概率论与数理统计第四章
概率论与数理统计 --- 第四章{随机变量的数字特征} 第一节:数学期望

这个数能否作为 X的平均值呢?
若统计100天,
可以想象, 若另外统计100天, 车工小张不出废品, 这另外100天每天的平均废品数也不一定是1.27. 一般来说, 若统计n天 ,
(假定小张每天至多出三件废品)
又设飞机机翼受到的正压力W 是V 的函数 : W kV 2 ( k 0, 常数), 求W 的数学期望.
解: 由上面的公式
1 1 2 E (W ) kv f (v )dv kv dv ka a 3 0
2 2
a
例7 设二维连续型随机变量(X , Y)的概率密度为
A sin( x y ) 0 x , 0 y f ( x, y) 2 2 0 其它 (1)求系数A , ( 2)求E ( X ), E ( XY ).
x f ( x )x
i i i
i
阴影面积近似为
这正是:
f ( xi )xi
x f ( x )dx
的渐近和式.
小区间[xi, xi+1)
定义: 设X是连续型随机变量, 其密度函数为 f (x), 如果积分: xf ( x )dx
概率论
绝对收敛, 则称此积分值为X的数学期望, 即:
2. 设二维连续型随机变量 (X, Y) 的联合概率密度为 f (x, y), 则: E ( X )
E (Y )
xf X ( x )dx
yfY
( y )dy
xf ( x , y )dxdy,
概率论与数理统计第四章

E (b) b E (aX ) aE ( X )
2. E(X+Y) = E(X)+E(Y);
推广 : E [ X i ] E ( X i )
i 1 i 1 n n
E ( ai X i ) ai E ( X i )
i 1 i 1
n
n
3. 设X、Y独立,则 E(XY)=E(X)E(Y);
例2.(X,Y)服从二维正态分布,其概率密度为 1 f ( x, y ) 2 21 2 1
1 y 1 2 x 1 y 2 y 2 2 exp{ [( ) 2 ( )( )( ) ]} 2 1 1 2 2 (1 )
证明: XY
Cov(kX, kY)=k2Cov(X,Y)
■相关系数
定义 设D(X)>0, D(Y)>0, 称
XY
Cov( X , Y ) X EX Y EY E[ ] D( X ) D(Y ) DX DY
为随机变量X和Y的相关系数(标准协方差)
X Y E( X Y ) XY
练习
1.设离散型随机变量(X,Y)的分布列为 Y 0 1 2 X 则E(XY)=( ) 0 1/3 1/6 1/9 1 0 1/6 1/9 2 0 0 1/9
2.设随机变量X的概率密度为
e x f ( x) 0 x0 其它
Y=e-2X,则EY=( )
■数学期望的性质
1. 设a,b是常数,则E(aX+b)=aE(X)+b;
对正态分布而言,X、Y相互独立 与互不相关是等价的。
例4.设随机变量(X,Y)~N(1, 1, 9, 16, -0.5) 令
第四章 随机变量的数字特征
北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征

北京理工大学《概率论与数理统计》分布函数能够完整地描述随机变量的统计特性,但在某些实际问题中,不需要全面考查随机变量的变化,只需知道它的随机变量的某些数字特征也就够了.评定某企业的经营能力时,只要知道该企业例如:年平均赢利水平研究水稻品种优劣时,我们关心的是稻穗的平均粒数及平均重量考察一射手的水平,既要看他的平均环数是否高,还要看他弹着点的范围是否小,即数据的波动是否小.由上面的例子看到,平均盈利水平、平均粒数、平均环数、数据的波动大小等,都是与随机变量有关的某个数值,能清晰地描述随机变量在某些方面的重要特征,这些数字特征在理论和实践上都具有重要意义.另一方面,对于一些常用的重要分布,如二项分布、泊松分布、指数分布、正态分布等,其中的参数恰好就是某些数字特征,因此,只要知道了这些数字特征,就能完全确定其具体的分布.第四章随机变量的数字特征4.1随机变量的平均取值——数学期望4.2随机变量取值平均偏离平均值的情况——方差4.3 描述两个随机变量之间的某种关系的数——协方差与相关系数4.1 数学期望一离散型随机变量的数学期望二连续型随机变量的数学期望三常见分布的数学期望四随机变量函数的数学期望五数学期望的性质六、数学期望的应用一离散型随机变量的数学期望引例射击问题设某射击手在同样的条件下,瞄准靶子相继射击90次,(命中的环数是一个随机变量).射中次数记录如下命中环数Y0 1 2 3 4 5命中次数n k 2 13 15 10 20 30频率n k/n2/90 13/90 15/90 10/90 20/90 30/90试问:该射手每次射击平均命中靶多少环?解:平均命中环数这是以频率为权的加权平均命中环数Y0 1 2 3 4 5命中次数n k2 13 15 10 20 30频率n k /n 2/90 13/90 15/90 10/90 20/90 30/900211321531042053090×+×+×+×+×+×=21315102030012345909090909090=×+×+×+×+×+×50k k n k n =⋅∑ 3.37.