245FG =5325,FG =768125,故⑤错误.17. (2018云南曲靖,10,3分)如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_________【答案】n °【解析】圆内接四边形的对角互补,所以∠BCD =180°-∠A ,而三点BCD 在一条直线上,则∠DCE =180°-∠BCD ,所以∠DCE =∠A =n °.18. (2018年浙江省义乌市,13,5)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少B 走了_________步(假设1步为0.5米,结果保留整数).(参考数据:图1GFEH OABDC 图21.732,π取3.142)【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=12(180°﹣∠AOB)=12(180°﹣120°)=30°,在Rt△AOC中,OC=12OA=10,,∴69(步);而AB的长=12020180π⨯≈84(步),AB的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【知识点】垂径定理;勾股定理19.(2018浙江舟山,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.BC【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:x ,∴CE =OE.三、解答题1. (2018年江苏省南京市,26,8分)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.【思路分析】(1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ; (2)首先证明CG 是直径,求出CG 即可解决问题;【解题过程】(1)证明:在正方形ABCD 中,90ADC ∠=. ∴90CDF ADF ∠+∠=. ∵AF DE ⊥. ∴90AFD ∠=.∴90DAF ADF ∠+∠=. ∴DAF CDF ∠=∠.∵四边形GFCD 是⊙O 的内接四边形, ∴180FCD DGF ∠+∠=. 又180FGA DGF ∠+∠=,O∴FGA FCD ∠=∠. ∴AFG DFC ∽△△. (2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠, ∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AFDA DF=. ∵AFG DFC ∽△△, ∴AG AFDC DF =. ∴AG EADC DA=. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=, ∴CG 是⊙O 的直径. ∴⊙O 的半径为52.【知识点】相似三角形的判定和性质 正方形的性质 圆周角定理及推论2. (2018江苏徐州,28,10分) 如图,将等腰直角三角形ABC 对折,折痕为CD .展平后,再将点B 折叠再边AC 上,(不与A 、C 重合)折痕为EF ,点B 在AC 上的对应点为M ,设C D 与EM 交于点P ,连接PF .已知BC =4.(1)若点M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置.①△PFM 的形状是否发生变化?请说明理由; ②求△PFM 的周长的取值范围.第28题图【解答过程】 解:(1)根据题意,设BF =FM =x ,则CF =4-x ,∵M 为AC 中点,AC =BC =4,∴ CM =12AC =2,∵∠ACB =90°,∴CF 2+CM 2=FM 2,∴(4-x )2+22=x 2,解得x =52,∴CF =4-52=32; (2)①△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形,理由如下:∵等腰直角三角形ABC 中,CD ⊥AB ,∴AD =DB ,CD =12AB =DB ,∴∠B =∠DCB =45°,由折叠可得∠PMF =∠B =45°,∴∠PMF =∠DCB ,∴P 、M 、F 、C 四点共圆,∴∠FPM +∠FCM =180°,∴∠FPM =180°-∠FCM =90°,∠PFM =90°-∠PMF =45°=∠PMF ,∴△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形; ②当M 与C 重合时,F 为BC 中点,CF =12BC =2,PM =PF =cos 45CF=︒此时△PFM 的周长为2+当M 与A 重合时,F 于C 重合,E 与D 重合,FM =AC =4,PM =PF =ACcos45°=,此时△PFM 的周长为4+B 不与A 、C 重合,所以△PFM 的周长的取值范围是大于2+且小于4+.3. (2018辽宁葫芦岛,25,12分)在△ABC 中,AB =BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC =90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由; (3)若|CF -AE |=2,EF =POF 为等腰三角形时,请直接写出线段OP 的长.【思路分析】(1)连接OB ,则OB ⊥AC ,进而得A 、E 、O 、B 四点共圆,B 、F 、O 、C 四点共圆.由同弧所对的圆周角相等得∠OEB =∠OAB ,∠OFC =∠OBC .又因为∠OFE =90°-∠OFC ,∠ACB =90°-∠OBC ,所以∠OFE =∠OCB ,又因为∠OAB =∠OCB ,所以∠OE B =∠OFE ,所以OE =OF ;(2)类比(1)可得OE =OF ;由∠ABC =90°,AB =BC ,可得∠OAB =∠OCB =∠OEB =∠OFE =45°,所以OE ⊥OF .(3)取EF的中点为M,则EM=FMAM并延长交CF于D,连接OM.由△AME≌△DMF,|CF-AE|=2,得OM=1.进而得OF=2.由sin∠OFM=12,得∠OFM=30°.因为点P在EF上,所以OP<OE=OF;因为AE⊥EF,∠APE、∠OPF均为锐角,故PF≠PO.当PF=OF=2时,PM=2理得OP=【解答过程】(1)OE=OF;(2)OE=OF,OE⊥OF.理由:连接OB,则OB⊥AC.∵∠AEB=∠AOB=90°,∴进而得A、E、O、B四点共圆,∴∠OEB=∠OAB.∵∠BFC=∠BOC=90°,∴B、F、O、C四点共圆.∴∠OFC=∠OBC.又∵∠OFE=90°-∠OFC,∠ACB=90°-∠OBC,∴∠OFE=∠OCB,又∵∠ABC=90°,AB=BC,∴∠OAB=∠OCB=45°.∴∠OE B=∠OFE=45°.∴OE=OF,OE⊥OF.(3)OP=223.4.(2018上海,25,14分)已知圆O的直径AB=2,弦AC与弦BD,交于点E,且OD⊥AC,垂足为点F.(1)图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为BD的中点,求∠ABD的余切值(3)联结BC、CD、DA,如果BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边,求△ACD的面积.【思路分析】(1)连结CB.可以证明弧AD、弧DC、弧CB相等,从而得到∠ABC=60°.在△ABC中求出AC长.(2)运用中位线及全等转化求出CB长,再把直角三角形OBE中的两个直角边求出,即可∠ABD的余切值.(3)根据“BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边”求出n值,从而求出∠AOD=45°,可得各线段长,再求△ACD的面积.【解答过程】(1)连结CB.∵AC=BD,∴弧AC=弧BD,∵OD⊥AC,∴弧AD=弧DC=12弧AC,∴弧AD=弧DC=弧CB,∴∠ABC=60°在Rt△ABC中, ∠ABC=60°,AB=2,∴AC=3(2)∵OD⊥AC,∴∠AFO=90°,AF=FC∵AO=OB,∴FO∥CB,FO=12 CB∵E为BD的中点,∴DE=EB∵FO∥CB,∴△DEF≌△BEC,∴DF=CB=2FO∴FO=13,CB=23在Rt △ABC 中,AB =2,CB =23,∴AC ,∴EC ∴EB ,∵E 为BD 的中点,OD =OB ,∴∠OEB =90°,∴EO cot ∠ABD =EB EO . (3)∵BC 是圆O 的内接正n 边形的一边,∴∠COB =360n° ∵CD 是的内接正(n +4)边形的一边,∴∠COD =3604n +° ∵弧AD =弧DC ,∴∠AOD =3604n +° ∵∠COB +∠COD +∠AOD =180°,∴360n +3604n ++3604n +=180,解得n =4 ∴∠AOD =∠COD =3604n +°=45°∵OD =OA =OC =1,∴AC ,OF ,DF =1,∴S △ACD =12×AC ×DF =2-12.5. (2018黑龙江哈尔滨,26,10)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE ,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3【思路分析】(1)问利用同弧和等弧所对圆周角等与三角形外角性质易证的结论.(2)过H 作HM ⊥KD ,易证得HM =BP ,加上直角条件,可导出第三个全等条件,得到△BEP ≌△HKM ,所以BE =HK .(3)连接BD 后根据条件3HF =2DF 可得到tan ∠ABH =tan ∠ADE =ABAH =32,过点H 作HS ⊥BD 后再设边计算就能求出tan ∠BDE =tan ∠DBF =BSHS =51,在ER 上截取ET =DK ,连接BT 易证得△BET ≌△HKD ,这时21BP ·ER 21-HM ·DK =21BP (ER -DK )=21BP (ER -ET )=47,易求得BP =1,PR =5,BR =22RP BP +=2251+=26【解答过程】(1)证明:∵四边形ABCD 是正方形∴∠A =∠ABC =90°∵∠F =∠A =90°∴∠F =∠ABC∵DA 平分∠EDF ∴∠ADE =∠ADF ∵∠ABE =∠ADE ∴∠ABE =∠ADF又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ∴∠CBE =∠DHG(2)证明:过H 作HM ⊥KD 垂足为点M ∵∠F =90°∴HF ⊥FD 又∵DA 平分∠EDF ∴HM =FH∵FH =BP ∴HM =BP ∵KH ∥BN ∴∠DKH =∠DLN ∵∠ELP =∠DLN ∴∠DKH =∠ELP∵∠BED =∠A =90°∴∠BEP +∠LEP =90°∵EP ⊥BN ∴∠BPE =∠EPL =90°∴∠LEP +∠ELP =90°∴∠BEP =∠ELP =∠DKH ∵HM ⊥KD ∴∠KMH =∠BPE =90°∴△BEP ≌△HKM ∴BE =HK(3)解:连接BD ∵3HF =2DF ,BP =FH ∴设HF =2a ,DF =3a ∴BP =FH =2a由(2)得HM =BP ,∠HMD =90°∵∠F =∠A =90°∴tan ∠HDM =tan ∠FDH ∴DM HM =DF FH =32 ∴DM =3a ∴四边形ABCD 是正方形∴AB =AD ∴∠ABD =∠ADB =45°∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ∴∠DBF =∠BDE ∵∠BED =∠F ,BD =BD ∴△BED ≌△DFB ∴BE =FD =3a 过点H 作HS ⊥BD 垂足为点S ∵tan ∠ABH =tan ∠ADE =ABAH =32 ∴设AB =32m ,AH =22m ∴BD =2AB =6m DH =AD -AH =2m sin ∠ADB =DHHS =22 ∴HS =m ∴ DS =22HS DH -=m ∴BS =BD -DS =5m ∴tan ∠BDE =tan ∠DBF =BS HS =51 ∵∠BDE =∠BRE ∵tan ∠BRE =PR BP =51∵BP =FH =2a ∴RP =10a 在ER 上截取ET =DK ,连接BT 由(2)得∠BEP =∠HKD ∴△BET ≌△HKD ∴∠BTE =∠KDH ∴tan ∠BTE =tan ∠KDH ∴PT BP =32 ∴PT =3a ∴TR =RP -PT =7a ∵S △BER -S △KDH =47∴21BP ·ER 21-HM ·DK =47 ∴21BP (ER -DK )=21BP (ER -ET )=47∴21×2a ×7a =47 ∴a 2=41,a 1=21,a 2=21-(舍去)∴BP =1,PR =5 ∴BR =22RP BP +=2251+=26。

