2019届中考数学复习检测:专题五-方案设计问题(有答案)
2019年北京中考数学习题精选:方案设计题

2019年北京中考数学习题精选:方案设计题1.(2018北京交大附中初一第一学期期末)画一画:如下图所示,河流在两个村庄A 、B 的附近可以近似地看成是两条折线段(图中l ),A 、B 分别在河的两旁. 现要在河边修建一个水泵站,同时向A 、B 两村供水,为了节约建设的费用,就要使所铺设的管道最短. 某人甲提出了这样的建议:从B 向河道作垂线交l 于 P ,则点P 为水泵站的位置. (1)你是否同意甲的意见?(填“是”或“否”);(2)若同意,请说明理由,若不同意,那么你认为水泵站应该建在哪? 请在图中作出来,并说明作图的依据.2.(2018北京石景山区第一学期期末)16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A 出发,将△ABC 分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2). 作法:(1)作射线BM ;(2)在射线BM 上顺次截取BB 1=B 1B 2=B 2B 3; (3)连接B 3C ,分别过B 1、B 2作B 1C 1∥B 2C 2∥B 3C , 交BC 于点C 1、C 2;图1CBA(4)连接AC 1、AC 2. 则C AC C AC ABCS S S 2211∆∆∆==.请回答,C AC C AC ABCS S S 2211∆∆∆==成立的理由是:①; ②.答案:①两条直线被一组平行线所截,所得的对应线段成比例; ②等底同高的三角形面积相等3.(2018北京石景山区初一第一学期期末)阅读下面材料: 在数学课上,老师提出如下问题:小丁、小力、小川三位同学的设计方案如下:答案:小力.………………………………… 1分图2B 3B 1B 2MC 2C 1ABC理由是:(1)两点之间线段最短;……………… 3分(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.…… 5分4.(2018北京市怀柔区初二期末)近年来,为减少空气污染,北京市一些农村地区实施了煤改气工程,某燃气公司要从燃气站点A向B,C 两村铺设天然气管道,经测量得知燃气站点A到B村距离约3千米,到C村距离约4千米,B,C两村间距离约5千米.下面是施工部门设计的三种铺设管道方案示意图.请你通过计算说明在不考虑其它因素的情况下,下面哪个方案所用管道最短.解:方案1:AB+AC=3+4=7千米. …………………2分方案2:连接AB,AC.∵AB=3,AC=4,BC=5.∴∠BAC=90°.…………………3分∵AD⊥BC于D,∴S△ABC=12AB⋅AC=12BC⋅AD∴345AD⨯=∴AD=125.…………………5分∴AD+BC=12+5=7.4千米.…………………6分5方案3:方法1:∵AE>AD, ∴AE+BC>7.4千米. …………………8分综上,在不考虑其它因素的情况下,方案1所用管道最短.方法2:利用直角三角形斜边中线等于斜边一半.即AE+BC=5+2.5=7.5千米.……………8分方法3:延长AE到F使EF=AE,∵E为BC中点,∠BEF=∠AEC.∴△AEC≌△BEF(SAS).∵∠BAC=90°,∴∠2+∠F=90°.∴∠ABF=90°.∴AF=5.∴AE=2.5.∴AE+BC=5+2.5=7.5千米.…………………8分所以,方案1所用管道最短.。
2019年中考复习数学检测专题五:方案设计问题(有答案)

专题综合检测(五)(30分钟 50分)一、选择题(每小题5分,共15分)1.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用( )(A)14分钟(B)13分钟(C)12分钟(D)11分钟2.今年四月份,李大叔收获洋葱30吨,黄瓜13吨.现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装洋葱和黄瓜各2吨.李大叔安排甲、乙两种货车时有( )种方案.(A)1 (B)2 (C)3 (D)43.(2018·滨州中考)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )(A)1 (B)2 (C)3 (D)4二、填空题(每小题5分,共10分)4.(2018·恩施中考)观察数表根据表中数的排列规律,则B+D=___________________.5.小明和小华为了获得一张票,他们各自设计了一个方案:小明的方案是:转动如图所示的转盘,当转盘停止转动后,如果指针停在阴影区域,则小明获得门票;如果指针停在白色区域,则小华获得门票(转盘被等分成6个扇区,若指针停在边界处,则重新转动转盘).小华的方案是:有三张卡片,上面分别标有数字1,2,3,将它们的背面朝上洗匀后,从中摸出一张,记录下卡片上的数字后放回,重新洗匀后再摸出一张,若摸出两张卡片上的数字之和为偶数,则小华获得门票.你所认同的方案是_____________________.三、解答题(共25分)6.(12分)(2018·江西中考)小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8 m的钢管及长2.5 m的钢管.(余料作废)(1)现切割一根长6 m的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根?(2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6 m的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.【探究创新】7.(13分)某企业为了改善污水处理条件,决定购买A,B两种型号的污水处理设备共8台,其中每台的(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?答案解析1.【解析】选C.利用统筹方法,安排的步骤为:先进行(1),再进行(4),在烧水的过程中把(2)(3)完成,最后完成(5),所用的时间为2+7+3=12分钟.2.【解析】选B.设李大叔安排甲种货车x 辆,则乙种货车(10-x)辆.依题意得()()4x 210x 30x 210x 13+-≥⎧⎪⎨+-≥⎪⎩,,解得5≤x ≤7.故有三种租车方案:第一种是租甲种货车5辆,乙种货车5辆;第二种是租甲种货车6辆,乙种货车4辆;第三种是租甲种货车7辆,乙种货车3辆.3.【解析】选C.∵DE 是△ABC 的中位线,∴DE ∥BC ,且DE =12BC.∵∠C=90°,∠B=60°,∴AB =2BC ,AE =BE =BC.又∠C =90°,∴AC <AB ,DC <BE.如图(1),把△ADE 绕点E 旋转180°,使AE 与BE 重合,由题意可得∠C =∠D =∠F =90°,则四边形BCDF 是矩形,且CD <BC ,所以构成邻边不等的矩形,则①成立.如图(2),把△ADE 绕点D 旋转180°,使AD 与CD 重合,由题意可得BC =BE =EM =MC ,则四边形BCME 是菱形,且∠B =60°为锐角,则③成立.如图(3),移动△ADE ,使A 与D 重合,D 与C 重合,点N(E),在BC 的延长线上,由题意可知DE ∥BN ,且DE ≠BN ,所以四边形BNDE 是梯形,又DN =BE ,所以梯形BNDE 是等腰梯形,则②成立.因拼成矩形只有图(1)一种情况,而图(1)中的矩形不是正方形,则④不成立.4.【解析】通过观察数表,可得出在平行于图中虚线的直线上的数的关系为:右上角的数字等于其他所有数字之和.所以B=1+4+3=8,D=34-(1+7+10+1)=15,所以B+D=8+15=23.答案:235.【解析】小明的方案:小明获得门票的概率为P(小明)=3162=,所以方案公平.(2)小华的方案:作出树状图:共有9种等可能的结果,其中两张卡片上的数字之和为偶数有5种. 小华获得门票的概率为59,所以小华的方案不公平.选择公平的方案为小明的方案.答案:小明的方案【高手支招】统计概率方案设计问题是指根据统计量所反映的信息或概率的大小,对某些问题作出合理的预测,选择最优方案的一类题目.命题方式多结合社会热点,背景新颖,能力考查立意明显. 解题策略:1.与统计有关的类型,要抓住统计量的不同特点,对某一问题作出判断或预测,如众数、方差的应用等;2.与概率有关的类型,多与游戏的公平性结合在一起,方案设计的出发点是保证所设计的方案使得游戏的双方获胜的概率相等,在概率不等的情况下,要使游戏对双方公平,则可以通过改变每次试验获得得分来实现.与概率的意义有关的方案设计要注意对概念的深刻理解,选择替代物时要保证每次试验的结果发生的可能性是相同的.6.【解析】(1)若只切割1根长2.5米的钢管,则剩下3.5米长的钢管还可以切割长0.8米的钢管4根,此时还剩余料0.3米;若切割2根长2.5米的钢管,则剩下1米长的钢管还可以切割长0.8米的钢管1根,此时还剩余料0.2米;若切成0.8米的钢管7根,此时还剩余0.4 m ;∴当切割2根长2.5米的钢管、1根长0.8米的钢管时,余料最少.(2)能.用22根长6 m 的钢管每根切割1根长2.5米的钢管,4根长0.8米的钢管;用1根长6 m 的钢管切割2根长2.5米的钢管,1根长0.8米的钢管;或用12根长6 m 的钢管每根切割2根长2.5米的钢管,1根长0.8米的钢管;用11根长6 m 的钢管每根切割7根长0.8米的钢管.7.【解析】(1)设购买A 型设备x 台,则购买B 型设备(8-x)台,由题意,得()()8x 68x 57200x 1808x 1 490+-≤⎧⎪⎨+-≥⎪⎩,, 解得:112x 4.22≤≤ ∵x 是正整数,∴x=3,4.答:有两种购买方案,买A 型设备3台,B 型设备5台;或买A 型设备4台,B 型设备4台.(2)当x=3时,3×8+5×6=54(万元);当x=4时,4×8+4×6=56(万元).答:购买A 型设备3台,B 型设备5台更省钱。