==射中靶的总环数射击次数平均射中环数频率随机波动随机波动“平均射中环数”的稳定值?=由频率的稳定性知:当n 很大时:频率n k /n 稳定于概率p k 稳定于50k k n k n =⋅∑50k k k p =⋅∑50k k n k n =⋅∑“平均射中环数”等于射中环数的可能值与其概率之积的累加定义1 设X 是离散型随机变量,它的概率分布是:P {X =x k }=p k , k =1,2,…如果绝对收敛,则称它为X 的数学期望或均值.记为E (X ), 即如果发散,则称X 的数学期望不存在.1k k k x p ∞=∑1()k k k E X x p ∞==∑1||k k k x p∞=∑注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.注1:随机变量X 的数学期望完全是由它的概率分布确定的,而不应受X 的可能取值的排列次序的影响,因此要求绝对收敛1k k k xp ∞=<+∞∑11111(1)1ln 2234212n n−+−++−→− 1111111(2)1ln 22436852−−+−−+→注2.E (X )是一个实数,而非随机变量,它是一种以概率为权的加权平均,与一般的算术平均值不同,它从本质上体现了随机变量X 取可能值的真正的平均值,也称均值.当随机变量X 取各个可能值是等概率分布时,X 的期望值与算术平均值相等.假设X 1P80 85 90 1/4 1/4 1/21()800.25850.25+900.586.25E X =×+××=X 2P80 85 901/3 1/3 1/32()85.E X =注3.数学期望E(X)完全由随机变量X的概率分布确定,若X服从某一分布,也称E(X)是这一分布的数学期望.乙射手甲射手例1.甲、乙两个射击手,他们射击的分布律如下表所示,问:甲和乙谁的技术更好?击中环数8 9 10概率0.3 0.1 0.6击中环数8 9 10概率0.2 0.5 0.3单从分布列看不出好坏,解:设甲,乙两个射击手击中的环数分别为X 1,X 2E (X 1)=8×0.3+9×0.1+10×0.6=9.3(环)E (X 2)=8×0.2+9×0.5+10×0.3=9.1(环)例2.1654年职业赌徒德.梅尔向法国数学家帕斯卡提出一个使他苦恼很久的分赌本问题:甲、乙两赌徒赌技相同,各出赌注50法郎,每局中无平局.他们约定,谁先赢三局,则得到全部100法郎的赌本.当甲赢了2局,乙赢了1局时,因故要中止赌博.现问这100法郎如何分才算公平?解:假如比赛继续进行下去,直到结束为止. 则需要2局.这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.设:X、Y分别表示甲和乙得到的赌金数. 则分布律分别为:X0 100 P1/4 3/4Y0 100 P3/4 1/4这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.E(X)=0×1/4+100×3/4=75E(Y)=0×3/4+100×1/4=25即甲、乙应该按照3:1的比例分配全部的赌本.例3.确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为30%,可得利润8万元,失败的机会为70%,将损失2万元.若存入银行,同期间的利率为5%,问是否做此项投资?解:设X 为此项投资的利润,则存入银行的利息:故应该选择该项投资.(注:投资有风险,投资须谨慎)X 8 −2P0.3 0.7此项投资的平均利润为:E (X )=8×0.3+(−2)×0.7=1(万元)10×0.05=0.5(万元)设X 是连续型随机变量,密度函数为f (x ).问题:如何寻找一个体现随机变量平均值的量.将X 离散化.二、连续型随机变量的数学期望在数轴上取等分点:…x −2<x −1<x 0<x 1<x 2<…x k +1−x k =∆x ,k =0,±1,….,并设x k 都是f (x )的连续点.则小区间[x i ,x i+1)阴影面积近似为f (x i )∆x i1()i x x f x dx+=∫()i f x x≈∆P {x i <X ≤x i +1}定义一个离散型随机变量X *如下:其数学期望存在,且绝对收敛时,P {X *=x i }=P {x i ≤X <x i +1} ≈f (x i )∆x对于X *,当当分点越来越密,即∆x →0时,可以认为X *=x i 当且仅当x i ≤X <x i +1(*)i i ix P X x =∑(*){*}i i iE X x P X x ==∑()i i ix f x x ≈∆∑0=lim ()i i x ix f x x ∆→∆∑则其分布律为E (X *) →E (X ) *0=lim x EX EX ∆→即有:+()xf x dx∞−∞=∫定义2:设X 是连续型随机变量,其密度函数为f (x ),如果绝对收敛,则称的值为X 的数学期望,如果积分发散,则称随机变量X 的数学期望不存在.