专题七——圆锥曲线
高中数学新课标人教A版高中数学知识点总结专题7解析几何之圆锥曲线

高中数学新课标人教A版高中数学知识点总结专题7解析几何之圆锥曲线本文介绍了圆锥曲线的概念、标准方程和几何性质。
圆锥曲线包括椭圆、双曲线和抛物线。
椭圆是指到两个定点F1、F2的距离之和等于常数2a的点的轨迹,其中2a>2c;双曲线是指到两个定点F1、F2的距离之差的绝对值等于常数2a的点的轨迹,其中2a<2c;抛物线是指到一个定点F和一条定直线l的距离相等(F不在l上)的点的轨迹。
椭圆和双曲线的标准方程分别为:①焦点在x轴上,开口向右:y^2=2px;②焦点在x轴上,开口向左:y^2=-2px;③焦点在y轴上,开口向上:x^2=2py;④焦点在y轴上,开口向下:x^2=-2py。
抛物线的标准方程有两种:①焦点在x轴上:y^2=2px;②焦点在y轴上:x^2=2py。
椭圆的焦点在x轴上时,准线为x=±a;焦点在y轴上时,准线为y=±b。
双曲线的焦点在x轴上时,准线为y=±a;焦点在y轴上时,准线为x=±b。
抛物线的焦点在x轴上时,准线为y=0;焦点在y轴上时,准线为x=0.椭圆和双曲线都有两条渐近线,分别为y=±(c/a)x和y=±(a/c)x。
抛物线有一条对称轴,与x轴平行或与y轴平行,且过焦点和顶点。
椭圆和双曲线的离心率分别为e=c/a和e=c/a,其中c为焦点到准线的距离。
抛物线的离心率为e=1.是其两个焦点,且x2y2XXX1PF2则 F1PF2的面积S bXXXθ21.椭圆和双曲线是二次曲线的两种基本类型,它们的图形特点可以通过其标准方程进行描述。
对于椭圆,当焦点与准线配对使用时,其标准方程为x/a)² + (y/b)² = 1,其中a和b分别为椭圆的长半轴和短半轴。
当离心率e满足0.1时,轨迹变为双曲线。
对于双曲线,其标准方程为x/a)² - (y/b)² = 1,当离心率e满足e。
【精品】高中数学——圆锥曲线

数学定义几何学基本概念:从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点.常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平面上的位置,由它的斜率和一个截距完全确定.在空间,两个平面相交时,交线为一条直线.因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
空间直线的方向空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。
直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。
在欧几里得几何学中,直线只是一个直观的几何对象.在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。
关系式◆直线的斜率:k=(y2-y1)/(x2—x1)(x1≠x2)(1)一般式:适用于所有直线Ax+By+C=0(其中A、B不同时为0)两直线平行时:A1/A2=B1/B2≠C1/C2两直线垂直时:A1A2+B1B2=0两直线重合时:A1/A2=B1/B2=C1/C2两直线相交时:A1/A2≠B1/B2(2)点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为y-y0=k(x-x0)当k不存在时,直线可表示为x=x0(3)截距式:不适用于和任意坐标轴垂直的直线和过原点的直线知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为x/a+y/b=1(4)斜截式:Y=KX+B(K≠0)当k>0时,y随x的增大而增大;当k〈0时,y随x的增大而减小.两直线平行时K1=K2两直线垂直时K1XK2=-1(5)两点式x1不等于x2y1不等于y2(y-y1)/(y2-y1)=(x—x1)/(x2—x1)(6)法线式x·cosα+ysinα-p=0(7)点到直线方程注意:各种不同形式的直线方程的局限性:①点斜式和斜截式都不能表示斜率不存在的直线;②两点式不能表示与坐标轴平行的直线;③截距式不能表示与坐标轴平行或过原点的直线;④直线方程的一般式中系数A、B不能同时为零.(8)两平行直线间的距离IC1-C2I/根号下A的平方加上B的平方椭圆椭圆作图范例椭圆是平面上到两定点的距离之和为常值的点之轨迹,也可定义为到定点距离与到定直线间距离之比为常值的点之轨迹。
圆锥曲线知识点

圆锥曲线知识点圆锥曲线是数学中一类重要的曲线,它们是平面上所有与两个固定点(焦点)距离之和为常数的点的集合。
这些曲线包括椭圆、抛物线和双曲线。
以下是圆锥曲线的知识点总结:1. 椭圆:椭圆是平面上所有与两个焦点距离之和等于常数的点的集合。
这个常数大于两个焦点之间的距离。
椭圆的标准方程可以表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,\( a \) 是椭圆的半长轴,\( b \) 是椭圆的半短轴。
2. 抛物线:抛物线是平面上所有与一个焦点和一个定点(顶点)距离相等的点的集合。
抛物线的标准方程可以表示为:\[ y^2 = 4ax \]或者\[ x^2 = 4ay \]其中,\( a \) 是抛物线的参数,表示顶点到焦点的距离。
3. 双曲线:双曲线是平面上所有与两个焦点距离之差的绝对值等于常数的点的集合。
这个常数小于两个焦点之间的距离。
双曲线的标准方程可以表示为:\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]或者\[ \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \]其中,\( a \) 是双曲线的实半轴,\( b \) 是双曲线的虚半轴。
4. 圆锥曲线的性质:- 椭圆具有两个焦点,所有点到两个焦点的距离之和是常数。
- 抛物线具有一个焦点和一个顶点,所有点到焦点的距离等于到顶点的距离。
- 双曲线具有两个焦点,所有点到两个焦点的距离之差的绝对值是常数。
- 圆锥曲线的焦点可以通过方程的参数确定。
5. 圆锥曲线的应用:- 椭圆在天文学中描述行星的轨道。
- 抛物线在光学中描述光线通过抛物面反射后的路径。
- 双曲线在工程学中用于设计某些类型的天线。
6. 圆锥曲线的参数化:- 椭圆的参数方程可以表示为:\[ x = a \cos(t) \]\[ y = b \sin(t) \]- 抛物线的参数方程可以表示为:\[ x = at^2 \]\[ y = 2at \]- 双曲线的参数方程可以表示为:\[ x = a \sec(t) \]\[ y = b \tan(t) \]7. 圆锥曲线的几何特征:- 椭圆的长轴和短轴是对称的,且椭圆是封闭的。
高中数学素材:圆锥曲线知识点与公式