2018年广西省中考数学真题试卷4套(含答案及详细解析)

2018年广西省中考数学真题试卷4套(含答案及详细解析)

2018年广西省中考数学真题试卷4套(含答案及详细解析)2018年广西贵港市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3分)﹣8的倒数是()A.8B.﹣8C.D.2.(3分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3分)下列运算正确的是()A.2a﹣a=1B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.(3分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5B.﹣3C.3D.16.(3分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3B.1C.﹣1D.﹣37.(3分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥38.(3分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16B.18C.20D.2411.(3分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.512.(3分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若分式的值不存在,则x的值为.14.(3分)因式分解:ax2﹣a=.15.(3分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM 是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.D【解析】﹣8的倒数是﹣.故选:D.2.A【解析】将数据2180000用科学记数法表示为2.18×106.故选:A.3.D【解析】A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.C【解析】∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.D【解析】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.D【解析】∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,7.A【解析】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.C【解析】A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.A【解析】∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.B【解析】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,故选:B.11.C【解析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.B【解析】∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣1【解析】若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.14.a(x+1)(x﹣1)【解析】原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).15.5.5【解析】∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是(5+6)=5.5,故答案为:5.5.16.70°【解析】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.17.4π【解析】∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.18.2n﹣1,0【解析】∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.20.解:如图所示,△ABC为所求作21.解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.22.解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°×=86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.23.解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.24.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.25.解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析是为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析是为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,P(,﹣2﹣1).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,n2﹣2n﹣3=1﹣2﹣3=﹣4,P(1,﹣4);综上所述:P(1,﹣4)或(,﹣2﹣1).26.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,B D=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=32018年广西桂林市中考数学真题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(3分)2018的相反数是()A.2018B.﹣2018C.D.2.(3分)下列图形是轴对称图形的是()A.B.C.D.3.(3分)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°4.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)6.(3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×10117.(3分)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=28.(3分)一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和69.(3分)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.10.(3分)若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.11.(3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.12.(3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)比较大小:﹣30.(填“<”,“=”,“>”)14.(3分)因式分解:x2﹣4=.15.(3分)某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.(3分)如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的.值是第1列第2列第3列第4列列行第1行1234第2行8765第3行9101112第4行16151413……………第n行…………三、解答题:本大题共8小题,共66分.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别月生活支出x(单位:元)频数(人数)频率第一组x<30040.10第二组300≤x<35020.05第三组350≤x<40016n第四组400≤x<450m0.30第五组450≤x<50040.10第六组x≥50020.05请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.(10分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD 的长.26.(12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【参考答案】一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.B【解析】2018的相反数是:﹣2018.故选:B.2.A【解析】A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.3.B【解析】∵直线被直线a、b被直线c所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.4.C【解析】从正面看下面是一个长方形,如图所示:故C选项符合题意,故选:C.5.B【解析】a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.6.A【解析】将128 000 000 000 000用科学记数法表示为:1.28×1014.故选:A.7.C【解析】A,2x﹣x=x,错误;B,x(﹣x)=﹣x2,错误;C,(x2)3=x6,正确;D,x2+x=x2+x,错误;故选:C.8.D【解析】将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.9.A【解析】∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.10.D【解析】由题意可知:解得:故选:D.11.C【解析】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.12.B【解析】如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△P AB与△NCA中,,∴△P AB∽△NCA,∴=,设P A=x,则NA=PN﹣P A=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.13.<【解析】﹣3<0,故答案为:<.14.(x+2)(x﹣2)【解析】x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).15.84【解析】(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.16.3【解析】∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:317.3【解析】如图,作EM⊥x轴于点M,则EM=1.∵△ODE的面积是,∴OD•EM=,∴OD=.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y=(k>0)的图象过点E,∴k=3×1=3.故答案为3.18.(505,2)【解析】由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).三、解答题:本大题共8小题,共66分.19.解:原式=3+1﹣6×+2=3+1﹣3+2=3.20.解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:21.(1)证明:∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)解:由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°22.解:(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率;23.解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时24.解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.25.(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)解:连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠F AC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)解:过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.26.解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).2018年广西柳州市中考数学真题一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3分)计算:0+(﹣2)=()A.﹣2B.2C.0D.﹣202.(3分)如图,这是一个机械模具,则它的主视图是()A.B.C.D.3.(3分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1B.C.D.5.(3分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个7.(3分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sin B==()A.B.C.D.8.(3分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°9.(3分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7%B.13.3%C.26.7%D.53.3%11.(3分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3分)如图,a∥b,若∠1=46°,则∠2=°.14.(3分)如图,在平面直角坐标系中,点A的坐标是.15.(3分)不等式x+1≥0的解集是.16.(3分)一元二次方程x2﹣9=0的解是.17.(3分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6分)计算:2+3.20.(6分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.22.(8分)解方程=.23.(8分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG 的长.26.(10分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x 轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【参考答案】一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.A【解析】0+(﹣2)=﹣2.故选:A.2.C【解析】主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.3.B【解析】A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.4.B【解析】∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.5.C【解析】7000000000=7×109.故选:C.6.C【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.7.A【解析】∵∠C=90°,BC=4,AC=3,∴AB=5,∴sin B==,故选:A.8.D【分析】直接利用圆周角定理即可得出答案.【解析】∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.9.A【解析】根据题意知,买一斤需要付费0.8a元,故选:A.10.D【解析】由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.11.B【解析】(2a)•(ab)=2a2b.故选:B.12.C【解析】由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共18分)13.46°【解析】∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.14.(﹣2,3)【解析】由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).15.x≥﹣1【解析】移项得:x≥﹣1.故答案为:x≥﹣1.16.x1=3,x2=﹣3【解析】∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.17.【解析】设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.18.5【解析】过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,。