+()xf x dx ∞−∞∫+||()x f x dx∞−∞∫即+()()E X xf x dx∞−∞=∫+()xf x dx ∞−∞∫记为E (X ).注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.三、常见分布的数学期望1.0−1分布设随机变量X服从参数为p的0−1分布,求EX.解:X的分布律为X0 1P1−p p则:E(X)=0×P{X=0}+1×P{X=1}=P{X=1}=p概率是数学期望的特例(第五章)2.二项分布X 的分布律为P {X =k }=C n k p k (1−p )n−k ,k =0,1,…,n .解:设随机变量X ~b (n ,p ),求EX .0{}nk EX kP X k ==∑0(1)n k k n k n k kC p p −=−∑1!(1)!()!n k n kk n k p p k n k −=−−∑1(1)(1)1(1)!(1)(1)!()!nk n k k n np p p k n k −−−−=−−−−∑11(1)1(1)n l k l ln ln l np Cp p −=−−−−=−∑1[(1)]n np p p −=+−np=抛掷一枚均匀硬币100次,能期望得到多少次正面3.泊松分布则解:X 的分布律为设随机变量X ~π(λ),求EX .{},0,1,2,!kP X k e k k λλ−=== 00(){}!k k k e E X kP X k k k λλ−∞∞=====∑∑11(1)!k k ek λλλ−∞−==−∑1!ii k i e i λλλ∞=−−=∑=e e λλλλ−=1!k k e k k λλ−∞==∑泊松分布的参数是λ4.几何分布解:X 的分布律为P {X =k }=q k −1p ,k =1,2,….p+q =1设随机变量X 服从参数为p 的几何分布,求EX .111(){}k k k E X kP Xk k pq∞∞−=====⋅∑∑11k k p k q∞−=⋅∑1=()kk p q ∞=′∑1=()k k p q ∞=′∑()1q p q′=−211(1)p q p=−重复掷一颗骰子平均掷多少次才能第一次出现6点设X ~U (a , b ),求E (X ).解:X 的概率密度为:X 的数学期望为:数学期望位于区间(a ,b )的中点.5.均匀分布1()0a xb f x b a<<=− 其它()()2bax a b E X xf x dx dx b a +∞−∞+===−∫∫设X 服从指数分布,求E (X ).分部积分法6.指数分布当概率密度表示为:对应的数学期望为θ.,0()0,x e x f x x λλ− >=≤ 0xxedx λλ+∞−=∫()()E X xf x dx +∞−∞=∫1λ=1,0()0,0xe xf x x θθ− > = ≤解:X 的概率密度为:设X ~N (μ,σ2),求E (X ).解:X 的概率密度为被积函数为奇函数,故此项积分为0.7.正态分布22()21()2x f x eµσπσ−−=()()E X xf x dx +∞−∞=∫22()212x xedxµσπσ−+∞−−∞=∫221()2x t t t edtµσσµπ−=+∞−−∞+∫ 2222122t t tedt edt σµππ+∞+∞−−−∞−∞+∫∫µ=N (0,1)的密度函数积分为1.注意:不是所有的随机变量都有数学期望例如:Cauchy 分布的密度函数为但发散故其数学期望不存在.21(),(1)f x x x π=−∞<<+∞+2||||()(1)x x f x dx dx x π+∞+∞−∞−∞=+∫∫四随机变量函数的数学期望设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.例4.某商店对某种家用电器的销售采用先使用后付款的方式,记该种电器的使用寿命为X (以年计),规定:X ≤1,一台付款1500元;1<X ≤2,一台付款2000元2<X ≤3,一台付款2500元;X >3,一台付款3000元设X 服从指数分布,且平均寿命为10年,求该商店一台电器的平均收费.解:设该商店一台电器的收费为Y .要求E (Y )X 的分布函数为:1101,()0,0x e x F x x − −>=≤设该商店一台电器的收费为YX ≤1,一台付款1500元1 <X ≤2,一台付款2000元2 <X ≤3,一台付款2500元X >3,一台付款3000元1101,0()0,0x ex F x x − −>=≤P {Y =1500}=P {X ≤1}=F (1)=1−e −0.1=0.0952P {Y =2000}=P {1<X ≤2}=F (2)−F (1)=0.0861P {Y =2500}=P {2<X ≤3}=F (3)−F (2)=0.0779P {Y =3000}=P {X >3}=1−F (3)=0.7408设X 服从指数分布,且平均寿命为10年.Y 的分布律为所以该商店一台电器的平均收费,即Y 的数学期望为Y 1500 2000 2500 3000P0.0952 0.0861 0.0779 0.7408()15000.095220000.086125000.0779 30000.74082732.15E Y =×+×+×+×=使用上述方法必须先求出g(X)的分布,有时这一步骤是比较复杂的.