第1节 椭圆【知识梳理】1.椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(12122PF PF a F F +=>),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 若1212PF PF F F +=,则动点P 的轨迹为线段12F F ;若1212PF PF F F +<,则动点P 的轨迹无图形.2.椭圆的标准方程与几何性质 3.椭圆的通径以及有关最值过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a .①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点. ②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c −.[使用点到点的距离公式证明] 4.点与椭圆的位置关系对于椭圆22221(0)x y a b a b+=>>,点00()P x y ,在椭圆内部,等价于2200221x y a b +<,点00()P x y ,在椭圆外部,等价于2200221x y a b+>.5.椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)1(0)F c −,,2(0F证明:设12,PF m PF n ==()()()()()()122222221222cos 2121cos 1sin 32F PF m n a b c m n mn mn S mn θθθ+==+−−= + = ,: 1222222sin cossin 22tan 1cos 22cos 2F PF S b b b θθθθθθ⇒=⋅=⋅=+ .6.椭圆的切线(1)椭圆22221(0)x y a b a b +=>>上一点00()P x y ,处的切线方程是00221x x y y a b+=; (2)过椭圆22221(0)x y a b a b +=>>外一点00()P x y ,,所引两条切线的切点弦方程是00221x x y ya b+=; (3)椭圆 22221(0)x y a b a b+=>>与直线0Ax By C ++= 相切的条件是22222A a B b c +=.第二讲 双曲线【知识梳理】1.双曲线定义在平面内,到两个定点1F 、2F 的距离之差的绝对值等于常数2a (a 大于0且122a F F <)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲1(0)F c −,,2(0)F c ,1(0)F c −,,F 2|2(F c c a b ==+12||2(F F c c =={y y a y a 或≤−≥轴和原点对称2.双曲线的通径过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为22ba .3.点与双曲线的位置关系对于双曲线22221(0)x y a b a b −=>>,点00()P x y ,在双曲线内部,等价于2200221x y a b−>.点00()P x y ,在双曲线外部,等价于2200221x y a b −<结合线性规划的知识点来分析.4.双曲线常考性质性质一 双曲线的焦点到两条渐近线的距离为常数b ;顶点到两条渐近线的距离为常数ab c; [使用点到直线的距离公式即可证明]性质二 双曲线上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数222a b c;证明 设11()P x y ,是双曲线22221(0)x y a b a b−=>>上任意一点,该双曲线的两条渐近线方程分别是0ay bx −=和0ay bx +=,点11()P x y ,和222a b c =. 5. 双曲线焦点三角形面积为2tan 2b θ(可以这样理解,顶点越高,张角越小,分母越小,面积越大)6. 双曲线的切线点00()M x y ,在双曲线22221x y a b−=(00)a b ,>>上,过点M 作双曲线的切线方程为00221x x y y a b−=.若点00()M x y ,在双曲线22221x y a b −=(00)a b ,>>外,则点M 对应切点弦方程为00221x x y ya b −=第3节 抛物线【知识梳理】1.抛物线定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 22(0)y px p =>22(0)y px p =−>22(0)x py p =>22(0)x py p =−>0),0y ≥,x R ∈0y ≤,x R ∈ 所以p 的值永远大于0.另外,焦半径使用定义即可证明.3.抛物线的通径过焦点且垂直于抛物线对称轴的弦叫做抛物线的通径.对于抛物线22(0)y px p =>,由()2pA p ,,()2p B p −,,可得||2AB p =,故抛物线的通径长为2p .4.弦的中点坐标与弦所在直线的斜率的关系:0p y k =证明(点差法):设11()A x y ,,22()B x y ,为抛物线22(0)y px p =>上两点,则2112y px =,2222y px =作差得21211202y y p px x y y y −==−+,其中00()M x y ,是AB 中点.或者说,若设AB 的斜率为k ,则AB 中点纵坐标0py k=.[焦点在y 轴上的抛物线,同理]111||[||||][||||]||222MN AC BD AF BF AB =+=+=,90ANB ∠=°,故以AB 为直径的圆与准线l 相切.设E 是AF 的中点,则E 的坐标为11222p x y +(,),则点E 到y 轴的距离为12221AF p x d =+= 故以AF 为直径的圆与y 轴相切,同理以BF 为直径的圆与y 轴相切.(2)在ACN △与AFN △中,||||||||AN AN AC AF ==,;在Rt ABN △中,NAM ANM ∠=∠90CAN ANM ACN AFN AFN ACN FN AB ∠=∠∠=∠=°⊥,△≌△,因为2()D p y F −=,,1()C p y F −=,,所以212+=0DF CF p y y =,所以FC FD ⊥.(3)设直线AB 的方程为2p x ty =+与抛物线22y px =联立得:22()2py p ty =+,即2220y pty p −−=,故212y y p =−,2221212224y y p x x p p ==. (4)11211122OA y y p k y x y p===,2222212122222OD y y py py pk p p p y y y ==−=−==−,则A 、O 、C 三点共线,同理B 、O 、C 三点共线.上述证明方式并非唯一,多种方法均可证明,不再赘述.6.抛物线的切线问题点00()M x y ,在抛物线22y px =(0)p >上,过点M 作抛物线的切线方程为00()y yp x x =+.点00()M x y ,在抛物线22y px =(0)p >外,过点M 对应切点弦方程为00()y yp x x =+. 点00()M x y ,在抛物线22x py =(0)p >内,过点M 作抛物线的弦AB ,分别过A B 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线00()x xp y y =+.第4节 焦长与焦半径体系【知识梳理—椭圆篇】1.焦半径公式设椭圆22221(00)x y a b a b +=>>,的右焦点为2(0)F c ,,11()A x y ,是椭圆上任意一点,则21212222121222221221212121222)1(2)(a cx x ac c b cx x a b a ax b c cx x y c x AF +−=++−−=−++−=+−=11cax a ex a=−=−.其中e 为椭圆的离心率,焦半径公式也可由第二定义快速得到2211()a AF e x a ex c=−=−,同理可以推出其他焦半径公式.焦点在y 轴上的椭圆和双曲线的时候,同理也可推出焦半径公式.总结:在椭圆和双曲线中,11()A x y ,到焦点的距离为1AF a ex =±(焦点在x 轴上) 1AF a ey =±(焦点在y 轴上)[长短记忆法:画图看长短来判断谁加谁减.] [口诀记忆法: 左加右减,上加下减,长正短负]焦半径范围:根据公式21AF a ex =−里面坐标x 1的范围,可得2AF 的范围为2a c AF a c −≤≤+. 2.焦点弦长公式椭圆焦点弦长公式.在椭圆22221(0)x y a b a b+=>>中,结合椭圆的焦点弦公式,过右焦点F的弦长为221212 ||()()2()a aMN e x e x a e x x c c =−+−=−+.3.椭圆焦长以及焦比问题焦长公式:A 是椭圆22221(0)x y a b a b+=>>上一点,1F 、2F 是左、右焦点,12AF F ∠为α,AB过1F ,c 是椭圆半焦距,则:(1)21||cos b AF a c α=−;(2)21||cos b BF a c α=+;(3)2222222222||cos sin ab ab AB a c b c αα==−+.