苏州市2015-2016学年第一学期初三数学模拟试卷(四)及答案
苏州市吴中区2015~2016学年第一学期九年级数学期终调研解答

2015~2016学年第一学期期终调研测试试卷初 三 数 学2016.1注意事项:1. 本试卷满分130分,考试时间120分钟;2. 答卷前答题卷上的相关项目填涂清楚,所有解答均须写在答题卷上,在本试卷上答题无效 .一、选择题(本大题共10小题,每小题3分,共30分;每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应的位置上.) 1.sin30︒的值等于 A .12B.22.函数y =有意义的自变量x 的取值范围是A.13x >B.13x >-C.13x ≥D.13x ≥- 3.一元二次方程2104x x -+=的根是A.1211,22x x ==- B.122,2x x ==-C.1212x x ==-D.1212x x ==4.如图所示,ABC ∆中,DE ∥BC ,若12AD DB =,则下列结论中不正确...的是 A.12AE EC = B.12DE BC = C.13ADE ABC ∆=∆的周长的周长 D.19ADE ABC ∆=∆的面积的面积第4题图5.二次函数223y x x =+-的图象的顶点坐标是A.()1,4--B.()1,4-C.()1,2--D.()1,2-6.如图,在3×3的方格中,点A 、B 、C 、D 、E 、F 都是格点,从A 、D 、E 、F 四点中任意取一点,以所取点及B 、C 为顶点画三角形,所画三角形是直角三角形的概率是 A.14 B.12 C.34 D.23第6题图第7题图7.如图,是一个圆锥形纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为A.275cm π B.2150cm π C.2752cm π D.23752cm π8.下列命题是真命题...的是 A . 垂直于圆的半径的直线是圆的切线 B . 经过半径外端的直线是圆的切线C . 直线上一点到圆心的距离等于圆的半径的直线是圆的切线D . 到圆心的距离等于圆的半径的直线是圆的切线9.已知a 是方程220160x x +-=的一个根,则22211a a a ---的值为 A . 2015 B . 2016 C . 12015 D . 1201610.如图,在平面直角坐标系xOy 中,直线AB 经过()6,0A 、()0,6B ,O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为第10题图二、填空题:(本大题共8小题,每小题3分,共24分;请将正确答案填在相应的横线上) 11.关于x 的方程()22430m x x --+=是一元二次方程,则m 满足的条件是 . 12.有一组数据如下:2,3,4,5,6,则这组数据的极差是 .13.在Rt ABC ∆中,斜边AB 的长是8,3cos 5B =,则BC 的长是 . 14.已知关于x 的一元二次方程()221104x m x m +-+=有两个实数根,则m 的取值范围是 .15.在半径为2的圆中,弦AB 的长为2,则AB 的长等于 .16.如图,AB 是O 的直径,C ,D 两点在O 上,若40C ∠=︒,则ABD ∠的度数为 .第16题图17.如果将抛物线221y x x =--向上平移,使它经过点()0,3A ,那么所得新抛物线的表达式是 .18.如图,平行于x 轴的直线AC 分别交抛物线()210y x x =≥与()2203x y x =≥于B 、C两点,过点C 作y 轴的平行线交1y 于点D ,直线DE ∥AC ,交2y 于点E , 则DEAB= .第18题图三、解答题(本大题共10小题,共76分;解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分4分)计算:()0tan 456π︒+- . 20.(本题满分8分,每小题4分)解方程:(1)2440x x --= ; (2)()215x x -= .21.(本题满分5分)先化简,再求值:()239x x x--÷,其中1x =-.22.(本题满分7分)如图,抛物线23y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点()0,4C - .(1)k = ;(2)点A 的坐标为 ,B 的坐标为 ; (3)设抛物线23y x x k =-+的顶点为M ,求四边形ABMC 的面积.第22题图 23.(本题满分7分)2015年9月,某市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价,评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.第23题图根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ;扇形统计图中的圆心角α等于 度; (2)补全统计直方图;(3)被抽取的学生还要在只有五条跑道的田径场上进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率. 24.(本题满分7分)如图,海中有一灯塔P ,它的周围8海里内有暗礁,海轮以18海里/时的速度由西向东航行,在A 处测得灯塔P 在北偏东60︒方向上;航行40分钟到达B 处,测得灯塔P 在北偏东30︒方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?第24题图 25.(本题满分8分)某工厂一种产品2014年的产量是100万件,计划2016年产量达到121万件.假设2014年到2016年这种产品产量的年增长率相同. (1) 求2014年到2016年这种产品产量的年增长率; (2)2015年这种产品的产量应达到多少万件? 26.(本题满分9分)如图,已知直线l 与O 相离,OA l ⊥于点A ,5OA =,OA O相交于点P ,AB 与O 相切于点B ,BP 的延长线交直线l 于点C . (1)试判断线段AB 与AC 的数量关系,并说明理由; (2)若PC =O 的半径和线段PB 的长.第26题图27.(本题满分10分)如图,抛物线212y x mx n =++与直线132y x =-+交于,A B 两点,交x 轴与,D C 两点,连接,AC BC ,已知()()0,3,3,0A C . (1)求抛物线的解析式;(2)求tan BAC ∠的值;(3)设P 为点A 下方、x 轴上方、y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以,,A P Q 为顶点的三角形与ACB ∆相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由 .第27题图28.(本题满分11分)如图,在Rt ABC ∆中,90,C CA ∠=︒=12BC =cm ;动点P 从点C 开始沿CA以的速度向点A 移动,动点Q 从点A 开始沿AB 以4 cm/s 的速度向点B 移动,动点R 从点B 开始沿BC 以 2cm/s 的速度向点C 移动.如果P 、Q 、R 分别从C 、A 、B 同时移动,移动时间为t ()06t <<s.(1)CAB ∠的度数是 ;(2)以CB 为直径的O 与AB 交于点M ,当t 为何值时,PM 与O 相切?(3)写出PQR ∆的面积S 随动点移动时间t 的函数关系式,并求S 的最小值及相应的t值;(4)是否存在APQ ∆为等腰三角形,若存在,求出相应的t 值,若不存在请说明理由.第28题图 备用图参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分.) A C D B A C A D D C二、填空题:(本大题共8小题,每小题3,共24分.)11.2m ≠. 12.4 13.245 14.12m ≤15. 16.50° 17.223y x x =-+ 18.3 三、解答题(本大题共10小题,共76分.) 19.(本题满分4分)解:原式=11+ = 20.(本题满分8分,每小题4分) 解:(1)∵224(4)41(4)32b ac -=--⨯⨯-=∴x =∴12x =+22x =- (2)原方程可变形为22150x x --= (5)(3)0x x -+= ∴15x =,23x =-21. (本题满分5分) 解:原式=(3)(3)3xx x x +-⋅+ =23x x -;当1x =-时,原式=2(1)3(1)--⨯- =4.22.(本题满分7分) 解:(1) 4- -----------------------------------1分 (2)(1,0)-, (4,0); ---------------------------3分(3)∵234y x x =--2325()24x =--∴325(,)24M - , -------------------------4分设抛物线的对称轴与x 轴交于N ,则B AC M A C N N C M S S S S =++V V V111222AN OC NM ON NB NM =⨯⨯+⨯⨯+⨯⨯------5分1512531525422242224=⨯⨯+⨯⨯+⨯⨯ -----------------6分 352=∴四边形ABMC 的面积是352.----------------------------7分 23.(本题满分7分) 解:(1)30 144 ------------------2分 (2)补全统计图(略); ---------------------4分 (3)根据题意列表如下:记小红和小花抽在相邻两道这个事件为A ,∴. ---------------------------------------7分24.