2019中考数学最新重点汇编52-方案设计与决策型问题.doc

2019中考数学最新重点汇编52-方案设计与决策型问题【一】选择题1、【二】填空题1、〔2018年济宁模拟〕在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如下图的几何图形、那么…+的值为_________〔结果用n 表示〕、答案:1-【三】解答题1、〔2018年重庆外国语学校九年级第二学期期中〕现有如下图所示一块三角形的木料,工人师傅想从上面裁下一块正方形木板CDEF ,使Rt △ABC 的直角顶点C 成为这个正方形的一个顶点,另外三个顶点 D,E,F 分别在边BC,BA,AC 上,请你用尺规作图的方法帮助 工人师傅确定出裁割线。
〔保留作图痕迹,在所作图中标上 必要的字母,不写作法和结论〕 答案:图略2、〔广东省2018初中学业水平模拟三〕广州市天河区某楼盘准备以每平方米35000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望、为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米28350元的均价开盘销售、 〔1〕求平均每次下调的百分率; 〔2〕某人准备以开盘均价购买一套80平方米的房子、开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费、物业管理费是每平方米每月4元、请问哪种方案更优惠? 答案:解:〔1〕设平均每次降价的百分率是x ,依题意得---------1分35000〔1-x 〕2=28350---------------------3分解得:x 1=10%x 2=1910〔不合题意,舍去〕--------------5分答:平均每次降价的百分率为10%、------------------------6分〔2〕方案①的房款是:28350×80×0.98=2222640〔元〕-------------------7分A BC第1题图方案②的房款是:28350×80-4×80×12×2=2260320〔元〕---------------8分∵2222640<2260320∴选方案①更优惠、-------------------------9分3、〔广东省2018初中学业水平模拟六〕如下图,有一块梯形形状的土地,现要平均分给两个农户种植〔即将梯形面积等分〕,试设计两种方案〔用尺规作图,保留作图痕迹,不要求写出做法〕,并简要说明理由。
2019中考数学特训卷:专题五-方案与设计(含部分2019原创题)及答案

专题五方案与设计⊙热点一:图案设计1.(2019年黑龙江牡丹江)如图Z54,已知一个等腰三角形的腰长为5,底边长为8,将该三角形沿底边上的高剪成两个三角形,用这两个三角形能拼成几种平行四边形?请画出所拼的平行四边形,直接写出它们的对角线的长,并画出体现解法的辅助线.图Z542.(2019年江苏无锡)如图Z55,下面给出的正多边形的边长都是20 cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明).(1)将图Z55(1)中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图Z55(2)中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图Z55(3)中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.图Z55⊙热点二:方案设计1.(2019年广西桂林)在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x的函数关系式;(2)如图Z56在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?2.(2019年广西贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?⊙热点三:最值问题1.(2019年四川泸州)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价).2.(2019年江苏南通)某公司营销A,B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(单位:万元)与销售产品x(单位:吨)之间存在二次函数关系y=ax2+bx.当x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(单位:万元)与销售产品x(单位:吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?方案与设计热点一1.解:能拼成3种平行四边形,如图86.图86图86(1)中,对角线的长为5; 图86(2)中,对角线的长为3和32+82=73;图86(3)中,对角线的长为4和42+62=2 13.2.解:(1)如图87(1),沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可;(2)如图87(2),沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;(3)如图87(3),沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.图87 热点二1.解:(1)由题意,得y 1=250x +3000,y 2=500x +1000.(2)如图88.图88(3)由图象可知:①当使用时间大于8个月时,直线y 1落在直线y 2的下方,y 1<y 2,即方案1省钱; ②当使用时间小于8个月时,直线y 2落在直线y 1的下方,y 2<y 1,即方案2省钱;③当使用时间等于8个月时,y 1=y 2,即方案1与方案2一样.2.解:(1)设足球单价为x 元,则篮球单价为(x +40)元,由题意,得1500x +40=900x,解得x =60, 经检验:x =60是原分式方程的解.则x +40=100.答:篮球和足球的单价分别是100元、60元.(2)设恰好用完1000元,可购买篮球m 个和购买足球n 个,由题意,得100m +60n =1000.整理,得m =10-35n. ∵m ,n 都是整数,∴当n =5时,m =7;当n =10时,m =4;当n =15,m =1.∴有三种方案:①购买篮球7个,足球5个;②购买篮球4个,足球10个;③购买篮球1个,足球15个.热点三1.解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意,得⎩⎪⎨⎪⎧ x +y =100,15x +35y =2700.解得⎩⎪⎨⎪⎧x =40,y =60. 答:商店购进甲种商品40件,购进乙种商品60件.(2)设商店购进甲种商品a 件,则购进乙种商品(100-a)件,根据题意,得⎩⎪⎨⎪⎧ 15a +-,5a +-解得20≤a≤22.∵总利润W =5a +10(100-a)=-5a +1000,W 是关于x 的一次函数,W 随x 的增大而减小,∴当x =20时,W 有最大值,此时W =900,且100-20=80.答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.2.解:(1)∵当x =1时,y =1.4;当x =3时,y =3.6,∴⎩⎪⎨⎪⎧ a +b =1.4,9a +3b =3.6.解得⎩⎪⎨⎪⎧ a =-0.1,b =1.5.∴二次函数解析式为y =-0.1x 2+1.5x.(2)设购进A 产品m 吨,购进B 产品(10-m)吨,销售A ,B 两种产品获得的利润之和为W 元,则W =-0.1m 2+1.5m +0.3(10-m)=-0.1m 2+1.2m +3=-0.1(m -6)2+6.6,∵-0.1<0,∴当m =6时,W 有最大值6.6.∴购进A 产品6吨,购进B 产品4吨,销售A ,B 两种产品获得的利润之和最大,最大利润是6.6万元.。