图1-1-1证明 (1)如图1-1-1所示,12||||2AF AF a +=;12||||2BF BF a +=,故22||||||4AB AF BF a ++=; (2)设1||AF m =,1||BF n =,2||2AF a m =-,2||2BF a n =-,由余弦定理得 222(2)(2)2(2)cos m c a m m c α+--=⋅;整理得21||cos b AF a c α=-① 同理:222(2)(2)2(2)cos(180)n c a n n c α︒+--=⋅-;整理得21||cos b BF a c α=+②①+②得,则过焦点的弦长:2222222222||cos sin ab ab AB m n a c b c αα=+==-+③焦比定理 过椭圆22221x y a b +=的左焦点1F 的弦21||cos b AF a c α=−,21||cos b BF a c α=+,令11||||AF F B λ=,即221cos cos cos 1b b e ac a c λλαααλ-=⇒=-++④,代入焦长公式①可得21(1)||2b AF aλ+=⑤.推论 根据公式1cos 1e λαλ-=+,利用tan k α=把角度替换掉可以得到e =注意:1.整个焦长体系只需要记住上面~①⑤的公式,其他要熟悉推导,涉及到的面积问题记住是焦长当底即可;当直线过右焦点,或者上焦点、下焦点时,要熟悉此时的公式会如何变化,详见后面记忆方法处.2.学习焦长焦比体系要非常熟悉推导过程[定义+余弦定理+abc 的平方关系],在处理解答题的时候,若用本模块公式到必须给出必要证明.3.公式1cos 1e λαλ-=+和21(1)||2b AF a λ+=这两个公式属于结论公式,一般用上能很快解题,所以在解小题的时候要优先考虑这两个公式.和角度相关优先想第一个,只和长度相关优先想第二个.4.焦长公式利用极坐标或第二定义都能更快证明,这个问题大家可以自己去掌握,解答题中的证明建议以余弦定理的方式为主;其他证法本文不在阐述,读者可以自己去掌握.[长短记忆法: 画图,看长短来记忆.当焦点在x 轴上的时候,焦长为2cos b a c α±,其中α为焦长所在直线的倾斜角或者其补角,为方便判断,一般选用锐角记为α.例如上图,如果记12AF F ∠为α,那么根据草图1||AF 为长边,则分母小即可得到21||cos b AF a c α=-,不管交于左右都是如此,交于y 轴的话需要把cos α换成sin α.焦比公式,如果1cos 1e λαλ-=+,λ为两个焦长之比,可以选=λ长短也可以=λ短长,但是公式里面要正负对齐,如果α选的是锐角,那么左侧是正的,右侧也要为正的,此时=λ长短;反之α选钝角,右侧=λ短长最后一个公式一样的,2(1)2b a λ+,代入的=λ长短算出来的就是长边,如果代入的=λ短长,算出来就是短边]1.双曲线焦长以及焦比问题周长问题:双曲线22221x y a b-=(00)a b ,>>,的两个焦点为1F 、2F ,弦AB 过左焦点1F (A 、B 都在左支上),||AB l =,则2ABF △的周长为42a l +(如图)图1-2-1 图1-2-2 图1-2-3 设A 是双曲线22221x y a b-=(00)a b ,>>上一点,设12AF F ∠为α,直线AB 过点1F .(1)直线和渐近线平行时,此时1cos e α=. (2)当AB 交双曲线于一支时,则21cos b AF a c α=+;21cos b BF a c α=−.2222222222||cos sin ab ab AB a c b c αα==−+,22222||cos ab AB a c α=-,2221cos 01cos a c e αα->⇒<< 令11||||BF F A λ=,即221cos cos cos 1b b e a c a c λλαααλ-=⇒=-++,代入弦长公式可得21(1)||2b AF aλ+=. 当AB 交双曲线于两支时,21cos b AF a c α=+;21cos b BF a c α=−;22222||cos ab AB c a α=-,2221cos 0cos a c e αα-<⇒>(图1-2-3),令11||||BF F A λ=,221cos (1)cos cos 1b b e c a a c λλαλααλ+=⇒=>-+-,代入弦长公式可得21(1)||2b BF aλ-=.=λ长(其中)短 [总结:焦点在x 轴上的时候,直线和双曲线交于单支的时候,公式形式和椭圆完全一样; 直线和双曲线交于双支的时候,公式形式有所变化,具体参考上面书写] 因为双曲线的部分考题会涉及渐近线,不过焦点的时候要注意,注意鉴别.1.||||1cos 1cos p pAF BF αα==−+;. 2.1222||sin p AB x x p α=++=. 3.22sin AOBp S △α=. 4.设||||AF BF λ=,则11cos ;||12AF p λλαλ−+==+. 5.设AB 交准线于点P ,则||cos ||AF PA α=;||cos ||BF PB α=. 证明1.||||||||||||cos 1cos AC AF p AF p FD AC AF θθ= ⇒===−−,同理||1cos pBF α=+. 2.22||||||1cos 1cos sin p p pAB AF BF ααα=+=+=-+. 3.设O 到AB 的距离为d ,则 sin 2pd α=,故22112||sin 22sin 22sin AOB p p p S AB d ααα===△. 4.||1cos 1cos ||1cos 1AF BF αλλλααλ+−=⇒=⇒=−+,1||1cos 2p AF p λα+==−. 5.||2A p AF x =+,||2B p BF x =+,||cos ||AF PA α=,||cos ||BF PB α=. 关于抛物线22x py =的焦长公式及定理(A 为直线与抛物线右交点,B 为左交点,90 α<为AB 倾斜角)1.||1sin p AF α=−;||1sin pBF α=+.2.1222||cos pAB y y p α=++=. 3.22cos AOBp S α=△.4.设||||AF BF λ=,则1sin 1λαλ−=+;1||2AF p λ+=.5.设AB 交准线于点P ,||||sin ;sin ||||AF BF PA PB αα==. [总结:抛物线焦点在x 轴的时候的,焦长为1cos p α±,1cos 1λαλ−=+,焦长为12p λ+,记忆方法参考椭圆模块;当焦点在y 轴上的时候cos 换成sin]。
(完整版)圆锥曲线专题

圆锥曲线的综合问题直线和圆锥曲线问题解法的一般规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”.【一】.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点. (2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.1.设直线l 的方程为Ax +By +C =0,圆锥曲线方程f (x ,y )=0. 由Ax+0(,)0{By c f x y +==,消元。