(本题满分7分)解:过P 作PD ⊥AB 于D401860AB =⨯=12(海里),---------------1分 ∵30PAB ∠=︒,60PBD ∠=︒∴PAB APB ∠=∠-----------------2分∴12AB BP ==(海里)-----------------3分 在Rt PBD V 中, s i n P D B P P BD =⋅∠ ------------4分12== ---------------5分∵8 ----------------------------------6分∴海轮不改变方向继续前进没有触礁的危险.-------7分 25.(本题满分8分) 解:(1)2014年到2016年这种产品产量的年增长率x ,则----------1分2100(1)121x +=-----------------------------3分解,得x 1=0.1=10%,x 2=﹣2.1(舍去),-----------4分答:2014年到2016年这种产品产量的年增长率10%.-------5分 (2)2015年这种产品的产量为:100(10.1)110+=(万件).-------------7分 答:2015年这种产品的产量应达到110万件.-----------------------------------8分 26.(本题满分9分)解:(1)AB AC =. --------1分 如图1,结OB∵AB 是O e 的切线, ∴90ABO ∠=︒ ∴4901∠=︒-∠ 又∵OA l ⊥∴903C ∠=︒-∠ -----------------2分 又∵OB OP = ∴12∠=∠ 又32∠=∠∴4C ∠=∠∴AB AC = -------------------3分 (2)如图2,延长AO 交O e 于E ,连结BE ,设O e 的半径为r ,AB AC x ==∵5OA = ∴5PA r =- 在Rt ABO V 中, 222AO AB OB =+即:2225x r =+ ----------① ------4分 在Rt CAP V 中222PC AC AP =+即:222(5)x r =+- -----------② ----------5分 由①、②得,34r x =⎧⎨=⎩ ---------------------------------6分 ∵PE 是O e 的直径, ∴90PBE ∠=︒2226PB BE += ----------③ -----------------7分 又∵4901∠=︒-∠ 902E ∠=︒-∠ 12∠=∠∴4E ∠=∠ B A P E A B ∠=∠ ∴BAP V ~EAB V PB ABBE AE =------------------8分 ∴48PB BE = ----------④ 由③、④得5PB =;综上,O e 的半径和线段PB 的长分别是3和5.-------------------------9分27.(本题满分10分)解:(1)把A (0,3),C (3,0)代入212y x mx n =++得319302n m n =⎧⎪⎨⨯++=⎪⎩ ------------------------------1分 解得图 1 图2352n m =⎧⎪⎨=-⎪⎩∴抛物线的解析式为215322y x x =-+;--------------2分 (2)如图1,过点B 作BH ⊥x 轴于H ,解方程组213215322y x y x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩得:03x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴点B 的坐标为(4,1) ---------------------3分又∵C (3,0)∴1BH =,3OC =,4OH =,431CH =-=∴1BH CH ==∵90BHC ∠=︒∴45,BCH BC ∠=︒=同理:45,ACO AC ∠=︒= ---------------------4分 ∴180454590ACB ∠=︒-︒-︒=︒∴tan BCBAC AC ∠=13==;-------------------------------------5分(3)存在点P ,使得以A ,P ,Q 为顶点的三角形与ACB V 相似.过点P 作PG ⊥y 轴于G ,则90PGA ∠=︒,设点P 的横坐标为x ,由于P 在y 轴右侧可得x >0,则PG x =,∵PQ ⊥P A ,90ACB ∠=︒90APQ ACB ∠=∠=︒, ---------------------------------------6分①如图2,当PAQ CAB ∠=∠时,PAQ CAB V V ∽.∵90PGA ACB ∠=∠=︒,PAQ CAB ∠=∠ ∴PGA BCA V V ∽∴13PG BC AG AC == ∴33AG PG x ==∴P (x ,3﹣3x ) ---------------------7分把P (x ,3﹣3x )代入215322y x x =-+,得21533322x x x -+=- 整理,得 20x x +=解得:10x =(舍去),21x =-(舍去);---------8分②如图3,当PAQ CBA ∠=∠时,PAQ CBA V V ∽ 同理可得:1133AG PG x ==, 则P 1(,3)3x x - ----------------------------9分 把P 1(,3)3x x -,代入215322y x x =-+,得 215133223x x x -+=- 整理,得23130x x -= 解得:10x =(舍去),2133x = ∴1314(,)39P ---------------------------------------10分 28.(本题满分11分)解:(1) 30︒ : -----------------1分(2)如图1,连接OP ,OM . 当PM 与O e 相切时,有90PMO PCO ∠=∠=︒, ∵MO CO =P O P O =∴Rt PMO Rt PCO ≅V V∴MOP COP ∠=∠ ---------------2分由(1)知∠OBA =60°∵OM OB =∴OBM V 是等边三角形∴60BOM ∠=︒∴MOP COP ∠=∠=60︒∴tan CP CO COP =⋅∠=︒= --------------------------------3分又∵CP =∴32t =36∴3t =即:3t =s 时,PM 与O e 相切. --------------4分(3)如图2,过点Q 作QE ⊥AC 于点E∵30BAC ∠=︒,4AQ t =∴122QE AQ t == c o s A E A Q B AC =⋅∠ 4cos30t=⋅︒= --------------------------------------5分图3∴111222ACB S AC CB =⋅⋅=⋅=V 11)2)22AQP S AP QE t t =⋅⋅=⋅⋅=⋅V111()2(3)22Q B R S B R C E B R A C A E t =⋅⋅=⋅⋅-=⋅V)t =⋅11(122)22PCR S RC CP t =⋅⋅=⋅-⋅V (1223t =- -------------6分 ∴PQR ACB AQP QBR PCR S S S S S =---V V V V V))(122)t t t =⋅-⋅--=372336362+-t t -----------------------------------7分=23)t -+(60<<t )∴当3t =s 时,PQR S =V 最小值2;------------------------------8分(4)存在. 如图3,分三种情况:○1114PQ AQ t ==时,过点1Q 作1Q D ⊥AC 于点D ,则122AP AD AQ COS A ==⋅∠=CP =∴+=∴2t =; ---------------------------9分○2当24AP AQ t ==时,∵CP AP +=∴4t +=t =18) -------------------------10分 ○3当34PA PQ t ==时,过点P 作PH ⊥AB 于点H , c o s 30A H P A =⋅︒)2=⋅ 183t =-32366A Q A H t =⋅=- ∴3664t t -=∴ 3.6t =综上所述,当18)t =s 时,APQ V 是等腰三角形.------11分。
2015年江苏省苏州市吴中、相城、吴江区中考一模数学试卷和答案PDF

17. (3 分)若关于 x,y 的二元一次方程组
第 2 页(共 24 页)
取值范围为
.
18. (3 分)设抛物线 y=﹣x2+2x+3 的顶点为 E,与 y 轴交于点 C,EF⊥x 轴于 点,若点 M(m,0)是 x 轴上的动点,且满足以 MC 为直径的圆与线段 EF 有公共点,则实数 m 的取值范围是 .
Aቤተ መጻሕፍቲ ባይዱ17°
B.34°
C.56°
D.68°
5. (3 分)在平面直角坐标系中,将直线 x=0 绕原点顺时针旋转 45°,再向上 平移 1 个单位后得到直线 a,则直线 a 对应的函数表达式为( A.y=x B.y=x﹣1 C.y=x+1 )
D.y=﹣x+1
6. (3 分)我国古代问题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折 测之,绳多一尺,绳长、井深各几何?(注:绳儿折即把绳平均分成几等分. ) ( ) B.28,6 C.28,8 D.13,3 的
26. (8 分)有两张相同的矩形纸片 ABCD 和 A′B′C′D′,其中 AB=3,BC =8. (1)若将其中一张矩形纸片 ABCD 沿着 BD 折叠,点 A 落在点 E 处(如图 1) , 设 DE 与 BC 相交于点 F,求 BF 的长; (2)若将这两张矩形纸片交叉叠放(如图 2) ,试判断四边形 MNPQ 的形状,并 证明.
记众数为 a,中位数为 b,则 a+b=
13. (3 分) “两直线平行,内错角相等”的逆命题是 14. (3 分)分解因式:2x2+x﹣6= .
15. (3 分)如图,AB 是⊙O 的切线,切点为 B,AO 交⊙O 于点 C,且 AC=OC, 若⊙O 的半径为 5,则图中阴影部分的面积是 .