【2019赢在中考】数学2轮专题解读与强化训练专题05方案设计问题-解析卷

【2019赢在中考】数学二轮专题解读与强化训练专题05方案设计问题方案设计型问题是设置一个问题情景,给出若干信息,提出解决问题的要求,寻找恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案最优。
方案设计型问题主要考查学生的动手操作能力和实践能力。
方案设计型问题,主要有以下几种类型:(1)与方程或不等式有关的方案设计问题(2)与函数有关的方案设计问题(3)与几何图形有关的方案设计问题1.与方程或不等式有关的方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数.主要步骤:a.利用方程、不等式建立相应的数学模型;b.列出方程(组)或不等式(组)c.通过解方程(组)或不等式(组)确定未知数的值d.确定方案2.与函数有关的方案设计问题,一般有多种解决问题的方案,但在实施中要考虑经、时间等因素,类似于求最大值或最小值问题。
通常应用函数的性质进行分析解决。
主要步骤:a.利用利用题目提供的材料或图表信息,确定函数关系式;b.通过不等式正确确定函数自变量的取值范围;c.利用函数的性质和自变量的取值范围求解;d.确定方案。
3.与几何图形有关的方案设计问题。
大体可分为三类,即图案设计类、图形拼接类、图形分割类等.对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程.考向一与方程或不等式有关的方案设计问题例1.(2018年内蒙古通辽)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【考点】二元一次方程组的应用,一元一次不等式组的应用【思路点拨】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m 的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【解题过程】解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.考向二与函数有关的方案设计问题例2.(2018年四川省巴中)学校需要添置教师办公桌椅A、B两型共200套,已知2套A 型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x 的取值范围;(3)求出总费用最少的购置方案.【考点】二元一次方程组的应用;一元一次不等式组的应用;一次函数的应用【思路点拨】(1)根据“2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元”,建立方程组即可得出结论;(2)根据题意建立函数关系式,由A型桌椅不少于120套,B型桌椅不少于70套,确定出x的范围;(3)根据一次函数的性质,即可得出结论.【解题过程】解:(1)设A型桌椅的单价为a元,B型桌椅的单价为b元,根据题意知,,解得,,即:A,B两型桌椅的单价分别为600元,800元;(2)根据题意知,y=600x+800(200﹣x)+200×10=﹣200x+162000(120≤x≤130),(3)由(2)知,y=﹣200x+162000(120≤x≤130),∴当x=130时,总费用最少,即:购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.【专家点评】本题考查一次函数的应用,二元一次方程的应用,一元一次不等式组的应用,读懂题意,列出方程组或不等式是解本题的关键.考向三与几何图形有关的方案设计问题例3.(2017年四川广安)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点式为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)【思路点拨】利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.【解题过程】解:如图..【名师点睛】此题主要考查了利用平移设计图案,掌握轴对称图形点评性质是解题关键.一、选择题1.(2018年黑龙江省齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【考点】二元一次方程的应用【思路点拨】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解题过程】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则x=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【专家点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.2.(2018年黑龙江省龙东、七台河、佳木斯、鸡西、伊春、鹤岗、双鸭山)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【考点】二元一次方程的应用【思路点拨】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【解题过程】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为非负整数,∴x=1、y=12;x=4、y=8;x=7、y=4;x=10、y=0;所以购买资金恰好用尽的情况下,购买方案有4种,故选:A.【专家点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.二、填空题3.(2018年黑龙江省绥化)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有种购买方案.【考点】二元一次方程的应用【思路点拨】设购买甲种体育用品x件,购买乙种体育用品y件,根据“甲种体育用品每件20元,乙种体育用品每件30元,共用去150元”列出方程,并解答.【解题过程】解:设购买甲种体育用品x件,购买乙种体育用品y件,依题意得:20x+30y=150,即2x+3y=15,当x=3时,y=3.当x=6时,y=1.即有两种购买方案.故答案是:两.【专家点评】此题主要考查了二元一次方程的应用,根据题意得出正确的等量关系是解题关键.4.(2018年湖南省永州)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有种.【考点】点到直线的距离;全等三角形的应用【思路点拨】根据点A、B的可以在直线的两侧或异侧两种情形讨论即可;【解题过程】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.【专家点评】本题考查整体﹣应用与设计,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题5.(2018年浙江省衢州)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【考点】完全平方公式的几何背景.【思路点拨】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解题过程】解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.【专家点评】本题考查完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.6.(2018年广东省广州)友谊商店A型号笔记本电脑的售价是a元/台,最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案,方案一:每台按售价的九折销售,方案二:若购买不超过5台,每台按售价销售,若超过5台,超过的部分每台按售价的八折销售,某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二方案更合算,求x的范围.