如消去y 后得ax 2+bx +c =0. ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行或重合. ②若a ≠0,设Δ=b 2-4ac .a .Δ > 0时,直线和圆锥曲线相交于不同两点;b .Δ = 0时,直线和圆锥曲线相切于一点;c .Δ < 0时,直线和圆锥曲线没有公共点.2.“点差法”的常见题型求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ>0是否成立.3.直线与圆锥曲线相交时的弦长问题(1)斜率为kP 2(x 2,y 2),则所得弦长|P 1P 2| |P 1P 2|(2)当斜率k (利用轴上两点间距离公式).4.圆锥曲线的中点弦问题遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0;在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k=p y 0. 题型一 圆锥曲线中的范围、最值问题【例1】 已知抛物线C :y 2=4x ,过点A (-1,0)的直线交抛物线C 于P 、Q 两点,设AP →=λAQ →.(1)若点P 关于x 轴的对称点为M ,求证:直线MQ 经过抛物线C 的焦点F ;(2)若λ∈⎣⎢⎡⎦⎥⎤13,12,求|PQ |的最大值.[思维启迪](1)可利用向量共线证明直线MQ 过F ;(2)建立|PQ |和λ的关系,然后求最值. 解析:(1)证明 设P (x 1,y 1),Q (x 2,y 2),M (x 1,-y 1). ∵AP →=λAQ →,∴x 1+1=λ(x 2+1),y 1=λy 2,∴y 21=λ2y 22,y 21=4x 1,y 22=4x 2,x 1=λ2x 2,∴λ2x 2+1=λ(x 2+1),λx 2(λ-1)=λ-1,∵λ≠1,∴x 2=1λ,x 1=λ,又F (1,0),∴MF →=(1-x 1,y 1)=(1-λ,λy 2)=λ⎝ ⎛⎭⎪⎫1λ-1,y 2=λFQ →, ∴直线MQ 经过抛物线C 的焦点F . (2)解 由(1)知x 2=1λ,x 1=λ,得x 1x 2=1,y 21·y 22=16x 1x 2=16,∵y 1y 2>0,∴y 1y 2=4,=x 21+x 22+y 21+y 22-2(x 1x 2+y 1y 2)=⎝⎛⎭⎪⎫λ+1λ2+4⎝⎛⎭⎪⎫λ+1λ-12=⎝ ⎛⎭⎪⎫λ+1λ+22-16, λ∈⎣⎢⎡⎦⎥⎤13,12,λ+1λ∈⎣⎢⎡⎦⎥⎤52,103,当λ+1λ=103,即λ=13时,|PQ |2有最大值1129,|PQ |的最大值为473.[探究提高]圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式训练1 (2012·四川)如图,动点M 与两定点 A (-1,0)、B (1,0)构成△MAB ,且直线MA 、MB 的斜率之积为4.设动点M 的轨迹为C .(1)求轨迹C 的方程.(2)设直线y =x +m (m >0)与y 轴相交于点P ,与轨迹C 相交于点Q ,R ,且|PQ |<|PR |.求|PR ||PQ |的取值范围.解 (1)设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在;此时,MA 的斜率为yx +1,MB 的斜率为yx -1.由题意,有y x +1·yx -1=4.化简可得,4x 2-y 2-4=0. 故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1).(2)由⎩⎨⎧y =x +m ,4x 2-y 2-4=0消去y ,可得3x 2-2mx -m 2-4=0.(*)对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0, 而当1或-1为方程(*)的根时,m 的值为-1或1. 结合题设(m >0)可知,m >0且m ≠1. 设Q 、R 的坐标分别为(x Q ,y Q ),(x R ,y R ), 则x Q ,x R 为方程(*)的两根.因为|PQ |<|PR |,所以|x Q |<|x R |,x Q =m -2m 2+33,x R =m +2m 2+33.所以|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q =21+3m 2+121+3m 2-1=1+221+3m 2-1. 此时1+3m2>1,且1+3m 2≠2,所以1<1+221+3m 2-1<3,且1+221+3m2-1≠53, 所以1<|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q <3,且|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q ≠53.综上所述,|PR ||PQ |的取值范围是⎝ ⎛⎭⎪⎫1,53∪⎝ ⎛⎭⎪⎫53,3.题型二 圆锥曲线中的定点、定值问题【例2】 已知椭圆C 经过点A ⎝ ⎛⎭⎪⎫1,32,两个焦点为(-1,0)、(1,0).(1)求椭圆C 的方程;(2)E 、F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.[思维启迪]可设直线AE 的斜率来计算直线EF 的斜率,通过推理计算消参. 解析(1)解 由题意,c =1,可设椭圆方程为x 21+b 2+y 2b 2=1.因为A 在椭圆上,所以11+b 2+94b 2=1,解得b 2=3,b 2=-34(舍去),所以椭圆方程为x 24+y 23=1.(2)证明 设直线AE 的方程为y =k (x -1)+32,代入x 24+y 23=1.得(3+4k 2)x 2+4k (3-2k )x +4⎝ ⎛⎭⎪⎫32-k 2-12=0.设E (x E ,y E ),F (x F ,y F ).因为点A ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以x E =4⎝ ⎛⎭⎪⎫32-k 2-123+4k 2y E =kx E +32-k .又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代替k ,可得x F =4⎝ ⎛⎭⎪⎫32+k 2-123+4k 2,y F =-kx F +32+k ,所以直线EF 的斜率k EF =y F -y E x F -x E =-k x E +x F +2k x F -x E =12, 即直线EF 的斜率为定值,其值为12.[探究提高]求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.变式训练2 椭圆C 的中心在坐标原点,焦点在x 轴上,该椭圆经过点P ⎝ ⎛⎭⎪⎫1,32且离心率为12.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0),由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又椭圆过点P ⎝ ⎛⎭⎪⎫1,32,将其代入求得c 2=1,故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =kx +m ,x 24+y23=1,则⎩⎪⎨⎪⎧Δ=64m 2k 2-163+4k 2m 2-3>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4m 2-33+4k2.①又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3m 2-4k 23+4k 2.∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3m 2-4k 23+4k 2+4m 2-33+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7,由①,得3+4k 2-m 2>0,当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0,∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0.题型三 圆锥曲线中的探索性问题【例3】 已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点. (1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.