那么是否可以不先求g(X)的分布,而只根据X的分布求E[g(X)]呢?例5.设离散型随机变量X 的概率分布如下表所示,求:Z=X 2的期望.X−11P214141E (Z )= g (0)×0.5+g (-1)×0.25+g (1)×0.25解:=0.5注:这里的.)(2x x g =(1)当X 为离散型随机变量时,分布律为P {X = x k }=p k ,k =1,2,⋯(2)当X 为连续型随机变量时,概率密度函数为f (x ).定理:设Y 是随机变量X 的函数,Y =g (X )(g 是连续函数)若级数绝对收敛,则有若积分绝对收敛,则有1()[()]()kkk E Y E g X g x p∞===∑()[()]()()E Y E g X g x f x dx+∞==∫1()k k k g x p ∞=∑()()g x f x dx+∞−∞∫该公式的重要性在于:当求E [g (X )]时,不必知道g (X )的分布,而只需知道X 的分布就可以了,这给求随机变量函数的期望带来很大方便.k k k g x p X E Y E g X g x f x dx X 1(),()[()]()(),∞=+∞−∞== ∑∫离散型连续型例6.设随机变量X~b(n, p),Y=e aX,求E(Y).解:因为X的分布律为所以有{}(1), 0,1,...,k k n knP X k C p p k n−==−= ()E Y=(1)nak k k n knke C p p−=−∑()(1)nk a k n knkC e p p−=−∑[(1)]a npe p=+−={}nakke P X k==∑例7.设X ~U [0,π],Y=sinX ,求E (Y ).解:因为X 的概率密度为所以有1,0()0,x f x ππ≤≤ =其他()sin ()E Y xf x dx +∞−∞=∫01sin x dx ππ⋅∫2π=定理:设Z 是随机变量X 和Y 的函数,Z =g (X,Y )(g 是连续函数),Z 是一维随机变量(1)若(X,Y )是二维离散型随机变量,概率分布为(2)若(X,Y )是二维连续型随机变量,概率密度为f (x, y ),则有这里假定上两式右边的积分或级数都绝对收敛11()[(,)](,)ijijj i E Z E g X Y g x y p∞∞====∑∑()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫{,},,1,2,i j ij P X x Y y p i j ====则有几个常用的公式()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫(,)EX xf x y dxdy+∞+∞−∞−∞=∫∫(,)EY yf x y dxdy+∞+∞−∞−∞=∫∫22()(,)E Y y f x y dxdy+∞+∞−∞−∞=∫∫22()(,)E X x f x y dxdy+∞+∞−∞−∞=∫∫()(,)E XY xyf x y dxdy+∞+∞−∞−∞=∫∫例8.设二维随机变量(X ,Y )的密度函数为求E (X ),E (Y ),E (X +Y ),E (XY ).解:21(13),02,01,(,)40,x y x y f x y +<<<< =其它()(,)E X xf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4x xdx y dy =⋅+∫∫43=()(,)E Y yf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4xdx y y dy +∫∫58=数学期望的性质注意:X ,Y 相互独立()()(,)E X Y x y f x y dxdy+∞+∞−∞−∞+=+∫∫(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞−∞−∞−∞−∞+∫∫∫∫()()E X E Y +45473824=+=()(,)E XY xyf x y dxdy +∞+∞−∞−∞=∫∫2120011(13)22x xdx y y dy=⋅⋅+∫∫455386=⋅=()()E X E Y ⋅设X =(X 1,…, X n )为离散型随机向量,概率分布为≥ 1nnj j j j n P X =x ,,x =p ,j ,,j .11{()}1Z = g (X 1,…, X n ),若级数绝对收敛,则.