【考点】一元一次不等式的应用,一次函数的实际应用,根据实际问题列一次函数表达式【思路点拨】(1)根据题意,分别得出方案一的费用是:0.9ax,方案二的费用是:5a+0.8a (x-5)=a+0.8ax,再将x=8代入即可得出方案一费用最少以及最少费用.(2)设方案一,二的费用分别为W 1,W 2,根据题意,分别得出W 1=0.9ax (x 为正整数),,其中x 为正整数,再由W 1>W 2,分情况解不等式即可得出x 的取值范围.(1)【解题过程】解:∵x=8,∴方案一的费用是:0.9ax=0.9a×8=7.2a,方案二的费用是:5a+0.8a(x-5)=5a+0.8a(8-5)=7.4a∵a>0,∴7.2a<7.4a∴方案一费用最少,答:应选择方案一,最少费用是7.2a 元.(2)【解题过程】解:设方案一,二的费用分别为W 1,W 2,由题意可得:W 1=0.9ax(x 为正整数),当0≤x≤5时,W 2=ax(x 为正整数),当x>5时,W 2=5a+(x-5)×0.8a=0.8ax+a(x 为正整数),∴,其中x 为正整数,由题意可得,W 1>W 2,∵当0≤x≤5时,W 2=ax>W 1,不符合题意,∴0.8ax+a<0.9ax,解得x>10且x 为正整数,即该公司采用方案二购买更合算,x 的取值范围为x>10且x 为正整数.【专家点评】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式7.(2018年黑龙江省牡丹江)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.【考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用【思路点拨】(1)根据题意列出函数解析式即可;(2)根据题意列出不等式,进而解答即可;(3)根据(2)中解集得出购买方案.【解题过程】解:(1)根据题意得购进丙种图书(20﹣x﹣y)套,则有500x+400y+250(20﹣x﹣y)=7700,所以解析式为:y=﹣x+18;(2)根据题意得:,解得:x,又∵x≥1,∴,因为x,y,(20﹣x﹣y)为整数,∴x=3,6,9,即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,②甲、乙、丙三种图书分别为6套,8套,6套,③甲、乙、丙三种图书分别为9套,3套,8套,(3)若按方案一:则有13a﹣4a=20,解得a=(不是正整数,不符合题意),若按方案二:则有8a﹣6a=20,解得a=10(符合题意),若按方案三:则有3a﹣8a=20,解得a=﹣4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a=10.【专家点评】本题考查一次函数的应用、不等式的应用、一元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.(2018年贵州省铜仁)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用【思路点拨】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解题过程】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∴a≤30,∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.【专家点评】本题主要考查二元一次方程组和一元一次不等式及一次函数的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程和函数解析式,特别注意不能忽略每张桌子配套的椅子所产生的费用.9.(2018年湖北省恩施州)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【考点】二元一次方程组的应用;一元一次不等式组的应用;一次函数的应用【思路点拨】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.【解题过程】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【专家点评】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.10.(2018年湖北省宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q 值都以平均值n 计算.第一年有40家工厂用乙方案治理,共使Q 值降低了12.经过三年治理,境内长江水质明显改善.(1)求n 的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m 的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q 值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q 值与当年因甲方案治理降低的Q 值相等,第三年,用甲方案使Q 值降低了39.5.求第一年用甲方案治理降低的Q 值及a 的值.【考点】一元一次方程的应用;一元二次方程的应用【思路点拨】(1)直接利用第一年有40家工厂用乙方案治理,共使Q 值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n 的值即可得出关于a 的等式求出答案.【解题过程】解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m 1=,m 2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5解法二:解得:【专家点评】考查了一元二次方程和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.11.(2018年湖北省咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【考点】二元一次方程的应用;一元一次不等式的应用【思路点拨】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值范围,分析得出即可.【解题过程】解:(1)设老师有x名,学生有y名.依题意,列方程组为,解之得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆;故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【专家点评】此题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x辆甲种客车与租车费用的不等式关系是解决问题的关键.12.(2018年湖北省武汉)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.【考点】一元一次不等式组的应用;一次函数的应用【思路点拨】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x的关系,即可得出结论.【解题过程】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣140x+46000,∵﹣14<0,=﹣140×20+46000=43200元,∴当x=20时,wmax即:购买A型钢板20块,B型钢板80块时,获得的利润最大.【专家点评】此题主要考查了一元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.13.(2018年湖南省怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A 种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【考点】一元一次不等式的应用;一次函数的应用【思路点拨】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解题过程】解:(1)根据题意,得:y=90x+70(21﹣x)=20x+1470,所以函数解析式为:y=20x+1470;(2)∵购买B种树苗的数量少于A种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.【专家点评】本题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.14.(2018年湖南省湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【考点】一元一次方程的应用;一元一次不等式组的应用【思路点拨】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解题过程】解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,。