[思维启迪]可先假设l 存在,然后根据与C 有公共点和与OA 距离等于4两个条件探求. 解析解 方法一 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且可知其左焦点为F ′(-2,0). 从而有⎩⎨⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎨⎧c =2,a =4. 又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,设其方程为y =32x +t .由⎩⎪⎨⎪⎧y =32x +t ,x 216+y 212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点, 所以Δ=(3t )2-4×3×(t 2-12)≥0, 解得-43≤t ≤4 3.另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4,解得t =±213. 由于±213∉[-43,43],所以符合题意的直线l 不存在.方法二 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且有⎩⎨⎧4a 2+9b 2=1,a 2-b 2=4.从而a 2=16.所以椭圆C 的方程为x 216+y 212=1.(2)同方法一. [探究提高]解决直线与圆锥曲线位置关系的存在性问题,往往是先假设所求的元素存在,然后再推理论证,检验说明假设是否正确.变式训练3 (2012·江西)已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA →+MB →|=OM →·(OA →+OB →)+2. (1)求曲线C 的方程;(2)动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l .问:是否存在定点P (0,t )(t <0),使得l 与PA ,PB 都相交,交点分别为D ,E ,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值;若不存在,说明理由. 解 (1)由MA →=(-2-x,1-y ),MB →=(2-x,1-y ),|MA →+MB →|=-2x2+2-2y2,OM →·(OA →+OB →)=(x ,y )·(0,2)=2y ,由已知得-2x2+2-2y2=2y +2,化简得曲线C 的方程:x 2=4y . (2)假设存在点P (0,t )(t <0)满足条件, 则直线PA 的方程是y =t -12x +t ,PB 的方程是y =1-t2x +t .曲线C 在Q 处的切线l 的方程是y =x 02x -x 204,它与y 轴的交点为F ⎝⎛⎭⎪⎫0,-x 204.由于-2<x 0<2,因此-1<x 02<1.①当-1<t <0时,-1<t -12<-12,存在x 0∈(-2,2),使得x 02=t -12,即l 与直线PA 平行,故当-1<t <0时不符合题意. ②当t ≤-1时,t -12≤-1<x 02,1-t 2≥1>x 02,所以l 与直线PA ,PB 一定相交.分别联立方程组⎩⎪⎨⎪⎧y =t -12x +t ,y =x 02x -x24,⎩⎪⎨⎪⎧y =1-t 2x +t ,y =x 02x -x 24,解得D ,E 的横坐标分别是x D =x 20+4t2x 0+1-t,x E =x 20+4t2x 0+t -1,则x E -x D =(1-t )x 20+4tx 20-t -12.又|FP |=-x 204-t ,有S △PDE =12·|FP |·|x E -x D |=1-t8·x 20+4t 2t -12-x 20,又S △QAB =12·4·⎝ ⎛⎭⎪⎫1-x 204=4-x 202,于是S △QAB S △PDE =41-t ·x 20-4[x 20-t -12]x 20+4t2=41-t ·x 40-[4+t -12]x 20+4t -12x 40+8tx 20+16t2.对任意x 0∈(-2,2),要使S △QAB S △PDE为常数,即只需t 满足⎩⎨⎧-4-t -12=8t ,4t -12=16t 2. 解得t =-1.此时S △QABS △PDE=2,故存在t =-1,使得△QAB 与△PDE 的面积之比是常数2. 该直线恒过一个定点A (12,0).19.圆锥曲线中的函数思想 思想与方法典例:(12分)已知椭圆x 24+y 22=1上的两个动点P ,Q ,设P (x 1,y 1),Q (x 2,y 2)且x 1+x 2=2.(1)求证:线段PQ 的垂直平分线经过一个定点A ;(2)设点A 关于原点O 的对称点是B ,求|PB |的最小值及相应的P 点坐标. 审 题 视 角(1)引入参数PQ 中点的纵坐标,先求k PQ ,利用直线PQ 的方程求解. (2)建立|PB |关于动点坐标的目标函数,利用函数的性质求最值.规 范 解 答(1)证明 ∵P (x 1,y 1),Q (x 2,y 2),且x 1+x 2=2.当x 1≠x 2时,由⎩⎨⎧x 21+2y 21=4x 22+2y 22=4,得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2.设线段PQ 的中点N (1,n ),∴k PQ =y 1-y 2x 1-x 2=-12n, ∴线段PQ 的垂直平分线方程为y -n =2n (x -1),∴(2x -1)n -y =0,该直线恒过一个定点A (12,0).当x 1=x 2时,线段PQ 的中垂线也过定点A (12,0).综上,线段PQ 的垂直平分线恒过定点A (12,0).(2)解 由于点B 与点A 关于原点O 对称, 故点B (-12,0).∵-2≤x 1≤2,-2≤x 2≤2,∴x 1=2-x 2∈[0,2], |PB |2=(x 1+12)2+y 21=12(x 1+1)2+74≥94, ∴当点P 的坐标为(0,±2)时,|PB |min =32.温 馨 提 醒(1)本题是圆锥曲线中的综合问题,涉及到了定点问题以及最值问题.求圆锥曲线的最值问题是高考考查的一个重要问题,通常是先建立一个目标函数,然后利用函数的单调性、函数的图象、函数的有界性或基本不等式等求最值,本题是建立二次函数、利用二次函数的图象求最值.(2)本题的第一个易错点是,表达不出线段PQ 的中垂线方程,原因是想不到引入参数表示PQ 的中点.第二个易错点是,易忽视P 点坐标的取值范围.实质上是忽视了椭圆的范围.思想方法·感悟提高 方 法 与 技 巧1.解决直线与椭圆的位置关系问题,如果直线与椭圆有两个不同交点,可将直线方程y =kx+c 代入椭圆方程x 2a 2+y 2b2=1整理出关于x (或y )的一元二次方程Ax 2+Bx +C =0,Δ=B 2-4AC >0,可利用根与系数之间的关系求弦长(弦长为1+k 2Δ|A |).2.圆锥曲线综合问题要四重视: (1)重视定义在解题中的作用;(2)重视平面几何知识在解题中的作用; (3)重视根与系数的关系在解题中的作用;(4)重视曲线的几何特征与方程的代数特征在解题中的作用.失 误 与 防 范 1.在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况. 2.中点弦问题,可以利用“点差法”,但不要忘记验证Δ>0或说明中点在曲线内部.练出高分A 组 专项基础训练1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为 ( ) A .1 B .1或3 C .0 D .1或0解 析由⎩⎨⎧y =kx +2,y 2=8x得ky 2-8y +16=0,若k =0,则y =2,若k ≠0,若Δ=0,即64-64k =0,解得k =1,因此直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =0或k =1.2.AB 为过椭圆x 2a 2+y 2b2=1中心的弦,F (c,0)为它的焦点,则△FAB 的最大面积为( ) A .b 2 B .ab C .acD .bc解 析设A 、B 两点的坐标为(x 1,y 1)、(-x 1,-y 1), 则S △FAB =12|OF ||2y 1|=c |y 1|≤bc .3.