2018年广西省中考数学真题试卷4套(含答案及详细解析)

2018年广西省中考数学真题试卷4套(含答案及详细解析)

2018年广西省中考数学真题试卷4套(含答案及详细解析)2018年广西贵港市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3分)﹣8的倒数是()A.8B.﹣8C.D.2.(3分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3分)下列运算正确的是()A.2a﹣a=1B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.(3分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5B.﹣3C.3D.16.(3分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3B.1C.﹣1D.﹣37.(3分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥38.(3分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16B.18C.20D.2411.(3分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.512.(3分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若分式的值不存在,则x的值为.14.(3分)因式分解:ax2﹣a=.15.(3分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM 是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.D【解析】﹣8的倒数是﹣.故选:D.2.A【解析】将数据2180000用科学记数法表示为2.18×106.故选:A.3.D【解析】A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.C【解析】∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.D【解析】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.D【解析】∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,7.A【解析】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.C【解析】A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.A【解析】∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.B【解析】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,故选:B.11.C【解析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.B【解析】∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣1【解析】若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.14.a(x+1)(x﹣1)【解析】原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).15.5.5【解析】∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是(5+6)=5.5,故答案为:5.5.16.70°【解析】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.17.4π【解析】∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.18.2n﹣1,0【解析】∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.20.解:如图所示,△ABC为所求作21.解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.22.解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°×=86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.23.解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.24.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.25.解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析是为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析是为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,P(,﹣2﹣1).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,n2﹣2n﹣3=1﹣2﹣3=﹣4,P(1,﹣4);综上所述:P(1,﹣4)或(,﹣2﹣1).26.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,B D=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=32018年广西桂林市中考数学真题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(3分)2018的相反数是()A.2018B.﹣2018C.D.2.(3分)下列图形是轴对称图形的是()A.B.C.D.3.(3分)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°4.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)6.(3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×10117.(3分)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=28.(3分)一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和69.(3分)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.10.(3分)若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.11.(3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.12.(3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)比较大小:﹣30.(填“<”,“=”,“>”)14.(3分)因式分解:x2﹣4=.15.(3分)某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.(3分)如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的.值是第1列第2列第3列第4列列行第1行1234第2行8765第3行9101112第4行16151413……………第n行…………三、解答题:本大题共8小题,共66分.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别月生活支出x(单位:元)频数(人数)频率第一组x<30040.10第二组300≤x<35020.05第三组350≤x<40016n第四组400≤x<450m0.30第五组450≤x<50040.10第六组x≥50020.05请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)。

广西各2019年中考数学分类解析-专项11:圆

广西各2019年中考数学分类解析-专项11:圆

广西各2019年中考数学分类解析-专项11:圆专题11:圆一、选择题1.〔2018广西北海3分〕两圆的半径分别是3和4,圆心距的长为1,那么两圆的位置关系为:【】A、外离B、相交C、内切D、外切【答案】C。

【考点】两圆的位置关系。

【分析】依照两圆的位置关系的判定:外切〔两圆圆心距离等于两圆半径之和〕,内切〔两圆圆心距离等于两圆半径之差〕,相离〔两圆圆心距离大于两圆半径之和〕,相交〔两圆圆心距离小于两圆半径之和大于两圆半径之差〕,内含〔两圆圆心距离小于两圆半径之差〕。

因此,∵两圆半径之差为1,等于圆心距,∴两圆的位置关系为内切。

应选C。

2.〔2018广西贵港3分〕如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,假设∠P=40°,那么∠ACB的度数是【】A、80°B、110°C、120°D、140°【答案】B。

【考点】切线的性质,多边形内角和定理,圆周角定理。

3.〔2018广西桂林3分〕两圆半径为5cm和3cm,圆心距为3cm,那么两圆的位置关系是【】A、相交B、内含C、内切D、外切【答案】A。

【考点】两圆的位置关系。

【分析】依照两圆的位置关系的判定:外切〔两圆圆心距离等于两圆半径之和〕,内切〔两圆圆心距离等于两圆半径之差〕,相离〔两圆圆心距离大于两圆半径之和〕,相交〔两圆圆心距离小于两圆半径之和大于两圆半径之差〕,内含〔两圆圆心距离小于两圆半径之差〕。