方案设计问题(精讲)-2019年中考数学高频考点突破全攻略(解析版)

【课标解读】方案设计问题涉及面较广,内容比较丰富,题型变化较多,不仅有方程、不等式、函数,还有几何图形的设计等.方案设计型题是通过设置一个实际问题情境,给出若干信息,提出解决问题的要求,要求学生运用学过的知识和方法,进行设计和操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求判断哪个方案较优.它包括与方程、不等式有关的方案设计、与函数有关的方案设计和与几何图形有关的方案设计.【解题策略】常见的几种考题类型有:1.解决与方程、不等式有关的方案设计题目,通常利用方程或不等式求出符合题意的方案;2.与函数有关的方案设计一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,通常用函数的性质进行分析;3.与几何图形有关的方案设计,一般是利用几何图形的性质,设计出符合某种要求和特点的图案. 解题策略可以概括为:从实际问题入手→归纳若干信息→提出问题要求→引导设计操作→判断优化方案【考点深剖】★考点一与方程、不等式有关的方案设计方程、不等式方案设计问题主要是利用方程、不等式的相关知识,建立相应的数学模型,利用列方程(组)和不等式(组),通过有关的计算,找到方程(组)的解和不等式(组)的解集,再结合题目要求,确定未知数的具体数值.未知数有几个值,即有几种方案.方程、不等式方案设计的主要步骤:(1)利用方程、不等式建立相应的数学模型;(2)列出方程(组)或不等式(组);(3)通过解方程(组)或不等式(组),确定未知数的值;(4)确定方案.【典例1】(2018•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.★考点二与函数有关的方案设计函数方案设计是指由题目提供的背景材料或图表信息,确定函数关系式.利用函数图象的性质获得解决问题的具体方法.解决此类问题的难点主要是正确确定函数关系式,关键是熟悉函数的性质及如何通过不等式确定函数自变量的取值范围.【典例2】(2018·浙江省台州·12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t 之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8.8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.★考点三与几何图形有关的方案设计图形方案设计题,它摆脱了传统的简单作图,把对作图的技能的考查放在一一个实际生活的大背景下,从而考查了学生的综合创新能力,给同学们的创造性思维提供了广阔的空间与平台.此类题常利用某些规则的图形,如等腰三角形、菱形、矩形、圆等,利用图形的性质,或利用轴对称和中心对称等,拼出符合某些条件的图形.学科*网【典例3】某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下,由①知W=200(x﹣100)2+1.056×107>107,所以不能;★考点四 涉及统计计算的方案设计【典例4】某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数;方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余所给分的平均数; 方案3:所有评委所给分的中位数; 方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.解:(1)方案1最后得分:110×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:18×(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4. (2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案;又因为方案4中的众数有两个,从而使众数失去了实际意义,所以方案4不适合作为最后得分的方案.【讲透练活】变式1:(2018•广州)友谊商店A 型号笔记本电脑的售价是a 元/台.最近,该商店对A 型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x 台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.变式2:(2018·广西梧州·10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A.B两种型号的电动自行车共30辆,其中每辆B 型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A.B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A型两人+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A.B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,学科*网变式3:(2018•莱芜•10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?【分析】(1)利用二元一次方程组解决问题;(2)用不等式组确定方案,利用一次函数找到费用最低值.(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得解这个不等式组得∵a为正整数∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台变式4:阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:................(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ,请在图4中探究平行四边形MNPQ面积的大小(画图表明探究方法并直接写出结果).解:⑴如图中平行四边形即为所求.⑵如图:平行四边形MNPQ 面积为52. 变式5:(2018•福建B 卷•10分)空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米. 如图1,求所利用旧墙AD 的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【分析】(1)按题意设出AD ,表示AB 构成方程;(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论s 与菜园边长之间的数量关系.(2)设AD=x 米,矩形ABCD 的面积为S 平方米 ①如果按图一方案围成矩形菜园,依题意 得:S=,0<x <a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.。
中考数学专题之方案设计问题含练习答案