过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A 、B 两点,则|AF ||BF |的值等于( )A .5B .4C .3D .2解 析记抛物线y 2=2px 的准线为l ,作AA 1⊥l ,BB 1⊥l ,BC ⊥AA 1,垂足分别是A 1、B 1、C ,则有cos 60°=|AC ||AB |=|AA 1|-|BB 1||AF |+|BF |=|AF |-|BF ||AF |+|BF |=12,由此得|AF ||BF |=3,选C.4.(2011·山东)设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是 ( ) A .(0,2) B .[0,2] C .(2,+∞) D .[2,+∞)解 析∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.5.设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.解 析设A (x 1,y 1),B (x 2,y 2),由题意知x 1+x 2=2,且x 21=4y 1,x 22=4y 2,两式相减整理得,y 1-y 2x 1-x 2=x 1+x 24=12,所以直线AB 的方程为x -2y +7=0.将x =2y -7代入 x 2=4y 整理得4y 2-32y +49=0,所以y 1+y 2=8,又由抛物线定义得|AF →|+|BF →|=y 1+y 2+2=10.6.已知椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=______.将x =-3代入椭圆方程得y p =12,由|PF 1|+|PF 2|=4⇒|PF 2|=4-|PF 1|=4-12=72.7.直线y =kx -2与抛物线y 2=8x 交于不同两点A 、B ,且AB 的中点横坐标为2,则k 的值是________.设A (x 1,y 1)、B (x 2,y 2),由⎩⎨⎧y =kx -2,y 2=8x ,消去y 得k 2x 2-4(k +2)x +4=0,由题意得⎩⎨⎧Δ=[-4k +2]2-4×k 2×4>0,x 1+x 2=4k +2k 2=2×2,∴⎩⎨⎧k >-1,k =-1或k =2, 即k =2.8.(10分)椭圆x 2a 2+y 2b2=1 (a >b >0)与直线x +y -1=0相交于P 、Q 两点,且OP ⊥OQ (O 为原点).(1)求证:1a 2+1b2等于定值;(2)若椭圆的离心率e ∈⎣⎢⎡⎦⎥⎤33,22,求椭圆长轴长的取值范围. (1)证明 由⎩⎨⎧b 2x 2+a 2y 2=a 2b 2,x +y -1=0消去y ,得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0,∵直线与椭圆有两个交点,∴Δ>0, 即4a 4-4(a 2+b 2)a 2(1-b 2)>0 ⇒a 2b 2(a 2+b 2-1)>0, ∵a >b >0,∴a 2+b 2>1.设P (x 1,y 1)、Q (x 2,y 2),则x 1、x 2是方程①的两实根. ∴x 1+x 2=2a 2a 2+b 2,x 1x 2=a 21-b 2a 2+b 2.由OP ⊥OQ 得x 1x 2+y 1y 2=0,又y 1=1-x 1,y 2=1-x 2,得2x 1x 2-(x 1+x 2)+1=0. 式②代入式③化简得a 2+b 2=2a 2b 2. ④∴1a 2+1b2=2. (2)解 利用(1)的结论,将a 表示为e 的函数由e =c a⇒b 2=a 2-a 2e 2,代入式④,得2-e 2-2a 2(1-e 2)=0. ∴a 2=2-e 221-e 2=12+121-e 2.∵33≤e ≤22,∴54≤a 2≤32. ∵a >0,∴52≤a ≤62.∴长轴长的取值范围为[5,6].9.(12分)给出双曲线x 2-y 22=1.(1)求以A (2,1)为中点的弦所在的直线方程;(2)若过点A (2,1)的直线l 与所给双曲线交于P 1,P 2两点,求线段P 1P 2的中点P 的轨迹方程; (3)过点B (1,1)能否作直线m ,使得m 与双曲线交于两点Q 1,Q 2,且B 是Q 1Q 2的中点?这样的直线m 若存在,求出它的方程;若不存在,说明理由.解 (1)设弦的两端点为P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎨⎧2x 21-y 21=2,2x 22-y 22=2,两式相减得到2(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2),又x 1+x 2=4,y 1+y 2=2,所以直线斜率k =y 1-y 2x 1-x 2=4.故求得直线方程为4x -y -7=0.(2)设P (x ,y ),P 1(x 1,y 1),P 2(x 2,y 2), 按照(1)的解法可得y 1-y 2x 1-x 2=2xy, ①由于P 1,P 2,P ,A 四点共线,得y 1-y 2x 1-x 2=y -1x -2,②由①②可得2x y =y -1x -2,整理得2x 2-y 2-4x +y =0,检验当x 1=x 2时,x =2,y =0也满足方程,故P 1P 2的中点P 的轨迹方程是2x 2-y 2-4x +y =0.(3)假设满足题设条件的直线m 存在,按照(1)的解法可得直线m 的方程为y =2x -1.考虑到方程组⎩⎨⎧y =2x -1,x 2-y22=1无解,因此满足题设条件的直线m 是不存在的.练出高分B 组 专项能力提升1.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为 ( ) A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1解 析∵k AB =0+153+12=1,∴直线AB 的方程为y =x -3.由于双曲线的焦点为F (3,0),∴c =3,c 2=9.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则x 2a 2-x -32b 2=1.整理,得 (b 2-a 2)x 2+6a 2x -9a 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6a 2a 2-b2=2×(-12),∴a 2=-4a 2+4b 2,∴5a 2=4b 2.又a 2+b 2=9,∴a 2=4,b 2=5,∴双曲线E 的方程为x 24-y 25=1.2.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于 ( ) A .3B .4C .3 2D .4 2解 析设直线AB 的方程为y =x +b .由⎩⎨⎧y =-x 2+3y =x +b⇒x 2+x +b -3=0⇒x 1+x 2=-1, 得AB 的中点M ⎝ ⎛⎭⎪⎫-12,-12+b .又M ⎝ ⎛⎭⎪⎫-12,-12+b 在直线x +y =0上,可求出b =1,∴x 2+x -2=0,则|AB |=1+12·-12-4×-2=3 2.3.