江苏省苏州市2015届中考数学模拟试卷(四)

2015年某某市九年级数学中考模拟试卷(四)(本试卷共3大题,29小题,满分130分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的班级、某某、考场号、座位号用毫米黑色签字笔写在答题卷的相应位置上.2.除作图可使用2B 铅笔作答外,其余各题请按题号用毫米黑色签字笔在各题目规定的答题区域内作答,不能超出横线或方格,超出答题区域的答案无效;在草稿纸、试题卷上答题无效.3.考试结束,只需交答题卷.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在答题卡相对应的位置上. 1.13-的倒数是(▲)A.13 B. 3 C.-3 D. 13- 2.下列计算错误的是(▲)A .(-2x )3=-2x 3B .-a 2·a =-a 3C .(-x )9÷(-x )3=x 6D .(-2a 3)2=4a 63.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( ▲)A .0.35×108B .3.5×107C .3.5×106D .35×1054.使代数式12-x x有意义的x 的取值X 围是( ▲ ) A .21>x B .21≠x C .x ≥0且21≠x D .21≥x5.下列说法正确的是( ▲ )A .随机事件发生的可能性是50%B .一组数据2,2,3,6的众数和中位数都是2C .为了了解某某5万名学生中考数学成绩,可以从中抽取10名学生作为样本D .若甲组数据的方差S 甲2,乙组数据的方差S 乙2,则乙组数据比甲组数据稳定6.在x 2□2xy □y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是(▲)A. 1B. 34 C .12 D. 147.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种各买了多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是(▲) A.⎩⎪⎨⎪⎧x +y =30,12x +16y =400B.⎩⎪⎨⎪⎧x +y =30,16x +12y =400C.⎩⎪⎨⎪⎧16x +12y =30,x +y =400 D.⎩⎪⎨⎪⎧12x +16y =30,x +y =4008.如图,BC 是⊙O 弦,D 是BC 上一点,DO 交⊙O 于点A ,连接AB 、OC ,若∠A =20º,∠C=30º,则∠AOC 的度数为( ▲ )A. 100ºB. 105º C . 110º12 D. 120º9.如图(5)所示,已知11(,)2A y ,2(2,)B y 为反比例函数1y x=图像上的两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是(▲)A. 1(,0)2 B. (1,0) C. 3(,0)2D. 5(,0)210.在平面坐标系中,正方形ABCD 的位置如图,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,………按这样的规律进行下去,第2012个正方形的面积为( ▲ ) A.2010)23(5⋅B.2010)49(5⋅C.2012)49(5⋅D.4022)23(5⋅二、填空题:本大题共8小题,每小题3分,共24分,把答案填在答题卷相应横线上.11.22632=⋅m ,则m=▲.12.分解因式8822+-x x =▲.13.函数x y 2-=的图像向上平移2个单位,得到的图像的函数关系式为▲.yxOABP第9题图OD CBA第8题图第10题图14.如图,在Rt △ABC 中,∠ACB =90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD =5 cm ,则EF =____▲_____c m.15.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为▲cm 2.(结果保留π)16.设x 1、x 2是一元二次方程x 2+5x -3=0的两个实根,且4)36(22221=+-+a x x x ,则a = ▲.17.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6 cm ,DE =2 cm ,则BC =____▲____cm.18.如图,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC 、S △ADF 、S △BEF ,且S △ABC =12,则S △ADF -S △BEF =______▲____. 三、解答题:本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(本题满分5分)计算:2cos60°1211()(32)()233-+---÷-0 20.(本题满分5分)解不等式组:⎪⎩⎪⎨⎧-<--+≥+-xx x x 8)1(31132321.(本题满分5分)先化简,再求值:)1121(122+---÷--a a a a a ,其中3=a 22.(本题满分6分)解分式方程:(x -1)2x 2-x -1x-2=0. 23.(本题满分6分)在平行四边形ABCD 中,F 是CD 上一点,延长AF 、BC 交于点E(1).求证△AD F ∽△ECF ;第14题图第18题图 第17题图 FED CBA(2)若CD=3DF,△ADF 的面积为3cm 2,求△ECF 的面积。
2016年苏州市中考数学模拟试卷(四)含答案解析

2016年苏州市中考数学模拟试卷(四)一、选择题(共10小题,每小题3分,满分30分,每小题只有一个选项符合题意)1.(3分)﹣6的绝对值是()A. 6 B.﹣6 C.±6 D.1 62.(3分)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A. 0.109×105B. 1.09×104C. 1.09×103D. 109×1023.(3分)如图,OA⊥OB,∠1=35°,则∠2的度数是()A. 35°B. 45°C. 55°D. 70°(3题图)(7题图)(8题图)4.(3分)下列运算不正确的是()A. a2•a=a3B.(a3)2=a6C.(2a2)2=4a4D.a2÷a2=a5.(3分)若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.26.(3分)太仓港城中学足球队的18名队员的年龄如表所示:A. 13岁,14岁B. 14岁,14岁C. 14岁,13岁D. 14岁,15岁7.(3分)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC 先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()A.(4,3)B.(2,4)C.(3,1)D.(2,5)8.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x 的不等式x+b>kx+4的解集是()A. x>﹣2 B. x>0 C. x>1 D. x<19.(3分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为()A.B.C.1 D.10.(3分)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣(9题图)(10题图)二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:xy+x=.12.(3分)如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为(结果保留π).(12题图)(13题图)(14题图)13.(3分)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.14.(3分)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y= (x<0)的图象上,则k=.15.(3分)函数y=x1-x中,自变量x的取值范围是.16. (3分)已知关于x的方程x2-3x+1=0的两个根为x1、x2,则x1+ x2-x1x2=.17. (3分)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为.(第17题)(第18题)18.(3分)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).2016年苏州市中考数学模拟试卷答卷(四)一、 选择题:二、填空题11. ;12. ;13. ;14. ;15. ;16. ;17. ;18. ;三、解答题(共7小题,满分57分)19.(5分)计算:(π-1)0+|2-2|-(13)-1+8.20. (5分)解不等式组:.21. (6分)先化简,再求值:a -33a 2-6a ÷(a +2-5a -2),其中a 2+3a -1=0.22. (6分)太仓和温州两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.23.(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他” 四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根(1)计算m= ;(2)在扇形统计图中,“其他”类所占的百分比为 ;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.24.(8分)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.25.(8分)如图1,点A(8,1)、B(n,8)都在反比例函数y=错误!未找到引用源。
2015~2016学年度九年级数学科中考模拟考试卷(含参考答案)

2015~2016学年度九年级学年考试数学试卷(中考模拟试卷)一、选择题(每题3分,共30分)1、在-3,- ,0,3这四个数中,最小的数是( )A、-3B、-C、0D、32、某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是( )3、或一组数据-2,0,2,3,x的极差为6,则x的值是( )A、4B、4或-8C、-3D、4或-34、若三角形的两边长分别为3和7,则第三边的长可能是( )A、3B、4C、5D、105、下列方程有两个相等的实数根的是( )A、x2+2x-1=0B、3x2-2x+4=0C、4x2-20x+25=0 错误!未定义书签。