<∞∑ nnnj j j j j j g x ,,x p 111()=∑ nnnn j j j jj j E Z =E g X ,,X g x ,,x p 1111()(())()设X =(X 1,…, X n )为连续型随机向量,联合密度函数为 n f x x 1(,,)Z = g (X 1,…, X n ),若积分绝对收敛,则+∞+∞−∞−∞∫∫n n ng x x f x x x x 111(,,)(,,)d d n E Z E g X X 1()=((,,))+∞+∞−∞−∞=∫∫n n ng x x f x x x x 111(,,)(,,)d d五数学期望的性质1.设C 是常数,则E (C )=C 4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X )3.E (X +Y )=E (X )+E (Y )注意:由E (XY )=E (X )E (Y )不一定能推出X ,Y 独立推广(诸X i 相互独立时)推广11[]()nni i i i i i E C X C E X ===∑∑11[]()n ni i i i E X E X ===∏∏性质4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定相互独立.反例XY p ij -1 0 1-10181818181818181810p • j838382p i•838382X Y P-1 0 1828284EX EY ==0;E XY ()=0;=E XY EX EY ()但P X Y 1{=-1,=-1}=8≠=P X P Y 23{=-1}{=-1}8××=30+2103-3+5=92X XY Y X XY Y E(3+2-+5)=3E()+2E()-E()+E(5)性质2和3×××EX EY =310+2-3+5性质4例9.设X ~N (10,4),Y ~U [1,5],且X 与Y 相互独立,求E (3X +2XY -Y +5).解:由已知,有E (X )=10, E (Y )=3.例10: 设X 1 , X 2…,X n 相互独立且都服从B (1, p ),求Z = X 1 + X 2+…+X n 的数学期望E (Z ).解:注: 由二项分布的可加性易知Z = X 1 + X 2+…+X n ~B (n, p ).EZ = E (X 1 + X 2+…+X n )= E (X 1 ) +E ( X 2)+…+E (X n )= p +p +…+p =n p求二项分布的数学期望的又一种方法.例11.(超几何分布的数学期望)设一批同类型的产品共有N 件,其中次品有M 件.今从中任取n (假定n ≤N −M )件,记这n 件中所含的次品数为X ,求E (X ).则有所以解: 引入X =X 1+X 2+…+X n且易知抽签模型,概率与试验次数无关例10和例11:将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.1,,1,2,,0,i i X i n i ==第件是次品第件不是次品iMP X N{1}==1()ni i EX E X ==∑ni i P X 1{1}==∑1ni M N ==∑nM N =为普查某种疾病,N 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验N 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例13.六、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.。
海南大学《概率论与数理统计》课件 第四章 随机变量及其分布

X 3 取出的n个产品中至多有3个次品;
X 3 取出的n个产品中有超过3个的次品.
8
关于随机变量的补充说明
• 引入随机变量之后, 可以更方便地表示事件。 • 随机变量的确定不仅与样本空间有关, 也与试验
的研究目的有关。 • 随机变量满足函数的单值对应关系。 • 随机变量不仅有取值的不同, 取到这些值的概率
②正则性: p( xi ) 1 . i 1
这两条性质也是随机变量分布列的充要条件。
由概率的意义和随机变量的完备性容易证明。
25
二、离散型随机变量的分布函数
由分布列可以写出其分布函数 F ( x) P( xi ) xi x
它的图形是有限(或无穷)级数的阶梯函数〔右连续 〕
F(x)
1
0
x
26
27
X的分布列为
X1 2 3 P 0.6 0.3 0.1
X的分布函数为
0, x 1; 0.6, 1 x 2; F ( x) 0.9, 2 x 3; 1 , x 3.
注意:由分布列求分布函数是概率累加的过程.
并且,总有: 当x xmin时,F ( x) 0; 当x xmax时,F ( x) 1.
解 (1) 根据分布函数的性质可知
F() 1, F() 0
依题意可得
18
F() A π B 1 2
F() A π B 0 2
联立上面两个方程可以解得 A 1,B 1 2π
(2) 随机变量 X 落在(-1,1)内的概率可以表示为
P{1 X 1} F (1 0) F (1)
P{a X b} F(b 0) F(a 0);
P{a X b} F(b 0) F(a).