如图,已知过抛物线y 2=2px (p >0)的焦点F 的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+m 4的值是( ) A .1 B. 2 C .2 D .4 解 析设A (x 1,y 1),B (x 2,y 2),由题意可知,p2=-m ,将x =my -m 代入抛物线方程y 2=2px (p >0)中,整理得y 2-2pmy +2pm =0,由根与系数的关系,得y 1+y 2=2pm ,y 1y 2=2pm ,∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2pm )2-8pm =16m 4+16m 2,又△OAB 的面积S =12×p 2|y 1-y 2|=12(-m )×4m 4+m 2=22,两边平方即可得m 6+m 4=2.4.直线y =kx +1与椭圆x 25+y 2m =1恒有公共点,则m 的取值范围是______________.∵方程x 25+y 2m=1表示椭圆,∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点,∴要使直线与椭圆总有公共点,应有:025+12m ≤1,m ≥1,∴m 的取值范围是m ≥1且m ≠5.5.已知双曲线x 2a 2-y 2b 2=1 (a >1,b >0)的焦距为2c ,离心率为e ,若点(-1,0)与(1,0)到直线x a -yb=1的距离之和s ≥45c ,则e 的取值范围是__________.解 析由题意知s =|-b -ab |a 2+b 2+|b -ab |a 2+b 2=2ab c ≥45c , ∴2c 2≤5ab ,∴2c 2a 2≤5b a.又b a =c 2-a 2a2=e 2-1,∴2e 2≤5e 2-1,∴4e 4≤25(e 2-1),∴4e 4-25e 2+25≤0, ∴54≤e 2≤5,∴52≤e ≤ 5. 6.若过抛物线y 2=2px (p >0)的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为____________.如图,过A 、B 分别作AD 、BE 垂直于准线,垂足分别为D 、E .由|BC |=2|BF |,即|BC |=2|BE |,则∠BCE =30°,又|AF |=3,即|AD |=3,|AC |=6, ∴F 为AC 的中点,KF 为△ACD 的中位线, ∴p =|FK |=12|AD |=32,所求抛物线方程为y 2=3x .7.(13分)(2012·上海)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积.(2)设斜率为1的直线l 交C 1于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ .(3)设椭圆C 2:4x 2+y 2=1.若M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.(1)解 双曲线C 1:x 212-y 2=1,左顶点A ⎝ ⎛⎭⎪⎫-22,0,渐近线方程:y =±2x .不妨取过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1. 解方程组⎩⎪⎨⎪⎧y =-2x ,y =2x +1得⎩⎪⎨⎪⎧x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28.(2)证明 设直线PQ 的方程是y =x +b .因为直线PQ 与已知圆相切,故|b |2=1,即b 2=2.由⎩⎨⎧y =x +b ,2x 2-y 2=1得x 2-2bx -b 2-1=0. 设P (x 1,y 1)、Q (x 2,y 2),则⎩⎨⎧x 1+x 2=2b ,x 1x 2=-1-b 2.又y 1y 2=(x 1+b )(x 2+b ),所以 OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2=2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)证明 当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝ ⎛⎭⎪⎫显然|k |>22, 则直线OM 的方程为y =-1kx .由⎩⎨⎧y =kx ,4x 2+y 2=1得⎩⎪⎨⎪⎧x 2=14+k 2,y 2=k 24+k 2,所以|ON |2=1+k 24+k 2.同理|OM |2=1+k22k 2-1.设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值.。
最全圆锥曲线知识点总结

最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。
这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。
注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。
2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。
如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。
3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。
5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。
如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。
如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。
6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。
在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。
1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的知识点对于解决相关的数学问题至关重要。
下面我们来详细总结一下圆锥曲线的相关知识。
一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a>b>0\))焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a>b>0\))其中,\(a\)为椭圆的长半轴长,\(b\)为椭圆的短半轴长,\(c\)为椭圆的半焦距,满足\(c^2 = a^2 b^2\)。
3、椭圆的性质(1)范围:焦点在 x 轴上时,\(a ≤ x ≤ a\),\(b ≤ y ≤ b\);焦点在 y 轴上时,\(b ≤ x ≤ b\),\(a ≤ y ≤ a\)。
(2)对称性:椭圆关于 x 轴、y 轴和原点对称。
(3)顶点:焦点在 x 轴上时,顶点坐标为\((±a, 0)\),\((0, ±b)\);焦点在 y 轴上时,顶点坐标为\((0, ±a)\),\((±b, 0)\)。
(4)离心率:\(e =\frac{c}{a}\)(\(0 < e < 1\)),离心率反映了椭圆的扁平程度,\(e\)越接近0,椭圆越圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)其中,\(a\)为双曲线的实半轴长,\(b\)为双曲线的虚半轴长,\(c\)为双曲线的半焦距,满足\(c^2 = a^2 + b^2\)。
高中数学知识点大全—圆锥曲线

高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注 明条件 : b 0. a >) >
3 意 当直 线 与 圆锥 曲线 有 两 .注
对 称点 、 在性 等 问题 , 存 都应 当 在 △>
0 限制下 实施. 的
诊断 … … … … … … … … … … … … … … … … 一
皴 固
‘
l 柢≯ l 曩
准形式 不熟悉.