D、x2+10x-25=06、在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为( )A、5B、7C、8D、127、十边形的外角和等于( )A、2880ºB、360ºC、1080ºD、1440º8、已知点(a+1,-0.5a+1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是( )9、函数y= 的图象与直线y=x没有交点,那么k的取值范围是( )A、k>1B、k<1C、k>-1D、k<-110、如图,已知⊙O直径AB⊥CD 于点E,则下列结论错误的是( )A、CE=DEB、AE=OEC、B╭C╮=B╭D╮D、△OCE≌△ODE二、填空题(每小题4分,共24分)11、若使二次根式有意义,则x的取值范围是______________。
12、分解因式:a3b-4ab=__________________.13、如果|a-1|+(b+2)2=0,则(a+b)2016的值是_______.14、如图,将△ABC绕点A按顺时针方向旋转40º得△ADE,则∠BAD=______度.15、如图,菱形ABCD中,AB=5,∠BCD=120º,则对角线AC的长是________。
2016年苏州市中考一模数学试卷

2016届江苏省苏州市中考模拟数学一、选择题(共10小题;共50分)1. 的绝对值是A. B. C. D.2. 新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为公里,用科学记数法表示为A. B. C. D.3. 如图,,,则的度数是A. B. C. D.4. 下列运算不正确的是A. B. C. D.5. 若代数式与的值相等,则的值是A. B. C. D.6. 太仓港城中学足球队的名队员的年龄如表所示:这名队员年龄的众数和中位数分别是A. 岁,岁B. 岁,岁C. 岁,岁D. 岁,岁7. 如图,在平面直角坐标系中,的顶点都在方格纸的格点上,如果将先向右平移个单位长度,在向下平移个单位长度,得到,那么点的对应点的坐标为A. B. C. D.8. 如图,一次函数与一次函数的图象交于点,则关于的不等式>的解集是A. B. C. D.9. 如图,正方形的对角线与相交于点,的角平分线分别交、于,两点.若,则线段的长为A. B. C. D.10. 如图,抛物线与轴交于点,,把抛物线在轴及其上方的部分记作,将向右平移得,与轴交于点,.若直线与,共有个不同的交点,则的取值范围是A. B.C. D.二、填空题(共8小题;共40分)11. 分解因式:.12. 如图,是的切线,是切点,,,则的周长为(结果保留).13. 小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.14. 如图,等边三角形的顶点的坐标为,顶点在反比例函数的图象上,则.15. 函数=中,自变量的取值范围是.16. 已知关于的方程的两个根为、,则.17. 如图,在边长为的正方形中,是的中点,以为圆心,为半径作半圆,交,所在的直线于,两点,分别以直径、为直径作半圆,则阴影部分面积为.18. 如图,在菱形中,,,分别交、于点,,,连接,以下结论:;点到的距离是;;的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、解答题(共10小题;共130分)19. 计算:.20. 解不等式组:.21. 先化简,再求值:,其中.22. 太仓和温州两地相距,乘坐高铁列车比乘坐普通快车能提前到达,已知高铁列车的平均行驶速度是普通快车的倍,求高铁列车的平均行驶速度.23. 八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的人恰好是乙和丙的概率.24. (1)如图,在矩形中,,求证:;(2)如图,在圆内接四边形中,为圆心,,求的度数.25. 如图1,点、都在反比例函数>的图象上,过点作轴于,过点作轴于.(1)求的值和直线的函数关系式;(2)动点从点出发,以每秒个单位长度的速度沿折线向点运动,同时动点从点出发,以每秒个单位长度的速度沿折线向点运动,当动点运动到时,点也停止运动,设运动的时间为秒.设的面积为,写出与的函数关系式;如图2,当的在线段上运动时,如果作关于直线的对称图形,是否存在某时刻,使得点恰好落在反比例函数的图象上?若存在,求的坐标和的值;若不存在,请说明理由.26. 如图,是的直径,弦垂直平分半径,垂足为,,连接,过作平行线交延长线于点.(1)求的半径;(2)求证:是的切线;(3)若弦与直径交于点,当时,求图中阴影部分的面积.27. 抛物线过点,,与轴交于点.(1)求抛物线的函数表达式;(2)如图1,连接,以为边作平行四边形,若点在直线上方的抛物线上,为坐标平面内的一点,且平行四边形的面积为,求点的坐标;(3)如图2,过点,,三点,为直径,点为上的一动点(不与点,重合),为直角,边与的延长线交于,求线段长度的最大值.28. 如图,已知:在矩形的边上有一点,,以为圆心,长为半径作圆,交于,恰好与相切于,过作弦,弦.若点是边上一动点(点与,不重合),过作直线交于,再把沿着动直线对折,点的对应点为.设,与矩形重叠部分的面积为.(1)求证:四边形是菱形;(2)问的直角顶点能落在上吗?若能,求出此时的值;若不能,请说明理由;(3)求与之间的函数关系式,并直接写出与相切时,的值.答案第一部分1. A2. B3. C4. D5. B【解析】根据题意得:,去分母得:,解得:.6. B7. D8. C9. C 【解析】作于,如图,因为四边形为正方形,所以,所以为等腰直角三角形,所以,因为平分,所以,所以,所以,所以,,因为,所以,所以,所以,即,所以.10. D【解析】令,即,解得或,则点,,由于将向右平移个长度单位得,则解析式为,当与相切时,令,即,,解得,当过点时,即,,当时直线与、共有个不同的交点.第二部分11.12.【解析】连接,因为是的切线,是切点,所以,在中,,,,由勾股定理得:,则的周长为.13.14.【解析】过点作轴于点,因为是等边三角形,点的坐标为,所以,,所以,,所以,所以.15.16.17.【解析】根据图形可知阴影部分的面积两个小的半圆的面积的面积大半圆的面积.因为的半圆的直径,所以.在中,,所以两个小半圆的面积大半圆的面积.所以阴影部分的面积的面积.在中,,所以阴影部分的面积的面积.18.【解析】因为菱形,所以,因为,所以,,在与中,所以,所以正确;过点作,过点作,,如图:因为,,,所以,因为,所以,所以点到的距离是,故正确;因为,,所以,所以,所以的面积为,故错误;因为,所以,因为,所以,所以,所以,所以,故正确.第三部分19. 原式.20.解得:解得:故不等式组的解为:.原式21.当,即时,原式.22. 设普通快车的速度为时,由题意得:解得:经检验:是原分式方程的解,,答:高铁列车的平均行驶速度是时.23. (1)【解析】因为喜欢散文的有人,频率为,所以.(2)【解析】在扇形统计图中,“其他”类所占的百分比为 .(3)画树状图,如图所示:所有等可能的情况有种,其中恰好是丙与乙的情况有种,所以丙和乙.24. (1)因为四边形是矩形,所以,,因为,所以,在和中,所以,所以.(2)因为,所以,因为,,,四点共圆,所以,所以.25. (1)因为点、都在反比例函数的图象上,所以,所以,所以,即,设的解析式为,把、代入上式得:解得:所以直线的解析式为.(2)由题意知:,,当在上运动时,,当在上运动时,;存在,作轴,轴于,交于,则,,,由题意知:,,所以,所以,设,,则,,所以,解得:,,所以,当在反比例函数的图象上时,,解得:,因为反比例函数的图形在第一象限,所以,所以.当个长度单位时,恰好落在反比例函数的图象上.26. (1)连接.因为垂直平分半径,所以,因为,所以,,所以,所以.(2)由知:,,所以,所以,因为,所以,所以,所以,所以是的切线.(3)连接.因为,因为,所以,所以,.所以阴影扇形27. (1)将点,的坐标代入抛物线的解析式得:解得:所以抛物线得解析式为.(2)如图所示:设点的坐标为,因为平行四边形的面积为,所以,即:梯形.所以.化简得:解得:或因为,所以点的坐标为.(3)连接、.因为是圆的直径,所以.所以.又因为,所以.因为,,所以点的横坐标为,将代入抛物线的解析式得:,所以点的坐标为.设点的坐标为,因为,所以,解得:.所以点的坐标为,所以,在中,由勾股定理得:,所以点的坐标为.所以,.因为,所以.所以.所以.所以当为直径时,最大,此时最大.所以,所以.28. (1)连接,如图所示.因为四边形是矩形,所以,,.因为,所以.所以.所以.因为,所以.所以,因为与相切于点,所以.所以.所以.所以.所以.因为,.所以.所以.因为,所以.因为,所以四边形是平行四边形.因为,是的直径,所以与相切于点.因为与相切于点,所以.所以平行四边形是菱形.(2)的直角顶点能落在上.如图所示,点落到上.因为,所以.因为,所以.由折叠可得:.所以.因为,所以..所以.所以.所以,.所以.所以.所以.所以点与点重合.此时的直角顶点落在上,对应的的值为.所以当的直角顶点落在上时,对应的的值为.(3)如图,在中,.所以.所以.如图,,,.因为,所以.所以.因为,所以.综上所述:当时,;当时,.当与相切于点时,延长交于点,过点作,垂足为,如图所示.因为四边形是矩形,所以,,所以.因为,所以.所以.因为,所以四边形是矩形.所以,.所以.在中,.所以.所以.解得:.因为,所以.所以与相切时,的值为.。
苏州市2015—2016学年第一学期九年级数学期终模拟测试(一)及答案讲解

2015—2016学年第一学期期终模拟测试一九年级数学试卷(范围:苏科版 2013年九年级上下两册; 分值:130分;时间:120分钟)2016年1月 -、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个 是符合题意的•请将正确选项前的字母填在表格中相应的位置题号12345678910答案1.一元二次方程2x 2 -x - 3 =0的二次项系数、一次项系数、常数项分别是( )A • 2,1,3B • 2,1, -3C .2 1,3 2.下列图形是中心对称图形的是( )2 2 2 2A . y =x 2B . y =x -2C . y 二 x 2D . y 二 x-26 .已知扇形的半径为 6,圆心角为60,则这个扇形的面积为( )A . 9 二B . 6 二C . 3 二D . ■:7.用配方法解方程 x 2 4x =3,下列配方正确的是()2 2 2 2A . (x —2)=1B . (X —2) =7C . (x + 2)=7D. (x + 2)=1&已知二次函数 y =ax 2 • bx • c 的图象如图所示,则下列选 项中不正确的是()A . a :: 0b 彳D . 2,-1,-33.二次函数y =-(x+1)2 -2的最大值是()A . -2B . -1C . 1D . 24.已知O O 的半径是4, OP 的长为3,则点P 与O O 的位置关系是(A .点P 在圆内B .点P 在圆上C .点P 在圆外 )D .不能确定 5.将抛物线y = x 2沿y 轴向下平移2个单位,得到的抛物线的解析式为(A .B .C .D .C . 0 < 1B . c 0D . a b c ::02a9.如图,△ ABC 内接于O O,BD 是O O 的直径.若.DBC =33 •,则.匕A 等于()A . 33B . 57C . 67D . 66A . 7 分B . 6.5 分C . 6 分D . 5.5 分二、填空题(本题共18分,每小题3分) 11.方程x 2 -4 =0的解为 ____________________ .12•请写出一个开口向上且经过 (0, 1)的抛物线的解析式 __________ . 