因此,∵两圆半径之差2cm<圆心距3cm<两圆半径之和8cm,∴两圆的位置关系是相交。

应选A。

4.〔2018广西河池3分〕如图,AB 为⊙O 的直径,∠CAB=300,那么∠D 的度数为【】A 、30°B 、45°C 、60°D 、80°【答案】C 。

【考点】圆周角定理,三角形内角和定理。

【分析】∵AB 为⊙O 的直径,∴∠ACB=90°。

2018年广西柳州市中考数学试题含答案解析

2018年广西柳州市中考数学试题含答案解析

2018年广西柳州市中考数学试题含答案解析.;;参考答案与试题解析一、选择题(每题只有一个正确选项,本题共12小题,每题3分;,共36分)1.(3.00分)计算:0+(﹣2)=();A.﹣2 B.2C.0D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3.00分)如图,这是一个机械模具,则它的主视图是;().D..BC.A【分析】根据主视图的画法解答即可.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面;,故选:C..【点评】本题考查几何体的三视图画法.根据主视图是从几何体正边看得到的图形解答是关键.3.(3.00分)下列图形中,是中心对称图形的是.()1 / 18..A..正三角形.B圆.C正五边形.D等腰梯形【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()2 / 18..D.1 B .CA.利用概率公式计算即可得.【分析】其中抽到红桃种等可能结果,4张纸牌中任意抽取一张牌有4【解答】解:∵从种结果,1A的只有,∴抽到红桃A的概率为.B故选:P的概率本题主要考查概率公式的应用,解题的关键是掌握随机事件A【点评】可能出现的结果数÷所有可能出现的结果数.A=事件(A))人,用科学记数法可表示为(.(3.00分)世界人口约70000000005 9107910×D.C.7×100.7A.9×10B .7×10n确为整数.10,na其中1≤||×【分析】科学记数法的表示形式为a10<的形式,的绝对值与小数点n的值时,要看把原数变成a时,小数点移动了多少位,定n1是正数;当原数的绝对值小于时,n10移动的位数相同.当原数绝对值大于是负数.n时,9.×10【解答】解:7000000000=7.故选:Cn的10【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×的值.n为整数,表示时关键要正确确定a的值以及a||<10,n形式,其中1≤)(6.3.00分)如图,图中直角三角形共有(个4个3 D..个.个.A1 B2 C可作有一个角是直角的三角形是直角三角形,【分析】根据直角三角形的定义:3 / 18.判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.sinB==()BC=4ABC中,∠C=90°,,AC=3,则3.007.(分)如图,在Rt△.D. B .CA.【分析】首先利用勾股定理计算出AB长,再计算sinB即可.【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,=sinB=∴,故选:A.【点评】此题主要考查了锐角三角函数,关键是正确计算出AB的长.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°4 / 18.【分析】直接利用圆周角定理即可得出答案.所对的弧都是,与∠CB【解答】解:∵∠,∠B=24°∴∠C=.故选:D在同圆或等本题主要考查圆周角定理,解题的关键是掌握圆周角定理:【点评】圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.折出售,假如现在要买一斤,那么元,现在按8(3.00分)苹果原价是每斤a9.)需要付费()元0.8(a+.C1.8a元D.元A.0.8a B.0.2a元可得答案.原售价×”=【分析】根据“实际售价【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.【点评】本题主要考查列代数式,解题的关键是掌握代数式的书写规范及实际问题中数量间的关系.10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%【分析】根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤x<69之间的占53.3%.【解答】解:由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.【点评】本题考查了扇形统计图的应用.利用统计图获取信息时,必须认真观察、5 / 18.分析、研究统计图,才能作出正确的判断和解决问题.11.(3.00分)计算:(2a)?(ab)=()22b3a3ab D.2a.b C.A.2ab B【分析】直接利用单项式乘以单项式运算法则计算得出答案.2b.)=2a2a)?(ab【解答】解:(故选:B.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.y=,则a的取值范围是()(12.3.00分)已知反比例函数的解析式为2a=±≠±2 D..≠A.a2B.a≠﹣2 Ca【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2=46°.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位6 / 18.角相等.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.15.(3.00分)不等式x+1≥0的解集是x≥﹣1.【分析】根据一元一次不等式的解法求解不等式.【解答】解:移项得:x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.2﹣9=0的解是x=3,x(3.00分)一元二次方程x=﹣3.16.21【分析】利用直接开平方法解方程得出即可.2﹣9=0解:∵x,【解答】2=9,∴x解得:x=3,x=﹣3.21故答案为:x=3,x=﹣3.21【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.7 / 18.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,y场,则可列出方程组为.负【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+负的场数=8;胜的积分+平的积分=14,把相关数值代入即可.【解答】解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,.故答案为【点评】本题考查了列二元一次方程组,根据总场数和总分数得到相应的等量关系是解决本题的根据.AD=,AC=DCA=30°中,∠BCA=90°,∠,,Rt18.(3.00分)如图,在△ABC.BC的长为5则【分析】作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股CE=,及ED的长,可得CD的长,证明△定理得:AE=,BFD∽△BCA,列比例式可得BC的长.【解答】解:过A作AE⊥CD于E,过D作DF⊥BC于F,AC=,,中,∠Rt△AECACD=30°,,∴AE=CE=8 / 18.==ED=,△RtAED中,,DE==∴CD=CE+∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,=,∴CD=CF=,DF=∴∵DF∥AC,∴△BFD∽△BCA,∴,=,∴BF=,∴+BC==5,∴故答案为:5.【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键.三、解答题(每题只有一个正确选项,本题共8小题,共66分)9 / 18.2+3..(6.00分)计算:19【分析】先化简,再计算加法即可求解.2+3【解答】解:3=4+.=7二【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:再把被开方数相同的二次次根式相加减,先把各个二次根式化成最简二次根式,根式进行合并,合并方法为系数相加减,根式不变.≌.求证:△ABC,∠A=∠E,AC=EC相交于点20.(6.00分)如图,AE和BDC.△EDC【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.10 / 18.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.=.分)解方程22.(8.00【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.【分析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,BO=∴,BD=2∴【点评】本题主要考查菱形的性质,能够利用勾股定理求出BO的长是解题关键.y=的图象交于的图象与反比例函数+分)如图,一次函数(24.10.00y=mxbA11 / 18.(﹣,n)两点.,3,1)B((1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.y=的图象经过A(3,1)【分析】(1)根据反比例函数,即可得到反比例函数y=的解析式为;(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1)2()把B,B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.y=的图象经过A(3,1),)∵反比例函数【解答】解:(1∴k=3×1=3,y=∴反比例函数的解析式为;(﹣,n)把B)代入反比例函数解析式,可得2(﹣n=3,解得n=﹣6,(﹣,﹣6)∴B,(﹣,﹣6)代入一次函数By=mx+b,可得,13A把(,),解得,12 / 18.∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;CE=AD;AD于点E,求证:2)过点C作⊙O的切线CE交((3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,【分析】即可得出结论;(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,13 / 18.∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,CE=AD;∴(3)如图,在Rt△ABD中,AD=6,AB=3,ABD==2tan∠,∴过点G作GH⊥BD于H,ABD==2∠,∴tan,GH=2BH∴下方半圆的中点,AB∵点F是直径,∴∠BCF=45°,∠CHG﹣∠BCF=45°∴∠CGH=,∴CH=GH=2BH,+CH=3BH∴BC=BH=2tan∠ABC=,ABC在Rt△中,,AC=2BC∴222,+BC=AB根据勾股定理得,AC22,=9BC4BC∴+14 / 18.BC=,∴,∴3BH=,BH=∴GH=2BH=∴,在Rt△CHG中,∠BCF=45°,GH=.CG=∴【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.2(,0),B与x轴交于A两点(点B(26.10.00分)如图,抛物线y=axc+bx+ OC,∠OAC的平分线A在点的左侧),与y轴交于点C,且OB=3OA=AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;为圆心,HC为半径作⊙HPF)当直线为抛物线的对称轴时,以点H,点Q3(上的一个动点,求AQ+EQ为⊙H的最小值.15 / 18.的坐标,利用两根式求出抛物线的解析式即可;、CA、B【分析】(1)求出的解析式,根据方程即可解决问题;AH(2)求出直线,﹣,此时KHA上取一点K,使得(﹣HK=(3)首先求出⊙H的半径,在2,推=AQKQ=,由HQ∽△=HK?HA,可得△QHKAHQ=,推出,可得)E的值最小,由此求出点+KQE共线时,AQ+QE=KQ+EQ,可得当E、Q、AQ出坐标即可解决问题;坐标,点K,3),﹣,C(0,,0)(【解答】解:1)由题意A,(B(﹣30),)(x﹣(设抛物线的解析式为y=ax+3),a=0把C(,﹣3)代入得到2.﹣+∴抛物线的解析式为y=x3x,OAC==中,2)在Rt△AOCtan∠(,OAC=60°∴∠,∵AD平分∠OAC,OAD=30°∴∠,∴OD=OA?tan30°=1,,﹣∴D(01),xAD∴直线的解析式为y=﹣116 / 18.2,m﹣1),F(m,H+m﹣3),(m0由题意P(m),m,∵FH=PH,2+m﹣﹣(m∴13﹣)m=m﹣1或(舍弃)﹣解得m=,的值为﹣m.∴当FH=HP时,(3)如图,∵PF是对称轴,(﹣,﹣2H)F,(﹣,0),∴∵AH⊥AE,∴∠EAO=60°,EO=OA=3∴,∴E(0,3),∵C(0,﹣3),HC==2,∴AH=2FH=4,QH=CH=1,∴,﹣)(﹣HK=,此时K,K在HA上取一点,使得2,=1,HK?HA=1∵HQ2,∽△HQ=HK?HA,可得△QHKAHQ∴,∴==17 / 18.KQ=AQ∴,∴AQ+QE=KQ+EQ,=.=QEQ、K共线时,AQ+的值最小,最小值、∴当E【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、圆的有关知识、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.18 / 18.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西省2018-2020年中考数学试题分类(10)——圆一.选择题(共12小题)1.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC 的度数是()A.60°B.65°C.70°D.75°2.(2019•梧州)如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2√6B.2√10C.2√11D.4√33.(2019•玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5B.6C.7D.84.(2019•柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D5.(2019•河池)如图,在正六边形ABCDEF中,AC=2√3,则它的边长是()A.1B.√2C.√3D.26.(2019•贺州)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD 平分∠ABC ,AD =√3OD ,AB =12,CD 的长是( )A .2√3B .2C .3√3D .4√37.(2019•贵港)如图,AD 是⊙O 的直径,AÂ=AA ̂,若∠AOB =40°,则圆周角∠BPC 的度数是( )A .40°B .50°C .60°D .70°8.(2018•河池)如图,在⊙O 中,OA ⊥BC ,∠AOB =50°,则∠ADC 的大小为( )A .20°B .25°C .50°D .100° 9.(2018•河池)如图,等边△ABC 的边长为2,⊙A 的半径为1,D 是BC 上的动点,DE 与⊙A 相切于E ,DE 的最小值是( )A .1B .√2C .√3D .2 10.(2018•柳州)如图,A ,B ,C ,D 是⊙O 上的四个点,∠A =60°,∠B =24°,则∠C 的度数为( )A .84°B .60°C .36°D .24° 11.(2018•贵港)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是( )A.24°B.28°C.33°D.48°12.(2018•南宁)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.A+√3B.A−√3C.2A−√3D.2A−2√3二.填空题(共14小题)13.(2020•河池)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.14.(2020•玉林)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是.15.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.16.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.17.(2019•贺州)已知圆锥的底面半径是1,高是√15,则该圆锥的侧面展开图的圆心角是度.18.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2√3,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.19.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.20.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.21.(2018•百色)如图,把腰长为8的等腰直角三角板OAB的一直角边OA放在直线1上,按顺时针方向在l上转动两次,使得它的斜边转到l上,则直角边OA两次转动所扫过的面积为.22.(2018•梧州)如图,已知在⊙O中,半径OA=√2,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=度.23.(2018•梧州)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.24.(2018•玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.25.(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).26.(2018•玉林)如图,正六边形ABCDEF的边长是6+4√3,点O1,O2分别是△ABF,△CDE的内心,则O1O2=.三.解答题(共11小题)27.(2020•桂林)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.̂的28.(2020•河池)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是AA 中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.29.(2020•广西)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F ,求证:△F AD ∽△DAE ; (3)若tan ∠OAF =12,求AA AA的值.30.(2020•玉林)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使EF =EC . (1)求证:EF 是⊙O 的切线;(2)若D 是OA 的中点,AB =4,求CF 的长.31.(2019•桂林)如图,BM 是以AB 为直径的⊙O 的切线,B 为切点,BC 平分∠ABM ,弦CD 交AB 于点E ,DE =OE .(1)求证:△ACB 是等腰直角三角形; (2)求证:OA 2=OE •DC ; (3)求tan ∠ACD 的值.32.(2019•玉林)如图,在△ABC 中,AB =AC =5,BC =6,以AB 为直径作⊙O 分别交于AC ,BC 于点D ,E ,过点E 作⊙O 的切线EF 交AC 于点F ,连接BD . (1)求证:EF 是△CDB 的中位线; (2)求EF 的长.33.