《概率论与数理统计》第04章习题解答

第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。
《概率论与数理统计》第4-7 章复习与自测题

《概率论与数理统计》第4-7章复习第四章 随机变量的数字特征常用分布的期望与方差第五章 大数定律及中心极限定理第六章 数理统计的基本概念第七章参数估计常用概率分布的参数估计表自测题第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤1 0 其他, 求数学期望EX 。
2.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。
3. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0, 若X ,Y 相互独立,求: E(XY)4. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。
DX=1λ, E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ5.设随机变量的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 1 2 0 1/4 1/12 2 1/6 1/2 求:(1) E(X), E(Y);(2)D(X), D(Y);(3) ρxy 。
6.设二维随机变量(X ,Y)的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 0 1 3 0 0.1 0.2 0.1 1 0.2 0.4 0,求(1)E(XY); (2)Cov(X,Y)。
试问:X 与Y 是否相互独立?为什么?7. 设随机变量X 的分布律为 ⎣⎡⎦⎤X -2 0 1 2P 0.2 0.3 0.4 0.1.记Y =X 2, 求:(1)D (X ),D (Y );(2)Cov(X,Y ), ρxy .8. 已知投资某短期项目的收益率R 是一随机变量,其分布为:⎣⎡⎦⎤R -2% 0% 3% 10%P 0.1 0.1 0.3 0.5 。
(1) 求R 的数学期望值E(R)与方差D(R);(2) 若一位投资者在该项目上投资100万元,求他预期获得多少收益(纯利润)(万元)?9. 假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。
概率论与数理统计第4章复习

第四章 随机变量的数字特征一、 随机变量的数学期望1. 离散型随机变量数学期望设离散型随机变量X 的分布律为:,...2,1,}{===k p x X P k k 若级数∑kk k p x 绝对收敛,则称级数∑kk k p x 的和为随机变量X 的数学期望,记为E(X),即∑=kk kp xX E )(。
2. 连续型随机变量数学期望设连续型随机变量X 的概率密度函数为)(X f ,若积分⎰+∞∞-dx x xf )(绝对收敛,则称积分⎰+∞∞-dx x xf )(为随机变量X 的数学期望,记为E(X),即⎰+∞∞-=dx x xf X E )()(.数学期望简称期望或均值,他反映了随机变量所有可能取值的一种平均。
3. 随机变量函数的期望(1) 设X 是随机变量,)(x g y =为实变量x 的函数。
1) 若X 是离散型随机变量,其分布律为:,}{k k p x X P == 1=k ,2,3,...,且级数∑kk k p x g )(绝对收敛,则∑==kk kp xg x g E Y E )()]([)(2) 若X 市连续型随机变量,其密度函数为)(x f ,且积分⎰+∞∞-dx x f x g )()(绝对收敛,则⎰+∞∞-==dx x f x g x g E Y E )()()]([)((2) 设(X ,Y )是二维随机变量,),(y x g z =为实变量x ,y 的二元函数。
1) 若(X ,Y )是离散型随机变量,其分布律为:,),(ij i i p y Y x X P ===,.....2,1,=j i 且∑∑ijij j ip y xg ),(绝对收敛,则∑∑==ijij j ip y xg Y X g E Z E ),()],([)(2) 若(X ,Y )是连续型随机变量,其密度函数为),(y x f ,且⎰⎰+∞∞-+∞∞-dxdy y x f y x g ),(),(绝对收敛,则⎰⎰+∞∞-+∞∞-==dxdy y x f y x g Y X g E Z E ),(),()],([)(。
概率论与数理统计第四版课后学习资料第四章

(4.1)
i,j 1, 2, 3,
则有E(Z) E g(X, Y) g(x i ,y j )p ij , (4.2) (假设级数绝对收敛)
例. 设随机变量(X, Y)的概率密度为 3 , 1 y x.x 1 x 3 2 f(x,y) 2x y 0, 其它, 1 试求 : E(Y),E( ) XY
e
1 x
dx
1 t x
2
0
t 2 e t dt 22 ,
D(X) E(X2 ) -[ E(X)]2 2 .