13 .若二次函数y=2x 2-5的图象上有两个点 A (2,a )、B (3,b ),则 a —b (填“ <”或“=”或“ >”).14 .如图,A 、B 、C 三点在O O 上,/ AOC=100 ° ,则/ ABC= _______15 .用一块直径为4米的圆桌布平铺在对角线长为 4米的正方形桌面上(如 示意图),若四周下垂的最大长度相等,则这个最大长度 x 为 _________ 米(.2 取 1.4).16 .如图,O 是边长为1的等边△ ABC 的中心,将 AB 、BC 、CA 分别 绕点A 、点B 、点C 顺时针旋转:-(0 ::: :- < 180 ),得到AB'、BC'、 CA',连接 A'B'、B'C'、A'C'、OA'、OB'.(1) X A'OB'= ______ ?;(2)当:•二 ______ ?时,△ A'B'C'的周长最大.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29 题8 分)17 .解方程:x 2 =3x 「2 .18 .若抛物线y = x 2 • 3x • a 与x 轴只有一个交点,求实数 a 的值.10•小明乘坐摩天轮转一圈,他离地面的高度y (米)与旋转时间x (分) x/分2.663.23 3.46y/米69.1669.6268.46之间的关系可以近似地用二次函数来刻画 •经测试得出部分数据如下表: F 列选项中,最接近摩天轮转一圈的时间的是( )19.已知点(3, 0)在抛物线y = -3x2 - (k - 3)x -k上,求此抛物线的对称轴.20.如图,AC是O O的直径, 的度数.PA, PB是O O的切线,A, B为切点,BAC =25〔求/ P21.已知x=1是方程x2 -5ax • a2 =0的一个根,求代数式3a2 -15a -7的值.22.一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m .由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,求水面下降的高度.23. 已知关于x 的方程3x2-(a - 3)x - a 二0(a - 0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a的取值范围.24. 在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感•按此比例,如果雕像的高为2m,那么它的下部应设计为多高(.5取2.2 ).(1)函数y =£x —1)(x — 2)的自变量x 的取值范围是表描点画出了函数-2)图象的一部分,请补全函数图象;25. 已知 AB 是O O 直径,AC 、AD 是O O 的弦,AB=2, AC=-、2 , AD=1,求/ CAD 度数.226.抛物线y^x bx c 与直线y 2 =-2x • m 相交于A (-2,n)、B (2,-3)两点. (1) 求这条抛物线的解析式; (2) 若一 4兰X 兰1,则y 2_ y 1的最小值为 _______ .27•如图,AB 为O O 的直径,C 为O O 上一点,CD 丄AB 于点 D. P 为AB 延长线上一点,.PCD =2. BAC . (1) 求证:CP 为O O 的切线; (2) BP=1 , CP f j 5. ①求O O 的半径;②若M 为AC 上一动点,贝y OM + DM 的最小值为 ______________28•探究活动:利用函数y =(x -1)(x -2)的图象(如图1)和性质,探究函数 与性质•下面是小东的探究过程,请补充完整:y = , (x-1)(x-2)的图象图1(2)如图2,他列 7图y (x-1)解决问题:1设方程•(x _1)(x -2) -一x -b =0 的两根为x,、x2,且x, :::x2,方程42 1 —x -3x 2 x b 的两根为x3、x4,且x3:::x4.若1 :::b :::、. 2,则x,、x2、x3、x4的4大小关系为____________________________ (用“ <”连接).29.在平面直角坐标系xOy中,半径为1的O O与x轴负半轴交于点A,点M在O O上,将点M绕点A顺时针旋转60待到点Q.点N为x轴上一动点(N不与A重合),将点M 绕点N顺时针旋转60得到点P. PQ与x轴所夹锐角为:-.1(1)如图1,若点M的横坐标为—,点N与点O重合,则a = ______________ °;2(2)若点M、点Q的位置如图2所示,请在x轴上任取一点N,画出直线PQ,并求的度数;(3)当直线PQ与O O相切时,点M的坐标为____________ .图1 图2 备用图数学试卷参考答案、选择题(本题共 30分,每小题3 分) 题号1 2 3 4 5 6 7 8 9 10 答案D A A A B B C D B C、填空题(本题共 18分,每小题3 分) 题号 111213 14 1516答案X 1 =2, x 2 = -22y = x 2 +1(答案不唯一)<1300.6 120, 150三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8 分)217•解:X -3x 2=0. (X-1)(x-2)=0 -••• x — 1 = 0或 x —2 = 0 ••••捲=1,x 2 = 2.218. 解:•••抛物线 y =x 3x a 与x 轴只有一个交点,9 .•..:: = 0 ,即卩 9 —'4a = 0 . • a =.419. 解:•••点(3, 0)在抛物线 y = -3x 2 (k - 3)x-k 上,• 0 = —3 32 3(k 3) -k . • k =9. ...................... 3 分 •抛物线的解析式为 y = -3x 212x-9 .•••对称轴为 x=2 . (5)分• PA=PB. (1)分• • PAB = • PBA . ........................................................ 2 •/ AC 为O O 的直径,• CA 丄 PA . • PAC =90o . T BAC =25o , •乙PAB =65o . • . P =180 -2 PAB =50o .2221 .解:I x = 1是方程x -5ax a = 0的一个根,• 1 -5a a 2 = 0 . • a 2 - 5a - T . •原式=3(a 2 - 5a) - 7 = T0 .20 .解:T PA,PB 是O O 的切线,分22.解:如图,下降后的水面宽CD为1.2m,连接OA, OC ,过点O作ON丄CD于N,交AB于M . ONC = 90 o•••AB// CD ,••• . OMA 二/ONC =90o.•/ AB =1.6, CD -1.2 ,1 1• AM AB =0.8, CN CD =0.6 .2 2在Rt△ OAM 中,• OA =1 ,•- OM = ,OA2 - AM2 =0.6 .同理可得ON =0.8 . /. MN =ON —OM =0.2.答:水面下降了0.2米.2 223.( 1)证明:厶=(a - 3) -4 3 (-a) =(a 3).• a . 0 , • (a 3)20 . 即,0 .•方程总有两个不相等的实数根. ............................... 分 (2)a(2)解方程,得咅=-1, x2. ••方程有一个根大于2,23• — 2 . • a 6 . ........................................................... 5分3224.解:如图,雕像上部高度AC与下部高度BC应有AC : BC = BC : 2 ,即BC - 2AC .设BC为x m.依题意,得X = 2(2 —■ x) . ............................ 3分解得X1 =-1「5, x2- -1 - 5 (不符合题意,舍去). - V 1.2 .答:雕像的下部应设计为 1.2m . ..................................... 5 分25. 解:如图1,当点D、C在AB的异侧时,连接OD、BC. ................... 1分•/ AB 是O O 的直径,•••乙ACB =90o .在Rt△ ACB 中,•AB =2, AC = .2 ,• BC =、2 .•一BAC = 45o. • OA = OD = AD = 1,•. BAD =60o. .......................... 3分•CAD = BAD BAC =105o. .................................... 4 分当点D、C在AB的同侧时,如图2,同理可得• BAC =45 ,BAD =60 . • CAD "BAD - BAC =15o.•CAD 为15o或105o. ........................ 5分26. 解:(1)T直线y2二-2x m经过点B (2, -3),•一3 - -2 2 m . • m = 1 .图1•••直线 y 2 - _2x - m 经过点 A (-2, n ),2••• n =5 . T 抛物线y 1 -x bx c 过点A 和点B ,‘5 = 4-2b+c, • 'b = -2,-3=4 + 2b+c. c = —3.!U (2) -12.27. (1)证明:连接 OC. •••/ PCD=2/ BAC , / POC=2/ BAC ,•••/ POC=Z PCD. •/ CD 丄 AB 于点 D,•••/ ODC=90 . POC+Z OCD =90o .•••/ PCD+Z OCD =90o . OCF=90o .•半径OC 丄CP. • CP 为O O 的切线.(2)解:①设O O 的半径为r.在 Rt A OCP 中,OC 2 CP 2 =OP 2 .••• BP =1,CP =』5,• r 2 (、5)2 =(r 1)2 . 28.解:(1) x 二1 或 x 亠 2 ;捲:x 3 : x 4 : x 2.29•解:(1) 60. (2) 解得r = 2 . /.O O 的半径为(2)如图所示: /接MQ, MP .记MQ, PQ 分别交x 轴于巳F .• QFE "AMQ =60 .•••将点M 绕点A 顺时针旋转60得到点Q ,将点 • △ MAQ 和厶MNP 均为等边三角形. ..... • MA =MQ , MN =MP , . AMQ "NMP • AMN —QMP . • △ MAN ◎△ MQP . • MAN 二 MQP .••• • AEM 二■ QEF , M 绕点 -60 . N 顺时针旋转60得到点P, , -/P 二 yr = x 2 _2x _ 3 .2 14初中数学(九下)个性化辅导第13页共8页。
苏州市市区2016届中考数学一模试卷含答案解析