(2019•柳州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点F 是⊙O 上一点,且AA ̂=AA ̂,连接FB ,FD ,FD 交AB 于点N .(1)若AE =1,CD =6,求⊙O 的半径; (2)求证:△BNF 为等腰三角形;(3)连接FC 并延长,交BA 的延长线于点P ,过点D 作⊙O 的切线,交BA 的延长线于点M .求证:ON •OP =OE •OM .34.(2019•河池)如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.35.(2019•广西)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;̂的长(结果保留π).(2)若∠AEB=125°,求AA36.(2019•贺州)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.37.(2019•贵港)如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC 与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若P A=2,PC=4,求AE的长.广西省2018-2020年中考数学试题分类(10)——圆一.选择题(共12小题)1.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC 的度数是()A.60°B.65°C.70°D.75°【答案】B【解答】解:∵AC与⊙O相切于点A,∴AC⊥OA,∴∠OAC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠O=130°,∴∠OAB=180°−AA2=25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.2.(2019•梧州)如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2√6B.2√10C.2√11D.4√3【答案】C【解答】解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:则DF=CF,AG=BG=12AB=3,∴EG=AG﹣AE=2,在Rt△BOG中,OG=√AA2−AA2=√13−9=2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=√2OG=2√2,∵∠DEB=75°,∴∠OEF =30°, ∴OF =12OE =√2,在Rt △ODF 中,DF =√AA 2−AA 2=√13−2=√11, ∴CD =2DF =2√11; 故选:C . 3.(2019•玉林)如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8 【答案】B【解答】解:如图,设⊙O 与AC 相切于点D ,连接OD ,作OP ⊥BC 垂足为P 交⊙O 于F , 此时垂线段OP 最短,PF 最小值为OP ﹣OF , ∵AC =4,BC =3, ∴AB =5∵∠OPB =90°, ∴OP ∥AC∵点O 是AB 的三等分点,∴OB =23×5=103,AAAA =AA AA =23, ∴OP =83,∵⊙O 与AC 相切于点D ,∴OD ⊥AC , ∴OD ∥BC , ∴AA AA=AA AA=13,∴OD =1,∴MN 最小值为OP ﹣OF =83−1=53,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值=103+1=133, ∴MN 长的最大值与最小值的和是6. 故选:B .4.(2019•柳州)如图,A ,B ,C ,D 是⊙O 上的点,则图中与∠A 相等的角是( )A.∠B B.∠C C.∠DEB D.∠D【答案】D【解答】解:∵∠A与∠D都是AÂ所对的圆周角,∴∠D=∠A.故选:D.5.(2019•河池)如图,在正六边形ABCDEF中,AC=2√3,则它的边长是()A.1B.√2C.√3D.2【答案】D【解答】解:如图,过点B作BG⊥AC于点G.正六边形ABCDEF中,每个内角为(6﹣2)×180°÷6=120°,∴∠ABC=120°,∠BAC=∠BCA=30°,∴AG=12AC=√3,∴GB=1,AB=2,即边长为2.故选:D.6.(2019•贺州)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=√3OD,AB=12,CD的长是()A.2√3B.2C.3√3D.4√3【答案】A【解答】解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=√3OD,∴tan A=AAAA=√33,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB =∠CBD , ∴OD ∥BC ,∴∠C =∠ADO =90°,∴∠ABC =60°,BC =12AB =6,AC =√3BC =6√3, ∴∠CBD =30°,∴CD =√33BC =√33×6=2√3; 故选:A .7.(2019•贵港)如图,AD 是⊙O 的直径,AÂ=AA ̂,若∠AOB =40°,则圆周角∠BPC 的度数是( )A .40°B .50°C .60°D .70°【答案】B【解答】解:∵AÂ=AA ̂,∠AOB =40°, ∴∠COD =∠AOB =40°,∵∠AOB +∠BOC +∠COD =180°, ∴∠BOC =100°,∴∠BPC =12∠BOC =50°,故选:B . 8.(2018•河池)如图,在⊙O 中,OA ⊥BC ,∠AOB =50°,则∠ADC 的大小为( )A .20°B .25°C .50°D .100°【答案】B【解答】解:如图,连接OC ,∵OA ⊥BC , ∴AÂ=AA ̂, ∴∠AOC =∠AOB =50°,∴∠ADC =12∠AOC =25°, 故选:B . 9.(2018•河池)如图,等边△ABC 的边长为2,⊙A 的半径为1,D 是BC 上的动点,DE 与⊙A 相切于E ,DE 的最小值是( )A.1B.√2C.√3D.2【答案】B【解答】解:如图,连接AE,AD,作AH⊥BC于H,∵DE与⊙A相切于E,∴AE⊥DE,∵⊙A的半径为1,∴DE=√AA2−AA2=√AA2−1,当D与H重合时,AD最小,∵等边△ABC的边长为2,∴BH=CH=1,∴AH=√22−12=√3,∴DE的最小值为:√(√3)2−12=√2.故选:B.10.(2018•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°【答案】D̂,【解答】解:∵∠B与∠C所对的弧都是AA∴∠C=∠B=24°,故选:D.11.(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【答案】A【解答】解:∵∠A =66°, ∴∠COB =132°, ∵CO =BO ,∴∠OCB =∠OBC =12(180°﹣132°)=24°,故选:A . 12.(2018•南宁)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( )A .A +√3B .A −√3C .2A −√3D .2A −2√3【答案】D【解答】解:过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB =AC =BC =2,∠BAC =∠ABC =∠ACB =60°, ∵AD ⊥BC ,∴BD =CD =1,AD =√3BD =√3, ∴△ABC 的面积为12×AA ×AA =12×2×√3=√3,S 扇形BAC =60A ×22360=23π,∴莱洛三角形的面积S =3×23π﹣2×√3=2π﹣2√3,故选:D .二.填空题(共14小题) 13.(2020•河池)如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= 35 °.【答案】见试题解答内容【解答】解:如图,连接AD .∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.14.(2020•玉林)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是3π.【答案】见试题解答内容【解答】解:∵在边长为3的正六边形ABCDEF中,∠DAC=30°,∠B=∠BCD=120°,AB=BC,∴∠BAC=∠BCA=30°,∴∠ACD=90°,∵CD=3,∴AD=2CD=6,∴图中阴影部分的面积=S四边形ADEF+S扇形DAD′﹣S四边形AF′E′D′,∵将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,∴S四边形ADEF=S四边形AD′E′F′∴图中阴影部分的面积=S扇形DAD′=30⋅A×62360=3π,故答案为:3π.15.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是5A36.【答案】见试题解答内容【解答】解:∵∠ADO=85°,∠CAB=20°,∴∠C=∠ADO﹣∠CAB=65°,∵OA=OC,∴∠OAC =∠C =65°, ∴∠AOC =50°,∴阴影部分的扇形OAC 面积=50⋅A ×1360=5A36, 故答案为:5A 36.16.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为 5√2 .【答案】见试题解答内容【解答】解:如图所示,连接OB 、OC ,过O 作OE ⊥BC ,设此正方形的边长为a , ∵OE ⊥BC , ∴OE =BE =A2, 即a =5√2.故答案为:5√2.17.(2019•贺州)已知圆锥的底面半径是1,高是√15,则该圆锥的侧面展开图的圆心角是 90 度. 