30 正态分布: 设X~N(, 2 ), 则
解 : E(X)
2
t2 2
1
xe
t2 2
-
(x )2 22
例. 二项分布的均值的计算: 设X~b(n,p),引入r.v.Xi(i=1, 2, …, n), 它们是相互独 立的且都服从0--1分布: P{Xi=1}=p, P{Xi=0}=q, X表 示n次独立重复试验中A发生的次数,Xi表示第i次试 验的结果:Xi=1表示A发生, Xi=0表示A不发生, 所以
解: 计算X1的均值, 由定义有 E(X1) =00+1 0.2+2 0.8=1.8 E(X2)=00.6+1 0.3+2 0.1=0.5
显然,乙的成绩比甲的差.
例2. 有2个相互独立工作的电子装置, 它们的寿命Xk (k 1, 2 )服从同一指数分布, 其概率密度为:
x 1 e , x 0, f(x) θ 0, 0, x 0,
i
n
故 E(X) np D(X) npq.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理4.1.1 设 y=g(x)是连续函数, Y 是随机变量X的函数, 即 Y=g(X)。 (1)若 X 是离散型随机变量,其概率分布为 P(X=xk)=pk,k=1,2,…
且级数
g x p
k k
E Y Eg X g xk pk
k
k
绝对收敛,则有
解 按第二种检验办法,每个人的血样需检验的次数 X 是随机 变量,其可能取值为1/k 或 (k+1)/k. 若记 q=1-p,表示每个人血 样呈阴性反应的概率,故 k 个人混合成的血呈阴性的概率是 qk ,呈阳性的概率是 1-qk。
于是,X 的分布列为
X P
1/k qk
人平均需化验的次数)为
故
E X xf x dx
0
xe x dx
xe
x 0
e
0
x
dx
1
例4.1.7 设 X~N(μ,σ2),求 E(X)。 解 因为随机变量 X 的密度函数为
x 1 2 f x e 2 , x 2
考察某型号电视机的质量: 平均寿命18000小时±200小时.
由上面例子看到,与随机变量有关的某些 数值,虽不能完整地描述随机变量但能清晰地 描述随机变量在某些方面的重要特征, 这些数 字特征在理论和实践上都具有重要意义.
随机变量某一方面的概率特性 都可用数字来描写
本 章 内 容
r.v.的平均取值 —— 数学期望
设已知随机变量 X 的分布,我们需要 计算的不是 X 的期望,而是 X 的某个函数 的期望,比如说 Y=g(X) 的期望. 那么应该 如何计算呢?
如何计算随机变量函数的数学期望? 一种方法是: 因为 Y=g(X) 也是随机变量,故 应有概率分布规律,它的分布可以由 X 的分 布求出来. 如果我们知道了 Y=g(X) 的分布, 就可以按照期望的定义把 E[g(X)] 计算出来.
定义1 设 X 为离散 r.v. 其分布列为
P( X xk ) pk ,
若无穷级数
k 1,2,
绝对收敛, 则称
xk p k
k 1
其和为 X 的数学期望(均值),记作 E( X ), 即 E ( X ) xk p k
k 1
定义2
设连续 r.v. X 的 d.f. 为 f ( x)
试问哪一个人的射击水 平较高?
用分布列表示
X P
Y P
8 0.1
8 0.2
9 0.3
9 0.5
10 0.6
10 0.3
X 的平均值应为: 8 0.1 9 0.3 10 0.6 9.5
Y 的平均取值应为: 8 0.2 9 0.5 10 0.3 9.1
1. 数学期望的定义
注意 不是所有的 r.v.都有数学期望 例如:柯西(Cauchy)分布的密度函数为
1 f ( x) , 2 (1 x )
x
| x| 但 | x | f ( x)dx dx 发散 2 (1 x )
它的数学期望不存在!
2.随机变量函数的数学期望
例4.1.3 设随机变量 X~B(n,p),求 E(X)。 nk k k P X k C p 1 p , k 0,1,2,, n 解 因为 n 由离散型随机变量数学期望的定义,则
E X kC p 1 p
k 0 k n k n n nk
分布
概率密度
期望
1 , a x b, a b 区间(a,b)上的 f ( x) b a 2 均匀分布 0 , 其它
E() N(,
2)
e , x 0, f ( x) 其它 0,
x
1
1 f ( x) e 2
( x )2 2 2
例4.1.2,为了普查某种疾病,需要对N个人抽血检验.检验方式可以有两种: (1)对每个人的血样进行检验,逐一断定是否呈阳性反应,需要检验N次. (2)把k个人分为一组,同一组的k个人的血样混在一起进行检验.如果混合血样 呈阴性反应,则表明这k个人的血都呈阴性,此时这k个人平均每人只需检验1 / k 次; 如果呈现阳性,再对这k个人的血样逐一检验,共需检验 (k 1)次,平均每人 需检验 (k 1) / k次.假定对每个人来说化验呈阳性反应的概率都是p ( p较小), 而且 各人呈阳性反应是相互独立的.这说明第二种检验办法能减少化验的次数.