中考数学专题之方案设计问题含练习答案方案设计型题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求判断哪个方案较优.它包括测量方案设计、作图方案设计和经济类方案设计等.题型之一 利用方程、不等式进行方案设计例1 (2014·益阳)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5 400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1 400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.【思路点拨】(1)根据“3台A 型+5台B 型”的销售收入=1 800以及“4台A 型+10台B 型”的销售收入=3 100,列方程组得各自售价;(2)设购进A 型a 台,则B 型(30-a )台,利用金额不超过5 400建立不等式求解; (3)根据(2)中30台得利润为为1 400,建立方程,求解.【解答】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元.依题意,得35 1 800,410 3 100x y x y +=+=⎧⎨⎩.解得250,210.x y ==⎧⎨⎩答:A 、B 两种型号电风扇的销售单价分别为250元、210元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台.依题意,得 200a +170(30-a )≤5 400,解得a ≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5 400元.(3)依题意有:(250-200)a+(210-170)(30-a)=1 400,解得a=20,此时,a>10.即在(2)的条件下超市不能实现利润1 400元的目标.方法归纳:列方程(组)或不等式组设计方案问题的关键是找到题目中的等量关系或者不等关系,然后根据结果设计方案.1.(2013·自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?2.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.3.(2014·衡阳)某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买一件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.题型之二利用函数进行方案设计例2 (2013·桂林)在“美丽广西,清洁乡村”活动中,李家村村长提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3 000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1 000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,设方案2的购买费和每月垃圾处理费共为y2元,交费时间为x 个月.(1)直接写出y1、y2与x的函数关系式;(2)在同一坐标系内,画出函数y1、y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?【思路点拨】(1)根据题意可直接写出y与x的函数关系式;(2)分别过两点画图象;(3)根据图象得到方案.【解答】(1)y1=250x+3 000,y2=500x+1 000.(2)如图:(3)由(2)得当x>8时,方案1省钱;当x=8时,两种方案一样;当x<8时,方案2省钱.方法归纳:运用一次函数判断何种方式更合算,通常用分类讨论的方法列出方程和不等式,求自变量取值范围,但如果题目中有画好的函数图象,也可以直接观察图象解决.1.我市某医药公司把一批药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元.(1)请分别写出邮车、火车运输的总费用y1,y2(元)与运输路程x(公里)之间的函数关系;(2)你认为选用哪种运输方式较好,为什么?2.(2014·凉山)我州某校计划购买甲、乙两种树苗共1 000株用以绿化校园.甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲、乙两种树苗的成活率分别是90%和95%.(1)若购买这两种树苗共用去28 000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.3.某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案:甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?4.(2014·丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.题型之三图形问题中的方案设计例3 (2014·济宁)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.【思路点拨】方案二:由题意得分割成的一部分面积为9π,故在圆心O处以3个单位长度为半径作圆,然后将圆环三等分即可;方案三:作出圆的直径AB,分别画两个半径为3个单位长度的小圆即可.【解答】方法归纳:图形方案设计问题通常先给出一个图形(可能是规则的也可能是不规则的),然后让你用直线或弧线将图形分成形状或面积相等的几部分.解决这类问题可借助对称的性质、角度的大小、面积公式等进行分割.1.某市要在一块平行四边形ABCD 的空地上建造一个四边形花园,要求花园所占面积是□ABCD 面积的一半,并且四边形花园的四个顶点作为出入口,要求四点顶点分别在□ABCD 的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E ,F 已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;方案(2):如图2所示,一个出入口M 已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.2.(2014·拱墅模拟)请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种.(保留作图痕迹).题型之四测量问题中的方案设计例4 如图,EF是一条笔直的河岸,A村与B村相距4千米,A,B两村到河岸EF的距离分别是5千米,3千米,现要在河岸EF上选一地址C建一个自来水厂,并铺设水管把水引至A,B两村.问:如图1,图2,图3所示的三条铺设水管的路径(图中实线部分)哪条最短?并说明理由. 【思路点拨】图1,图2中铺设水管路径长都可以一眼看出,在图3中由对称性可得:BC=B′C,AB′=BC+AC,以AB′为斜边构造一个直角三角形(要求直角边平行EF或垂直EF),若再能求出A,B两村的垂直距离,问题就不难解决了.【解答】图1:4+5=9(千米);图2:3+4=7(千米);图3:BC=B′C,过B′作B′M∥EF,过A作AN∥BB′交B′M于D,则构成Rt△ADB′.B′D,∴AB.∵7<9,∴图2的路径最短.方法归纳:这是一道判断方案题,题中给出了三种不同方案,由同学们根据所学图形与空间的知识按题中要求选择方案.1.某高速铁路即将动工,工程需要测量长江某一段的宽度.如图1,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.48);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图2中画出图形.2.恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路x同侧,AB=50 km,A、B到直线x的距离分别为10 km和40 km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小明设计了两种方案,图1是方案一的示意图(AP与直线x垂直,垂足为P),P到A、B 的距离之和s1=P A+PB,图2是方案二的示意图(点A关于直线x的对称点是A′,连接BA′交直线x于点P),P到A、B的距离之和s2=P A+P B.(1)求s1、s2,并比较它们的大小;(2)请你说明s2=P A+PB的值为最小;(3)恩施到张家界高速公路y与沪渝高速公路垂直,建立如图3所示的直角坐标系,B到直线y的距离为30 km,请你在x旁和y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.参考答案题型之一 利用方程、不等式进行方案设计1.(1)设该校大寝室每间住x 人,小寝室每间住y 人,则5550740,5055730x y x y +=⎧⎨+=⎩.解得8,6.x y =⎧⎨=⎩ 答:该校大寝室每间住8人,小寝室每间住6人. (2)设应安排小寝室z 间,则有 6z +8(80-z )≥630,解得z ≤5. ∵z 为自然数,∴z =0,1,2,3,4,5. 答:共有6种安排住宿方案.2.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨、y 吨,根据题意,得210,211.x y x y +=⎧⎨+=⎩解得3,4x y =⎧⎨=⎩. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨、4吨. (2)根据题意可得3a +4b =31.因为租车数a ,b 都是自然数,使a ,b 都为整数的情况共有a =1,b =7或a =5,b =4或a =9,b =1三种情况. 故租车方案分别为: ①A 型车1辆,B 型车7辆; ②A 型车5辆,B 型车4辆; ③A 型车9辆,B 型车1辆.(3)方案①花费为100×1+120×7=940(元); 方案②花费为100×5+120×4=980(元); 方案③花费为100×9+120×1=1 020(元).故方案①最省钱,即租用A 型车1辆,B 型车7辆. 3.(1)y =15-2x ;(2)设笔记本和中性笔两种奖品各a ,b 件, 则a ≥1,b ≥1,2a +b =15.当a =1时,b =13;当a =2时,b =11;当a =3时,b =9;当a =4时,b =7;当a =5时,b =5;当a =6时,b =3;当a =7时,b =1.故有7种购买方案;(3)买到的笔记本和中性笔数量相等的购买方案有1种,共有7种购买方案.∵1÷7=17,∴买到的笔记本和中性笔数量相等的概率为17. 题型之二 利用函数进行方案设计1.(1)由题意得,y 1=4x +400,y 2=2x +820.(2)当y 1=y 2时,4x +400=2x +820.解得x =210.∴当运输路程小于210 km 时,y 1<y 2,选择邮车运输较好;当运输路程等于210 km 时,y 1=y 2,选择两种方式一样;当运输路程大于210 km 时,y 1>y 2,选择火车运输较好.2.(1)设购甲种树苗x 株,乙种树苗y 株,则1 000,253028 000x y x y +=⎧⎨+=⎩.解得400,600x y =⎧⎨=⎩.答:购甲种树苗400株,乙种树苗600株.(2)设购买甲种树苗z 株,则乙种树苗(1 000-z )株,列不等式:90%z +95%(1 000-z )≥92%×1 000,解得z ≤600.答:甲种树苗至多购买600株.(3)设购买树苗的总费用为w 元,则w =25z +30(1 000-z )=-5z +30 000.∵-5<0,∴w 随z 的增大而减小.∵0<z ≤600,∴当z =600时,w 最小值为30 000-5×600=27 000(元).答:当购甲种树苗600株,乙种树苗400株时,总费用最低,最低费用是27 000元.3.设有x (x >0)名教师到外地进行学习,甲宾馆费用为y 甲,乙宾馆费用为y 乙,当x >45时,由题意,得y 甲=120×35+(x -35)×120×90%=108x +420;y 乙=120×45+(x -45)×120×80%=96x +1 080.分三种情况:①当y 甲>y 乙时,108x +420>96x +1 080.解得x >55;②当y 甲=y 乙时,108x +420=96x +1 080.解得x =55;③当y 甲<y 乙时,108x +420<96x +1 080.解得45<x <55.当x≤45时,又分两种情况:①当0<x≤35时,y甲=y乙=120x;②当35<x≤45时,y甲=108x+420,y乙=120x.此时y甲<y乙.综上所述当人数大于55人时选乙宾馆,当人数大于0小于等于35人或等于55人时甲乙宾馆均可,当人数大于35人小于55人时选甲宾馆.4.(1)根据题意,得90 m =753m,解得m=18.经检验,m=18是所列方程的解,且符合题意.答:m的值为18.(2)由(1)可知,A型号的污水处理设备每台18万元,B型号的污水处理设备每台15万元. 设购买A型号的污水处理设备x台,则18x+15(10-x)≤165,解得x≤5.又∵0<x<10,且x为整数,∴x可取0,1,2,3,4,5,即共有6种购买方案.设某种方案每月能处理的污水量为w吨,则w=220x+180(10-x)=40x+1 800.∵w随x的增大而增大,∴当x=5时,w有最大值,其最大值为2 000.即购买A型号、B型号的污水处理设备分别为5台、5台时,月处理的污水量最多,为2 000吨.题型之三图形问题中的方案设计1.方案(1):画法1(如图甲):①过F作FH∥AB交AD于点H.②在DC上任取一点G,连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形.画法2(如图乙):①过F作FH∥AB交AD于点H.②过E作EG∥AD交DC于点G,连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形.画法3(如图丙):①在AD上取一点H,使DH=CF.②在CD上任取一点G,连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形.方案(2):画法(如图2):①过M点作MP∥AB交AD于点P.②在CD上取一点N,连接MN.③过点P作PQ∥MN交AB于点Q,连接QM,PN.则四边形QMNP就是所要画的四边形.2.所作菱形如图1,图2所示.说明:作法相同的图形视为同一种.例如:类似图3,4的图形视为与图2是同一种.题型之四测量问题中的方案设计1.(1)在Rt△BAC中,∠ACB=68°,AC=100米,∴AB=AC·tan68°≈100×2.48=248(米).答:所测之处江的宽度约为248米.(2)可以利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可. 如:方案2,如图2,测量员从A点开始沿岸边向正东方向前进到E处,再从E点开始向点E的正南方向上插上标杆F,并在线段AE的中点C处插上标杆C,当标杆B,C,F在同一直线上时,直接测出EF的长也就是江的宽度.2.(1)图1中过B作BC⊥x于C,过A作AD⊥BC于D,则BC=40.又∵AP=10,∴BD=BC-CD=40-10=30.由勾股定理可得AD=40.在Rt△PBC中,BPs1km.图2中,过B作BC⊥AA′,垂足为C,AA′与直线x交于点N,则A′C=NC+NA′=NC+AN=50,又AC=CN-AN=40-10=30,AB=50,则在Rt△BCA中,BC=40,∴BA由轴对称知:P A=P A′,∴s2=P A+PB=P A′+PB=BA km.∴s1>s2.(2)如图2,在公路上任找一点M,连接MA,MB,MA′,由轴对称知MA=MA′,∴MB+MA=MB+MA′>A′B,∴s2=BA′=P A+P A为最小.(3)如图3过A作关于x轴的对称点A′,过B作关于y轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,则P,Q即为所求.过A′、B′分别作x轴、y轴的平行线交于点G,B′G=40+10=50,A′G=30+30+40=100,A′B∴AB+AP+BQ+QP=AB+A′P+PQ+B′Q,∴所求四边形的周长为(km.。
2019届人教版中考复习数学练习专题五:方案设计专题(有答案)

专题五方案设计专题考纲要求方案设计问题是运用学过的技能和方法,进行设计和操作,然后通过分析计算,证明等,确定出最佳方案的数学问题,一般涉及生产的方方面面,如:测量,购物,生产配料,汽车调配,图形拼接,所用到的数学知识有方程、不等式、函数解直角三角形,概率和统计等知识.命题规律方案设计问题应用性比较强,解题时要注重综合应用转化思想,数形结合的思想,方程函数思想及分类讨论等各种数学思想.例1.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解答:根据分析,可得。
(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).例2.甲乙两家商场平时以同样的价格出售相同的商品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题综合检测(五)
(30分钟50分)
一、选择题(每小题5分,共15分)
1.小明中午放学回家自己煮面条吃,有下面几道工序:
(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用( )
(A)14分钟(B)13分钟
(C)12分钟(D)11分钟
2.今年四月份,李大叔收获洋葱30吨,黄瓜13吨.现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外
地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装洋葱和黄瓜各2吨.李大叔安排甲、乙两种货车时有( )种方案.