【答案】见试题解答内容【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4, 设圆锥的侧面展开图的圆心角度数为n °, 根据题意得2π•1=AA ×4180,解得n =90, 即圆锥的侧面展开图的圆心角度数为90°. 故答案为:90. 18.(2019•贵港)如图,在扇形OAB 中,半径OA 与OB 的夹角为120°,点A 与点B 的距离为2√3,若扇形OAB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为 43 .【答案】见试题解答内容【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB =120°,OA =OB , ∴∠BAO =30°,AM =√3, ∴OA =2, ∵240A ×2180=2πr ,∴r =43故答案是:4319.(2019•河池)如图,P A ,PB 是⊙O 的切线,A ,B 为切点,∠OAB =38°,则∠P = 76 °.【答案】见试题解答内容【解答】解:∵P A ,PB 是⊙O 的切线, ∴P A =PB ,P A ⊥OA ,∴∠P AB =∠PBA ,∠OAP =90°,∴∠PBA =∠P AB =90°﹣∠OAB =90°﹣38°=52°, ∴∠P =180°﹣52°﹣52°=76°; 故答案为:76. 20.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 26 寸.【答案】见试题解答内容【解答】解:设⊙O 的半径为r .在Rt △ADO 中,AD =5寸,OD =r ﹣1,OA =r , 则有r 2=52+(r ﹣1)2, 解得r =13寸,∴⊙O 的直径为26寸, 故答案为:26.21.(2018•百色)如图,把腰长为8的等腰直角三角板OAB 的一直角边OA 放在直线1上,按顺时针方向在l 上转动两次,使得它的斜边转到l 上,则直角边OA 两次转动所扫过的面积为 40π .【答案】见试题解答内容【解答】解:∵△OAB 为腰长为8的等腰直角三角形, ∴OA =OB =8,AB =8√2,∴直角边OA两次转动所扫过的面积=14π•OA2+90+45360π(AB2﹣OB2)=16π+24π=40π.故答案为:40π.22.(2018•梧州)如图,已知在⊙O中,半径OA=√2,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=81度.【答案】见试题解答内容【解答】解:∵OA=√2,OB=√2,AB=2,∴OA2+OB2=AB2,OA=OB,∴△AOB是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.23.(2018•梧州)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是4√2.【答案】见试题解答内容【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴A AÂ=120A×6180=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC=√AA2−AA2=4√2,故答案为:4√2.24.(2018•玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10cm.【答案】见试题解答内容【解答】解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.25.(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为4π(结果保留π).【答案】见试题解答内容【解答】解:∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2√3.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△ABC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=120A×42360−120A×22360=16A3−4A3=4π.故答案为4π.26.(2018•玉林)如图,正六边形ABCDEF的边长是6+4√3,点O1,O2分别是△ABF,△CDE的内心,则O1O2=12+4√3.【答案】见试题解答内容【解答】解:过A作AM⊥BF于M,连接O1F、O1A、O1B,∵六边形ABCDEF 是正六边形,∴∠A =(6−2)×180°6=120°,AF =AB , ∴∠AFB =∠ABF =12×(180°﹣120°)=30°,∴△AFB 边BF 上的高AM =12AF =12×(6+4√3)=3+2√3,FM =BM =√3AM =3√3+6,∴BF =3√3+6+3√3+6=12+6√3, 设△AFB 的内切圆的半径为r ,∵S △AFB =A △AA 1A +A △AA 1A +A △AAA 1,∴12×(12+6√3)×(3+2√3)=12×(6+4√3)×r +12×(6+4√3)×r +12×(12+6√3)×r ,解得:r =3, 即O 1M =r =3,∴O 1O 2=2×3+6+4√3=12+4√3, 故答案为:12+4√3. 三.解答题(共11小题) 27.(2020•桂林)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB =30°,∠DAB =45°,点O 为斜边AB 的中点,连接CD 交AB 于点E . (1)求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上; (2)求证:CD 平分∠ACB ;(3)过点D 作DF ∥BC 交AB 于点F ,求证:BO 2+OF 2=EF •BF .【答案】(1)证明过程见解答; (2)证明过程见解答; (3)证明过程见解答. 【解答】证明:(1)如图,连接OD ,OC ,在Rt △ABC 中,∠ACB =90°,点O 是AB 的中点, ∴OC =OA =OB ,在Rt △ABD 中,∠ADB =90°,点O 是AB 的中点, ∴OD =OA =OB ,∴OA =OB =OC =OD ,∴A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上;(2)由(1)知,A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上,且AD =BD , ∴AÂ=AA ̂, ∴CD 平分∠ACB ;(3)由(2)知,∠BCD =45°, ∵∠ABC =60°, ∴∠BEC =75°, ∴∠AED =75°, ∵DF ∥BC ,∴∠BFD =∠ABC =60°,∵∠ABD =45°,∴∠BDF =180°﹣∠BFD ﹣∠ABD =75°=∠AED ,∵∠DFE =∠BFD ,∴△DEF ∽△BDF ,∴AA AA =AA AA ,∴DF 2=BF •EF ,连接OD ,则∠BOD =90°,OB =OD ,在Rt △DOF 中,根据勾股定理得,OD 2+OF 2=DF 2,∴OB 2+OF 2=BF •EF ,即BO 2+OF 2=EF •BF .28.(2020•河池)如图,AB 是⊙O 的直径,AB =6,OC ⊥AB ,OC =5,BC 与⊙O 交于点D ,点E 是AÂ的中点,EF ∥BC ,交OC 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)CG ∥OD ,交AB 于点G ,求CG 的长.【答案】见试题解答内容【解答】证明:(1)连接OE ,交BD 于H , ∵点E 是AÂ的中点,OE 是半径, ∴OE ⊥BD ,BH =DH ,∵EF ∥BC ,∴OE ⊥EF ,又∵OE 是半径,∴EF 是⊙O 的切线;(2)∵AB 是⊙O 的直径,AB =6,OC ⊥AB ,∴OB =3,∴BC =√AA 2+AA 2=√9+25=√34,∵S △OBC =12×OB ×OC =12×BC ×OH ,∴OH =3×534=15√3434, ∵cos ∠OBC =AA AA =AA AA , ∴√34=AA 3, ∴BH =9√3434, ∴BD =2BH =9√3417, ∵CG ∥OD ,∴AA AA =AA AA , ∴3AA =9√3417√34, ∴CG =173. 29.(2020•广西)如图,在△ACE 中,以AC 为直径的⊙O 交CE 于点D ,连接AD ,且∠DAE =∠ACE ,连接OD 并延长交AE 的延长线于点P ,PB 与⊙O 相切于点B .(1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F ,求证:△F AD ∽△DAE ;(3)若tan ∠OAF =12,求AAAA 的值.【答案】见试题解答内容【解答】解:(1)∵AC 为直径,∴∠ADC =90°,∴∠ACD +∠DAC =90°,∵∠DAE =∠ACE ,∴∠DAC +∠DAE =90°,即∠CAE =90°,∴AP 是⊙O 的切线;(2)连接DB ,如图1,∵P A 和PB 都是切线,∴P A =PB ,∠OP A =∠OPB ,PO ⊥AB ,∵PD =PD ,∴△DP A ≌△DPB (SAS ),∴AD =BD ,∴∠ABD =∠BAD ,∵∠ACD =∠ABD ,又∠DAE =∠ACE ,∴∠DAF =∠DAE ,∵AC 是直径,∴∠ADE =∠ADC =90°,∴∠ADE =∠AFD =90°,∴△F AD ∽△DAE ;(3)∵∠AFO =∠OAP =90°,∠AOF =∠POA ,∴△AOF ∽△POA ,∴AA AA =AA AA , ∴AA AA =AA AA =AAAAAAA =12, ∴P A =2AO =AC ,∵∠AFD =∠CAE =90°,∠DAF =∠ABD =∠ACE ,∴△AFD ∽△CAE ,∴AA AA =AA AA , ∴AA AA =AA AA =AA AA , ∵AAA ∠AAA =AA AA =12, 不妨设OF =x ,则AF =2x ,∴AA =AA =√5A ,∴AA =AA −AA =(√5−1)A ,∴AA AA =(√5−1)A 2A =√5−12, ∴AA AA =√5−12.30.