r.v.取值平均偏离均值的情况 —— 方差 描述两 r.v.间的某种关系的数 —— 协方差与相关系数
§4.1 随机变量的数学期望
100次,他们的射击结果如 下: 例 甲、乙两人各射击 X:甲击中的环数 , Y:乙击中的环数 . X 8 9 10
次数
10
30
60
Y 次数
8 20
9 50
10 30
求 E(3 X 2 5)
E (3 X 5)
2
[3 (2) 5] 0.4 [3 0 5] 0.3 [3 2 5] 0.3
2 2 2
13.4
例 设随机变量 X 的概率密度为
e x , x 0 f ( x) 0 , x 0
n
n 2! n 2 k 2 p k 2 1 p np !n 2 k 2 ! k 2 k 2 n2 nn 1 p 2 p 1 p np nn 1 p 2 np
nn 1 p 2
n
例4.1.9 设随机变量 X 服从[0,2π]上的均匀分布,Y=sinX, 求 E(Y)。 解 随机变量X的密度函数为 1 ,0 x 2 f x 2 0,其它 由定理4.1.1 2 1 E Y sin xf x dx sin xdx 0 0 2
(2)若 X 是连续型随机变量,其概率密度函数为f(x),
且积分 g x f x dx 绝对收敛,则有
E Y E g X g x f x dx
可推广到 n 维随机变量的情形。
例 设随机变量 X 的分布律为
X P -2 0.4 0 0. 3 2 0.3
若广义积分
xf ( x)dx
绝对收敛, 则称此积分为 X 的数学期望
记作 E( X ), 即
E ( X ) xf ( x)dx
例4.1.1 求服从两点分布的随机变量X的数学期望。
解 设两点分布的分布列为
X P 0 q 1 p
由定义4.1.1得 E(X)=0*q+1*p=p.
x 1 ab 2 b E X dx x a a ba 2b a 2
b
服从均匀分布的随机变量 X 数学期望就是该区间的中点。
例4.1.6 设随机变量X服从参数为λ的指数分布,试求 E(X)。
解 已知 X 的密度函数为
e x,当x 0时 f x 0,当x 0时
n
C 从而 E(X)=np i 0
n 1
i n 1
p 1 p
i
n 1i
p 1 p
n 1
1
例4.1.4 设随机变量 X~P(λ),求 E(X)。
解 因为 P X k
k
k!
e , k 0,1,2, ,所以
E X k
x 2
故
E(X)=μ
常见分布的数学期望 分布
0-1分布
概率分布
P( X 1) p P( X 0) 1 p
P( X k ) C p (1 p)
k n k nk
期望
p np
B(n,p) P()
k 0,1,2,, n k e P( X k ) k! k 0,1,2,
k 0
k
k!
e
k 1
k 1!
k
e
e
k 1
k 1!
k 1
e e
例4.1.5 设随机变量 X 服从 [a,b]上的均匀分布,求 E(X)。 解 由于均匀分布的密度函数为 1 ,a x b f x b a 0,其它 则
第四章 随机变量的数字特征
在前面的课程中,我们讨论了随机变量 及其分布,如果知道了随机变量X的概率分 布,那么X的全部概率特性也就知道了.
然而,在实际问题中,概率分布一般 是较难确定的. 而且在一些实际应用中, 人们并不需要知道随机变量的一切概率性 质,只要知道它的某些数字特征就够了.
例如
考察一射手的水平: 既要看他的平均环数是 否高, 还要看他弹着点的范围是否小, 即数据的 波动是否小.
k 0 n
k k 1 k C p 1 p
k 0 n k n k
nk
n n! nk nk k k k k k 1 p 1 p kCn p 1 p k!n k ! k 0 k 0
n! nk p k 1 p E X !n k ! k 2 k 2
n! nk p k 1 p !n k ! k 1 k 1
n 1! n 1 k 1 np p k 1 1 p !n 1 k 1! k 1 k 1 n 1! n 1 k 1 令 i=k-1,则 n k 1 p 1 p !n 1 k 1! k 1 k 1
E(X)=1/k*qk+(1+1/k)*(1-qk)=1-qk+1/k