2016年江苏省苏州市市区中考数学一模试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.)1.的倒数是()A.﹣3 B. C.3 D.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.2a﹣a=2 D.(ab)2=a2b23.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 4 5人数 2 5 8 9 6则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,44.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.35.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()A.30°B.40°C.50°D.60°6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=7.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.48.对于正数x,规定f(x)=,例如f(3)=,计算…f(998)+f (999)+f(1000)的结果是()9.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm210.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k的值是()A. B. C. D.﹣2二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上.11.分解因式:a2﹣a=.12.函数y=中,自变量x的取值范围是.13.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为.14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是.15.圆锥底面圆的半径为3cm,其侧面展开图的圆心角是120°,则圆锥母线长为.16.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.17.如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.18.如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①0<t≤5时,y=;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=;④当t=秒时,△ABE∽△QBP;⑤线段NF所在直线的函数关系式为:y=﹣4x+96.其中正确的是.(填序号)三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:﹣1+(﹣2)3+|﹣3|﹣20.解不等式组:.21.先化简,再求值:(+)÷,其中a=+1.22.解分式方程:﹣.23.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.24.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB 间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).26.如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.27.如图,己知MN是⊙O的直径,P为⊙O上一点,NP平分∠MNQ,且NQ⊥PQ.(1)求证:直线PQ是⊙O的切线;(2)若⊙O的半径R=2,NP=2,求NQ的长.28.如图,二次函数y=ax2+x+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,己知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若点D是抛物线在第一象限的部分上的一动点,当四边形OCDB的面积最大时,求点D的坐标;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以B,C,E,F为顶点的四边形是平行四边形时,写出满足条件的所有点E的坐标.29.如图①,四边形ABCD中,AD∥BC,DC⊥BC,AD=6cm,DC=8cm,BC=12cm.动点M在CB 上运动,从C点出发到B点,速度每秒2cm;动点N在BA上运动,从B点出发到A点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长.(2)当t为何值时,MN∥CD?(3)设三角形DMN的面积为S,求S与t之间的函数关系式.(4)如图②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由.2016年江苏省苏州市市区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.)1.的倒数是()A.﹣3 B. C.3 D.【考点】倒数.【分析】根据乘积是1的两数互为倒数,即可得出答案.【解答】解:根据题意得:﹣×(﹣3)=1,可得﹣的倒数为﹣3.故选A.【点评】本题考查了倒数的性质:乘积是1的两数互为倒数,可得出答案,属于基础题.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.2a﹣a=2 D.(ab)2=a2b2【考点】幂的乘方与积的乘方;合并同类项.【分析】结合选项分别进行幂的乘方和积的乘方、合并同类项等运算,然后选择正确选项.【解答】解:A、a2+a2=2a2,原式错误,故本选项错误;B、(a2)3=a6,原式错误,故本选项错误;C、2a﹣a=a,原式错误,故本选项错误;D、(ab)2=a2b2,原式正确,故本选项正确.故选D.【点评】本题考查了幂的乘方和积的乘方、合并同类项等知识,掌握运算法则是解答本题的关键.3.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 4 5人数 2 5 8 9 6则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,4【考点】众数;中位数.【分析】利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.【解答】解:∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.3【考点】分式的化简求值.【分析】先根据x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选A.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.5.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【分析】连接OA,根据圆的半径相等证明∠OAB=∠B和∠OAD=∠D,得到答案.【解答】解:连接OA,∵OA=OB,∴∠OAB=∠B=30°,∵OA=OD,∴∠OAD=∠D=20°,∴∠BAD=∠OAB+∠OAD=50°,故选:C.【点评】本题考查的是圆的性质和等腰三角形的性质,掌握圆的半径相等和等边对等角是解题的关键.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.7.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4a(c+2)=0,b2﹣4ac=8a >0,据此解答即可.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=8a,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=8a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:③④.故选:B.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).8.对于正数x,规定f(x)=,例如f(3)=,计算…f(998)+f (999)+f(1000)的结果是()【考点】分式的加减法.【专题】新定义.【分析】通过计算f(2)+f()=1,f(3)+f()=1,找出规律即可得出结论.【解答】解:∵f(1)==,f(2)+f()=1,f(3)+f()=1,∴原式=[f()+f(1000)]+[f()+f(999)]+…+[f()+f(2)]+f(1)=999+=999.5.故选B.【点评】本题考查的是分式的加减,根据题意找出规律是解答此题的关键.9.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm2【考点】二次函数的应用;展开图折叠成几何体;等边三角形的性质.【分析】如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.【点评】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.10.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k的值是()A. B. C. D.﹣2【考点】切线的性质;反比例函数图象上点的坐标特征.【专题】计算题.【分析】作PM⊥AB于M,PN⊥x轴于N,如图,设⊙P的半径为r,根据切线的性质得PM=PN=r,再利用面积法求出r=,接着证明△OBC为等腰直角三角形得到NC=NB=,于是得到P点坐标为(,﹣),然后把P(,﹣)代入y=可求出k的值.【解答】解:作PM⊥AB于M,PN⊥x轴于N,如图,设⊙P的半径为r,∵⊙P与边AB,AO都相切,∴PM=PN=r,∵OA=4,OB=3,AC=1,∴AB==5,∵S△PAB+S△PAC=S△ABC,∴•5r+•r•1=•3•1,解得r=,∴BN=,∵OB=OC,∴△OBC为等腰直角三角形,∴∠OCB=45°,∴NC=NB=,∴ON=3﹣=,∴P点坐标为(,﹣),把P(,﹣)代入y=得k=×(﹣)=﹣.故选A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了反比例函数图象上点的坐标特征.二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上.11.分解因式:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这个多项式含有公因式a,分解因式时应先提取公因式.【解答】解:a2﹣a=a(a﹣1).【点评】本题考查了提公因式法分解因式,比较简单,注意不要漏项.12.函数y=中,自变量x的取值范围是x≥﹣1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为 6.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是.【考点】概率公式.【分析】让1到10中大于的数的个数除以数的总个数即为所求的概率.