(2020•玉林)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使EF =EC .(1)求证:EF 是⊙O 的切线;(2)若D 是OA 的中点,AB =4,求CF 的长.【答案】见试题解答内容【解答】(1)证明:连接OF ,如图1所示:∵CD ⊥AB ,∴∠DBC +∠C =90°,∵OB =OF ,∴∠DBC =∠OFB ,∵EF =EC ,∴∠C =∠EFC ,∴∠OFB +∠EFC =90°,∴∠OFE =180°﹣90°=90°,∴OF ⊥EF ,∵OF 为⊙O 的半径,∴EF 是⊙O 的切线;(2)解:连接AF ,如图2所示:∵AB 是⊙O 的直径,∴∠AFB =90°,∵D 是OA 的中点,∴OD =DA =12OA =14AB =14×4=1,∴BD =3OD =3,∵CD ⊥AB ,CD =AB =4,∴∠CDB =90°,由勾股定理得:BC =√AA 2+AA 2=√32+42=5,∵∠AFB =∠CDB =90°,∠FBA =∠DBC ,∴△FBA ∽△DBC ,∴AA AA =AA AA ,∴BF =AA ⋅AA AA =4×35=125, ∴CF =BC ﹣BF =5−125=135.31.(2019•桂林)如图,BM 是以AB 为直径的⊙O 的切线,B 为切点,BC 平分∠ABM ,弦CD 交AB 于点E ,DE =OE .(1)求证:△ACB 是等腰直角三角形;(2)求证:OA 2=OE •DC ;(3)求tan ∠ACD 的值.【答案】见试题解答内容【解答】证明:(1)∵BM 是以AB 为直径的⊙O 的切线,∴∠ABM =90°,∵BC 平分∠ABM ,∴∠ABC =12∠ABM =45°∵AB 是直径∴∠ACB =90°,∴∠CAB =∠CBA =45°∴AC =BC∴△ACB 是等腰直角三角形;(2)如图,连接OD ,OC∵DE =EO ,DO =CO∴∠EDO =∠EOD ,∠EDO =∠OCD∴∠EDO =∠EDO ,∠EOD =∠OCD∴△EDO ∽△ODC∴AA AA =AA AA∴OD 2=DE •DC∴OA 2=DE •DC =EO •DC(3)如图,连接BD ,AD ,DO ,作∠BAF =∠DBA ,交BD 于点F ,∵DO =BO∴∠ODB =∠OBD ,∴∠AOD =2∠ODB =∠EDO ,∵∠CAB =∠CDB =45°=∠EDO +∠ODB =3∠ODB ,∴∠ODB =15°=∠OBD∵∠BAF =∠DBA =15°∴AF =BF ,∠AFD =30°∵AB 是直径∴∠ADB =90°∴AF =2AD ,DF =√3AD∴BD =DF +BF =√3AD +2AD∴tan ∠ACD =tan ∠ABD =AA AA =12+√3=2−√3 32.(2019•玉林)如图,在△ABC 中,AB =AC =5,BC =6,以AB 为直径作⊙O 分别交于AC ,BC 于点D ,E ,过点E 作⊙O 的切线EF 交AC 于点F ,连接BD .(1)求证:EF 是△CDB 的中位线;(2)求EF 的长.【答案】见试题解答内容【解答】(1)证明:连接AE ,如图所示:∵AB 为⊙O 的直径,∴∠ADB =∠AEB =90°,∴AE ⊥BC ,BD ⊥AC ,∵AB =AC ,∴BE =CE =3,∵EF 是⊙O 的切线,∴OE ⊥EF ,∵OA =OB ,∴OE 是△ABC 的中位线,∴OE ∥AC ,∴OE ⊥BD ,∴BD ∥EF ,∵BE =CE ,∴CF =DF ,∴EF 是△CDB 的中位线;(2)解:∵∠AEB =90°,∴AE =√AA 2−AA 2=√52−32=4,∵△ABC 的面积=12AC ×BD =12BC ×AE ,∴BD =AA ×AA AA =6×45=245, ∵EF 是△CDB 的中位线,∴EF =12BD =125. 33.(2019•柳州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点F 是⊙O 上一点,且AA ̂=AA ̂,连接FB ,FD ,FD 交AB 于点N .(1)若AE =1,CD =6,求⊙O 的半径;(2)求证:△BNF 为等腰三角形;(3)连接FC 并延长,交BA 的延长线于点P ,过点D 作⊙O 的切线,交BA 的延长线于点M .求证:ON •OP =OE •OM .【答案】见试题解答内容【解答】解:(1)如图1,连接BC ,AC ,AD ,∵CD ⊥AB ,AB 是直径∴AÂ=AA ̂,CE =DE =12CD =3 ∴∠ACD =∠ABC ,且∠AEC =∠CEB∴△ACE ∽△CEB∴AA AA =AA AA ∴13=3AA∴BE =9∴AB =AE +BE =10∴⊙O 的半径为5(2)∵AÂ=AA ̂=AA ̂ ∴∠ACD =∠ADC =∠CDF ,且DE =DE ,∠AED =∠NED =90°∴△ADE ≌△NDE (ASA )∴∠DAN =∠DNA ,AE =EN∵∠DAB =∠DFB ,∠AND =∠FNB∴∠FNB =∠DFB∴BN =BF ,∴△BNF 是等腰三角形(3)如图2,连接AC ,CE ,CO ,DO ,∵MD 是切线,∴MD ⊥DO ,∴∠MDO =∠DEO =90°,∠DOE =∠DOE∴△MDO ∽△DEO∴AA AA =AA AA∴OD 2=OE •OM∵AE =EN ,CD ⊥AO∴∠ANC =∠CAN ,∴∠CAP =∠CNO ,∵AÂ=AA ̂ ∴∠AOC =∠ABF∵CO ∥BF∴∠PCO =∠PFB∵四边形ACFB 是圆内接四边形∴∠P AC =∠PFB∴∠P AC =∠PFB =∠PCO =∠CNO ,且∠POC =∠COE∴△CNO ∽△PCO∴AA AA =AA AA∴CO 2=PO •NO ,∴ON •OP =OE •OM .34.(2019•河池)如图,五边形ABCDE 内接于⊙O ,CF 与⊙O 相切于点C ,交AB 延长线于点F .(1)若AE =DC ,∠E =∠BCD ,求证:DE =BC ;(2)若OB =2,AB =BD =DA ,∠F =45°,求CF 的长.【答案】见试题解答内容【解答】(1)证明:∵AE =DC ,∴AÂ=AA ̂, ∴∠ADE =∠DBC ,在△ADE 和△DBC 中,{∠AAA =∠AAAAA =AAAA AA =AA ,∴△ADE ≌△DBC (AAS ),∴DE =BC ;(2)解:连接CO 并延长交AB 于G ,作OH ⊥AB 于H ,如图所示:则∠OHG =∠OHB =90°,∵CF 与⊙O 相切于点C ,∴∠FCG =90°,∵∠F =45°,∴△CFG 、△OGH 是等腰直角三角形,∴CF =CG ,OG =√2OH ,∵AB =BD =DA ,∴△ABD 是等边三角形,∴∠ABD =60°,∴∠OBH =30°,∴OH =12OB =1,∴OG =√2,∴CF =CG =OC +OG =2+√2.35.(2019•广西)如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 直径,AB =6,AD 平分∠BAC ,交BC 于点E ,交⊙O 于点D ,连接BD .(1)求证:∠BAD =∠CBD ;(2)若∠AEB =125°,求AA ̂的长(结果保留π).【答案】见试题解答内容【解答】(1)证明:∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∵∠CAD =∠CBD ,∴∠BAD =∠CBD ;(2)解:连接OD ,∵∠AEB =125°,∴∠AEC =55°,∵AB 为⊙O 直径,∴∠ACE =90°,∴∠CAE =35°,∴∠DAB =∠CAE =35°,∴∠BOD =2∠BAD =70°,∴AA ̂的长=70⋅A ×3180=76π. 36.(2019•贺州)如图,BD 是⊙O 的直径,弦BC 与OA 相交于点E ,AF 与⊙O 相切于点A ,交DB 的延长线于点F ,∠F =30°,∠BAC =120°,BC =8.(1)求∠ADB 的度数;(2)求AC 的长度.【答案】见试题解答内容【解答】解:(1)∵AF 与⊙O 相切于点A ,∴AF ⊥OA ,∵∠F =30°,∴∠AOF =60°,∵OA =OD ,∠AOF =∠ADB +∠OAF ,∴∠ADB =∠OAF =30°.(2)∵∠ACB =∠ADB =30°,∠BAC =120°,∴∠ABC =180°﹣120°﹣30°=30°,∴∠ABC =∠ACB ,∴AB =AC ,∴AÂ=AA ̂, ∴OA ⊥BC ,∴BE =CE =12BC =4,∵∠AOB =60°,OA =OB ,∴△AOB 是等边三角形,∴AB =OB ,∵∠OBE =30°,∴OE =12OB ,BE =√3OE =4,∴OE =4√33, ∴AC =AB =OB =2OE =8√33.37.(2019•贵港)如图,在矩形ABCD 中,以BC 边为直径作半圆O ,OE ⊥OA 交CD 边于点E ,对角线AC与半圆O 的另一个交点为P ,连接AE .(1)求证:AE 是半圆O 的切线;(2)若P A =2,PC =4,求AE 的长.【答案】见试题解答内容【解答】(1)证明:∵在矩形ABCD 中,∠ABO =∠OCE =90°,∵OE ⊥OA ,∴∠AOE =90°,∴∠BAO +∠AOB =∠AOB +∠COE =90°,∴∠BAO =∠COE ,∴△ABO ∽△OCE ,∴AA AA=AA AA , ∵OB =OC , ∴AA AA =AA AA ,∵∠ABO =∠AOE =90°,∴△ABO ∽△AOE ,∴∠BAO =∠OAE ,过O 作OF ⊥AE 于F ,∴∠ABO =∠AFO =90°,在△ABO 与△AFO 中,{∠AAA =∠AAA AAAA =AAAA AA =AA,∴△ABO ≌△AFO (AAS ),∴OF =OB ,∴AE 是半圆O 的切线;(2)解:连接PB ,∵以BC 边为直径作半圆O ,。

相关文档
最新文档