(A)1 (B)2 (C)3 (D)4
3.(2018·滨州中考)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )
(A)1 (B)2 (C)3 (D)4
二、填空题(每小题5分,共10分)
4.(2018·恩施中考)观察数表
根据表中数的排列规律,则B+D=___________________.
5.小明和小华为了获得一张票,他们各自设计了一个方案:
小明的方案是:转动如图所示的转盘,当转盘停止转动后,如果指针停在阴影区域,
则小明获得门票;如果指针停在白色区域,则小华获得门票(转盘被等分成6个扇区,
若指针停在边界处,则重新转动转盘).
小华的方案是:有三张卡片,上面分别标有数字1,2,3,将它们的背面朝上洗匀
后,从中摸出一张,记录下卡片上的数字后放回,重新洗匀后再摸出一张,若摸出
两张卡片上的数字之和为偶数,则小华获得门票.
你所认同的方案是_____________________.
三、解答题(共25分)
6.(12分)(2018·江西中考)小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8 m的钢管及长 2.5 m的钢管.(余料作废)
(1)现切割一根长 6 m的钢管,且使余料最少.问能切出长0.8米及 2.5米的钢管各多少根?
(2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6 m的钢管完成切割吗?若能,请直
接写出切割方案;若不能,请说明理由.
【探究创新】
7.(13分)某企业为了改善污水处理条件,决定购买A,B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:
A型B型
价格(万元/台) 8 6
月处理污水量(吨/月) 200 180
经预算,企业最多支出57万元购买污水处理设备,且要求设备每月处理污水量不低于 1 490吨.
(1)企业有哪几种购买方案?
(2)哪种购买方案更省钱?
答案解析
1.【解析】选 C.利用统筹方法,安排的步骤为:先进行(1),再进行(4),在烧水的过程中把(2)(3)完成,最后完成
(5),所用的时间为2+7+3=12分钟. 2.【解析】选 B.设李大叔安排甲种货车x 辆,则乙种货车(10-x)辆.依题意得
4x 210x 30x
210x
13,,
解得5≤x ≤7.
故有三种租车方案:第一种是租甲种货车5辆,乙种货车5辆;第二种是租甲种货车
6辆,乙种货车
4辆;第
三种是租甲种货车7辆,乙种货车3辆.
3.【解析】选 C.∵DE 是△ABC 的中位线,∴DE ∥BC ,且DE =1
2BC.∵∠C=90°,∠B=60°,∴AB =2BC ,AE =BE =BC.又∠C =90°,∴AC <AB ,DC <BE.如图(1),把△ADE 绕点E 旋转180°,使AE 与BE 重合,由题意可得∠C =∠D =∠F =90°,则四边形
BCDF 是矩形,且CD <BC ,所以构成邻边不等的矩形,则①成立
.如图(2),把△ADE 绕点D 旋转
180°,使AD 与CD 重合,由题意可得BC =BE =EM =MC ,则四边形BCME 是菱形,且∠B =60°为锐角,则③
成立.如图(3),移动△ADE ,使A 与D 重合,D 与C 重合,点N(E),在BC 的延长线上,由题意可知DE ∥BN ,且DE ≠BN ,所以四边形BNDE 是梯形,又DN =BE ,所以梯形BNDE 是等腰梯形,则②成立
.因拼成矩形只有图
(1)
一种情况,而图(1)中的矩形不是正方形,则④不成立.
4.【解析】通过观察数表,可得出在平行于图中虚线的直线上的数的关系为:右上角的数字等于其他所有数字之和.所以B=1+4+3=8,D=34-(1+7+10+1)=15,所以B+D=8+15=23. 答案:23
5.【解析】小明的方案:小明获得门票的概率为P(小明)=3
1
6
2,
所以方案公平.
(2)小华的方案:作出树状图:
共有9种等可能的结果,其中两张卡片上的数字之和为偶数有5种.
小华获得门票的概率为
5
9,
所以小华的方案不公平.
选择公平的方案为小明的方案.
答案:小明的方案
【高手支招】统计概率方案设计问题是指根据统计量所反映的信息或概率的大小,对某些问题作出合理的预测,选择最优方案的一类题目.命题方式多结合社会热点,背景新颖,能力考查立意明显
.
解题策略:
1.与统计有关的类型,要抓住统计量的不同特点,对某一问题作出判断或预测,如众数、方差的应用等;
2.与概率有关的类型,多与游戏的公平性结合在一起,方案设计的出发点是保证所设计的方案使得游戏的双方获胜的概率相等,在概率不等的情况下,要使游戏对双方公平,则可以通过改变每次试验获得得分来实现.与概率的意义有关的方案设计要注意对概念的深刻理解,选择替代物时要保证每次试验的结果发生的可能性是相同的. 6.【解析】(1)若只切割1根长 2.5米的钢管,则剩下
3.5米长的钢管还可以切割长0.8米的钢管4根,此时还剩余料0.3米;
若切割2根长2.5米的钢管,则剩下1米长的钢管还可以切割长0.8米的钢管1根,此时还剩余料0.2米;。