【解答】解:1,2,3,4,5,6,7,8,9,10种,大于的数为:6,7,8,9,10;大于的概率是=.【点评】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.关键是得到1到10中大于的数的个数.15.圆锥底面圆的半径为3cm,其侧面展开图的圆心角是120°,则圆锥母线长为9.【考点】圆锥的计算.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l,则=2π×3解得:l=9.故答案为:9.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为6.【考点】旋转的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.17.如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.【考点】直线与圆的位置关系.【分析】首先判断当AB与⊙O相切时,PB的值最大,设AB与⊙O相切于E,连接OE,则OE⊥AB,过点C作CF⊥PB于F,由CA⊥AB,DB⊥AB,得到AC∥OE∥PB,四边形ABPC是矩形,证得CF=AB=6,在直角三角形PCF中,由勾股定理列方程求解.【解答】解:当AB与⊙O相切时,PB的值最大,如图,设AB与⊙O相切于E,连接OE,则OE⊥AB,过点C作CF⊥PB于F,∵CA⊥AB,DB⊥AB,∴AC∥OE∥PB,四边形ABPC是矩形,∴CF=AB=6,∵CO=OP,∴AE=BE,设PB=x,则PC=2OE=2+x,PF=x﹣2,∴(x+2)2=(x﹣2)2+62,解得;x=,∴BP最大值为:,故答案为:.【点评】本题考查了直线与圆的位置关系,梯形的中位线,勾股定理矩形的判定和性质,解题的关键是知道当PB取最大值时,AB与圆相切.18.如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①0<t≤5时,y=;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=;④当t=秒时,△ABE∽△QBP;⑤线段NF所在直线的函数关系式为:y=﹣4x+96.其中正确的是①②④.(填序号)【考点】二次函数综合题.【分析】根据图(2)可以判断三角形的面积变化分为四段,①当点P在BE上运动,点Q到达点C时;②当点P到达点E时,点Q静止于点C,从而得到BC、BE的长度;③点P到达点D时,点Q静止于点C;④当点P在线段CD上,点Q仍然静止于点C时.【解答】解:当0<t≤5时,点P在线段BE上运动.如图(1)所示:过点P作PF⊥BQ,垂足为F.S△BPQ=PF•BQ=BP•sin∠CBE•BQ=t•sin∠CBE•2t=sin∠CBEt2.将(5,20)代入得25sin∠CBE=20,解得:sin∠CBE=,0<t≤5时,y=,故①正确.∵sin∠CBE=,∴COS∠CBE=,故③错误.由图(2)可知:当t=5时,点Q与点C重合,当t=10时,点P与点E重合,则BC=10,BE=10.则BC=BE.∵∠AEB=∠CBE,∴AB=BEsin∠AEB=10×=8.在△ABE中,AE==6.当t=6时,如图2所示:在△ABE与△PQB中,,∴△ABE≌△PQB(SAS).故②正确.当t=秒时,如图3所示:∵当t=秒时,PD=﹣14=,∴PQ=8﹣=7.5.∴.又∵,∴.又∵∠BQP=∠A,∴△AEB∽△QBP.故④正确.由DC=8,可知点F(22,0)设NF的解析式为y=kx+b.将N、F的坐标代入得:,解得:k=﹣5,b=110.∴NF所在直线解析式为y=﹣5x+110.故⑤错误.故答案为:①②④.【点评】本题考查了动点问题的函数图象,根据图(2)判断出点P到达点E用了10s,点Q到达点C用了5s是解题的关键,也是本题的突破口三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:﹣1+(﹣2)3+|﹣3|﹣【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【专题】计算题.【分析】按照实数的运算法则依次计算,注意:﹣1=9,()0=1.【解答】解:原式=9﹣8+3﹣1=3.【点评】本题需注意的知识点是:a﹣p=,任何不等于0的数的0次幂是1.20.解不等式组:.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≤2,解不等式②得:x>1.5,∴不等式组的解集为1.5<x≤2.【点评】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.先化简,再求值:(+)÷,其中a=+1.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=÷=•=,当a=+1时,原式==1+.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.解分式方程:﹣.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣(x﹣3)2﹣2x(x﹣3)=3x2,整理得:﹣x2+6x﹣9﹣2x2+6x=3x2,即2x2+6x+3=0,解得:x==,经检验x=都为分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【考点】正方形的判定;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AD=BD,又由在△ABC 中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.【点评】此题考查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.24.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由A是36°,A的人数为20人,即可求得这次被调查的学生总人数;(2)由(1),可求得C的人数,即可将条形统计图(2)补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好同时选中甲、乙两位同学的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵A是36°,∴A占36°÷360=10%,∵A的人数为20人,∴这次被调查的学生共有:20÷10%=200(人),故答案为:200;(2)如图,C有:200﹣20﹣80﹣40=60(人),(3)画树状图得:∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB 间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)过点B作BE⊥AD于点E,然后根据AB=40m,∠A=30°,可求得点B到AD的距离;(2)先求出∠EBD的度数,然后求出AD的长度,然后根据∠A=30°即可求出CD的高度.【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.【点评】本题考查了解直角三角形的应用,难度适中,解答本题的关键是根据仰角构造直角三角形并解直角三角形.26.如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得b,进而求得D的坐标,根据D的坐标求得C的坐标,代入反比例函数的解析式即可求得k的值;(2)根据三角形的面积公式求得即可;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,先求得直线BD的解析式,进而求得直线PC的解析式,然后联立方程即可求得P的坐标.【解答】解:(1)∵直线y=2x+b经过点A(﹣1,0),∴0=﹣2+b,解得b=2,∴直线的解析式为y=2x+2,由直线的解析式可知B(0,2),∵OB=OD=2∴D(2,0),把x=2代入y=2x+2得,y=2×2+2=6,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年第一学期初三数学模拟试卷四(范围:苏科版九年级上下两册;分值:130分;时间:120分钟)2016年1月一、选择题(本题共10题,30分)1.下列方程中有实数根的是( )A .x 2+2x+2=0B .x 2﹣2x+3=0C .x 2﹣3x+1=0D .x 2+3x+4=02.若x=3是方程x 2﹣5x+m=0的一个根,则这个方程的另一个根是( )A .﹣2B .2C .﹣5D .53.如图,圆锥的底面半径OB=6cm ,高OC=8cm .则这个圆锥的侧面积是( )A .30cm 2B .30πcm 2C .60πcm 2D .120cm 24.从1、2、3、4中任取两个不同的数,其和大于6的概率是( )A .B .C .D .5.如果把坐标系先向上、再向右各平移2个单位长度,则二次函数y=2x 2的图象在新坐标系下的关系式为( )A .y=2(x ﹣2)2+2B .y=2(x+2)2﹣2C .y=2(x ﹣2)2﹣2D .y=2(x+2)2+26.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩x 与方差S 2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是( )A .甲B .乙C .丙D .丁 7.若关于x 的方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ) A 1k >-B .且0k ≠C .1k <-D .1k <且0k ≠ 8. 二次函数()20y ax bx c a =++≠的大致图象如图所示,下列说法错误的是( )A.函数有最小值;B.对称轴是直线x=21; C.当x<21,y 随x 的增大而减小; D.当 -1 < x < 2时,y>0 9.在平面直角坐标系中,以点(3,-5)为圆心,r 为半径的圆上有且仅有两点到x 轴所在直线的距离等于1,则圆的半径r 的取值范围是( )A .4r > B. 06r << C. 46r ≤< D. 46r << 10.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为( ) A . B . C .3 D .2(第3题)(第8题)(第10题)二、填空题(本题共10题,20分)11. 在Rt △ABC 中,∠C=90°,a=62,c=12,则∠A=_________12. 在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;13. 将抛物线y=x 2+bx+c 向下平移2个单位,再向右平移4个单位得到的抛物线是y=(x-2)2-1,则b+c=_________。
14.抛物线217322y x x =+-与x 轴交点的坐标为 、 . 15.如图,在Rt △ABC 中,∠C=90°,∠A=60°,AB=2cm ,将△ABC 绕点B 旋转至△A 1BC 1的位置,且使A 、B 、C 1三点在同一直线上,则点A 经过的路线的长度是 .(第15题) (第16题) (第17题) 第18题16.若二次函数y=﹣x 2+2x+k 的部分图象如图所示,则关于x 的一元二次方程﹣x 2+2x+k=0的一个解x 1=3,另一个解x 2= .17.如图,⊙O 直径AB 和弦CD 相交于点M ,已知AM=5,BM=1,∠CMB=60°,则CD 的长为 .18.如图,抛物线y=ax 2+bx+c 与x 轴交于点A (﹣1,0),B (5,0),下列判断:①ac <0;②b 2>4ac ;③b+4a >0;④4a ﹣2b+c <0.其中判断一定正确的序号是 .三、解答题(76分) 19.解方程(6分)(1)3x 2﹣2x ﹣1=0; (2)(x+3)2=2(x+3)20.(6分)已知:抛物线y=x 2+(b ﹣1)x+c 经过点P (﹣1,﹣2b )(b 、c 为常量).(1)求b+c 的值;(2)证明:无论b 、c 取何值,抛物线与x 轴都有两个交点.21.(6分)如图,AB 是半圆的直径,C 、D 是半圆上的两点,且∠BAC=20°,=.求四边形ABCD 各内角的度数.22.(8分)某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 ;(2)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.23.(6分)小张准备把一根长为32cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于40cm 2,小张该怎么剪?(2)小李对小张说:“这两个正方形的面积之和不可能等于30cm 2.”他的说法对吗?请说明理由.24.(6分)如图,△ABC 中,∠ACB =90°,4sin 5A =, BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为E .(1)求线段CD 的长;(2)求cos ABE ∠的值.A25.( 7分)如图,⊙O 是△ABC 的外接圆,∠ABC=45°,AD 是⊙O 的切线交BC 的延长线于D ,AB 交OC 于E . (1)求证:AD ∥OC ;(2)若AE=2,CE=2.求⊙O 的半径和线段BE 的长.26.(9分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y 件和销售该品牌玩具获得利润w 元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得10000元销售利润,求该玩具销售单价x 应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?27.( 10分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.28.(12分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图. (1)蜘蛛在顶点A'处①苍蝇在顶点B处时,在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行最近路线A'GC和往墙面BB'C'C爬行最近路线A'HC,通过计算判断哪条路线更近?(2)在图3中,半径为10dm的⊙M与D'C'相切,圆心M到边CC'的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线。
若PQ与⊙M相切,试求PQ的长度的范围.参考答案CBCDB BBDDB 11、450;12、3;13、9;14、(-7,0),(1,0);15.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=2cm,将△ABC绕点B旋转至△A1BC1的位置,且使A、B、C1三点在同一直线上,则点A经过的路线的长度是πcm .5 解:∵∠C=90°,∠A=60°,∴∠ABC=90°﹣60°=30°,∴∠A1BC1=∠ABC=30°,∴∠ABA1=180°﹣30°=150°,而AB=2cm,∴点A经过的路线的长度==π(cm).故答案为πcm.16.,另一个解x2= ﹣1 .解:的对称性,=1,得,x2=﹣1.故答案为-1.17. CD的长为2.分析:连接OD,过点O作OE⊥CD,根据题意先求出OM,再由∠CMB=60°,得∠MOE=30°,再根据勾股定理求得OE,DE,由垂径定理得出CD的长.解答:解:连接OD,过点O作OE⊥CD,∵∠CMB=60°,∴∠MOE=30°,∵AM=5,BM=1,∴OB=3,OE=,∴DE=,∴CD=2,故答案为2.18.其中判断一定正确的序号是①②.解答:解:①正确,由函数图象开口向上可知,a>0,由图象与y轴的交点在y轴的负半轴可知,c<0,故ac<0;②正确,因为函数图象与x轴有两个交点,所以△=b2﹣4ac>0,即b2>4ac;③错,因为抛物线与x轴交于点A(﹣1,0),B(5,0),所以x1+x2=﹣=4,b=﹣4a,故b+4a=0;④错误,由于抛物线与x轴交于点A(﹣1,0),B(5,0),所以x=﹣2在点A的左边,把x=﹣2代入解析式得4a﹣2b+c>0.所以一定正确的序号是①②.故答案为:①②.三、解答题19.解方程:(1)3x2﹣2x﹣1=0;(2)(x+3)2=2(x+3)(2)方程移项后,利用因式分解法求出解即可.解答:解:(1)3x2﹣2x﹣1=0,分解因式得:(3x+1)(x﹣1)=0,解得:x1=1,x2=﹣;(2)移项得:(x+3)2﹣2(x+3)=0,分解因式得:(x+3)[(x+3)﹣2]=0,可得x+3=0或x+3﹣2=0,解得:x1=﹣3,x2=﹣1.20.解答:(1)解:把P(﹣1,﹣2b)代入y=x2+(b﹣1)x+c,得:b+c=﹣2;(2)证明:b2﹣4ac=(b﹣1)2﹣4c=b2﹣2b+1﹣4(﹣2﹣b)=b2﹣2b+1+8+4b=b2+2b+1+8=(b+1)2+8>0。
所以抛物线与x轴都有两个交点.21.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,∵∠BAC=20°,∴∠B=70 ∵四边形ABCD是圆O的内接四边形,∴∠D=180°﹣∠B=110°,∵弧AD=弧CD,∴∠DAC=∠DCA=(180°﹣110°)=35°,∴∠DAB=∠DAC+∠BAC=55°,∠DCB=∠DCA+∠ACB=125°,即四边形ABCD各内角的度数发你为55°,70°,125°,110°.22.(1);(2)是10% ,该班共有同学40 人;(3)解:(1)===5;(2)1﹣60%﹣10%﹣20%=10%,(2+1+4+7+8+2)÷60%=24÷60%=40人;(3)设参加训练前的人均进球数为x个,则x(1+25%)=5,解得x=4,即参加训练之前的人均进球数是4个.23.解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(8﹣x)cm.∴x2+(8﹣x)2=40,即x2﹣8x+12=0.∴x1=2,x2=6.∴小张应将40cx的铁丝剪成8cm和24cm两段,并将每一段围成一个正方形.2)他的说法对.假定两个正方形的面积之和能等于30cm2.根据(1)中的方法,可得x2+(8﹣x)2=30.即x2﹣8x+17=0,△=82﹣4×17<0,方程无解.所以两个正方形的面积之和不可能等于30cm2.24.(1)5,(2)24 25;25.解答:(1)证明:连结OA,如图,∵AD是⊙O的切线,∴OA⊥AD,∵∠AOC=2∠ABC=2×45°=90°,∴OA⊥OC,∴AD∥OC;(2)解:设⊙O的半径为R,则OA=R,OE=R﹣2,AE=2,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2)2,解得R=4,作OH⊥AB于H,如图,OE=OC﹣CE=4﹣2=2,则AH=BH,∵OH•AE=•OE•OA,∴OH===,在Rt△AOH中,AH==,∴HE=AE﹣AH=2﹣=∴BH=,∴BE=BH﹣HE=﹣=.26分析:(1)由销售单价每涨1元,就会少售出10件玩具得y=600﹣(x﹣40)×10=1000﹣10x,利润=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000;(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣30000转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.解答:解:(1)销售单价(元) x销售量y(件) 1000﹣10x销售玩具获得利润w(元)﹣10x2+1300x﹣30000(2)﹣10x2+1300x﹣30000=10000解之得:x1=50,x2=80 答:玩具销售单价为50元或80元时,可获得10000元销售利润,(3)根据题意得解之得:44≤x≤46,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,对称轴是直线x=65,∴当44≤x≤46时,w随x增大而增大.∴当x=46时,W最大值=8640(元).27..解答:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,)代入y=ax2得:a=,∴二次函数的解析式为y=x2;(2)证明:∵点P在抛物线y=x2上,∴可设点P的坐标为(x,x2),过点P 作PB ⊥y 轴于点B ,则BF=|x 2﹣1|,PB=|x|,∴Rt △BPF 中, PF==x 2+1,∵PM ⊥直线y=﹣1,∴PM=x 2+1,∴PF=PM , ∴∠PFM=∠PMF ,又∵PM ∥y 轴,∴∠MFH=∠PMF ,∴∠PFM=∠MFH ,∴FM 平分∠OFP ;(3)解:当△FPM 是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt △MFH 中,MF=2FH=2×2=4,∵PF=PM=FM ,∴x 2+1=4,解得:x=±2,∴x 2=×12=3,∴满足条件的点P 的坐标为(2,3)或(﹣2,3).28.解:(1)①如答图1,连结A'B ,线段A'B 就是所求作的最近路线.②两种爬行路线如答图2所示,由题意可得:在Rt △A 'C 'C 2中, A 'HC 2=(dm );在Rt △A 'B 'C 1中, A 'GC 1=dm )A 'GC 1更近.(2)如答图,连接MQ ,∵PQ 为⊙M 的切线,点Q 为切点,∴MQ ⊥PQ .∴在Rt △PQM 中,有PQ 2=PM 2-QM 2= PM 2-100,当MP ⊥AB 时,MP 最短,PQ 取得最小值,如答图3,此时MP =30+20=50,∴PQ == (dm ).当点P 与点A 重合时, MP 最长,PQ 取得最大值,如答图4,过点M 作MN ⊥AB ,垂足为N ,∵由题意可得 PN =25,MN =50,∴在Rt △PMN 中,22222PM AN MN 2550=+=+.∴在Rt △PQM 中,PQ 55= (dm ).综上所述, PQ 长度的取值范围是PQ 55dm ≤≤.。