毒
薯 | 的标准 方程 来自加y ,求 出p
后, 抛
概 念 理 解 不 准 确 。 抛 物 线 的 标 对
q 口
J
已知 抛 物 线 的方 程 为
物 线 开 口 向 下 , 得 出 焦 点 坐 标 为
2 x( )则它 的焦点 坐标 为( a ,
)
i 突破§ l | 《 藿 j
时 . 注 意 定 点 与 定 直 线 的 位 置 关 系. 要
_ ) G 《
图 1
1有 两 种 情 况 . .
① 平 面上 的 动点尸 定 点F 10 到 (,) 的距离等 于点劂 一 的距离 , , l 即'
另外 . 同学们要 注 意解析 几 何 中点到
直 线 的 距 离公 式 和 两 点 间 距 离公 式
b
项 系 数 为零 的 情况 以及 判 别 式 的 限
制.此外 , 求交 点 、 弦长 、 中点 、 斜率 、
焦点 位 置 的讨 论 ( “ 点 在 上 , 即 焦 轴 焦点在' 上 ” 种情形 ) , 轴 两 .
7 .涉 及 圆 锥 曲 线 的 问 题 勿 忽 略 用定义解 题.
圆圈
=. l l1
双 曲线 的实轴长为8因 ,
标 (号, B 为 , )选. 0 应 一
物 线的 焦参数p .
为l ll l8即9 I l8所以 踞 _ =, 一 =,
匣圈
将题中方程化为抛物线
l 捧栎 。 誊 毒 警 霞 |
1 ¨
离, 因此 , 由抛 物 线 的 定 义 可 选 C
§ t
. = 叠
正 确 识 记 抛 物 线 的 标 准 方 程 为
(1 故 C 0 ) 选. ,
2 设 , 是 双 曲 线 一
: 的左 、 焦 点 , J 双 曲线 上 , 1 右 点p 在
2U
A , B0号 0 ., ) ) ( -
/ 2xy -p , =p , p , =p , =2xX 2y 2 一2y 其中
y
题 时 。 注 意特 殊 情 况 , 思 考 问题 要 即
要 全 面. 免丢 解. 避
忽 视 了 点 ( ,)L在 直 线 3+ y 12 2 r 4一
匣豳
一
平 面 上 的动点P 定点 到
突破 l
|
F 10 的距 离 比点P到y 的距 离 大 ( ,) 轴
利 用 圆锥 曲 线 的 第 一 定 义解 题
若 一 次项 的 变量是 或Y , ( )则对 称 轴
为 轴 ( 轴 )一 次项 系数 的正 与 负 或Y :
决 定 其 开 口方 向 为 对 称 轴 的 正 向 或
co ) Do ) ( .广 1 (
团 由抛物线方程为 2 可 似
知 , 物 线 的对 称 轴 为y ,p - a 抛 轴 =2 ,
中 的限制条件.
斜率不 存在 的情 况 ( 优先 讨论 斜率 不
存在的情况, 以免丢解 ) .
2 对 圆 锥 曲 线 标 准 方 程 的 设 法 .
6 在用 待 定 系数 法 求 圆锥 曲线
的 标 准 方 程 时 . 注 意 对 圆锥 曲线 的 应
掌 握得 不够 准确 ( 如设 焦 点在 上 轴 的椭 圆的标 准方 程为 + : 时 , 1 应
A. 线 直
B 抛 物 线 .
D. 圆 椭
双 曲线 的定 义掌握 得 不够 熟 练 ,
属 于 概 念 性 错 误 . 注 意 双 曲 线 上 的 要
| 鼙 裁南
l
嚣
|囊 蓬
C .双 曲线
同 学 们 只 注 意 了抛 物 线 的 定 义 ,
圈
-
— —
因 为 动 点P( ) 满 足 , ) ,
—
点P可能有两种情况 ,一是 点雕 左 支
而忽视 了特殊 情况—— 射 线.
N 1%(- ) /x ) y 2 2 (
I + 1 3 4- 1 _ l
_
—
一
( 或下支 ) ; 上 二是点P 在右 支( 上 或
支) 上.此 题 中, 当点P 左支上 时 , 在 点
目 焦 点 的 距 离 最 小 值 为 c a O; 右 +=l 当 点 雕 右 支 上 时 , P到 右 焦 点 点 平 面 上 的 动 点 P 定 点 F( ,) 到 1O 的 距 离比点P Ⅱ轴 的距 离大1 茔 ,含 特 殊 情 况 : 线y O x - ) 此 题 我 们 应 射 = ( <O .由 引起 注 意 . 研 究 圆 锥 曲 线 的 相 关 问 在
刘
嚣一 圆 锥 曲
冰
1 用 斜率k . 解题 时 .易 忽视讨 论
个 交点 时 , 联立 方程 后对 判别 式 的约 束 ( > 易丢失 ) AO .
4 当 圆锥 曲线 与 直线 联 立 求解
时 , 注 意 消 元 后 得 到 的 方 程 中 二 次 要
5 .在解决 轨迹 问题时 , 注意题 应
: , 点到 定 点 的 1 即
5
距离 和 到定 直线 的距 离相 等 , 以动 所 点| P 的轨迹是 抛物线 . 故选 B .
的 距 离 最小 值 为c a 2 如 图 1. 因 —= ( )
糯 | 萋 萎 薹 | 誊 毒 | s
1= 1 0上 .
一
此, 除IFIl 应排 P 2 =
负 向.当我 们 看 到 与 抛 物 线 标 准 方 程
若 点P 左 焦 点 的距 离 等 于9, 到 求
点P 右 焦 点 的 距 离 . 到
有 关的题 目时 . 首 先将 方程 变为标 要
然 所p 号 号所 它 焦 坐 准 形 式 . 后 在 此 基 础 上 正 确 求 出抛 以 一 ・以 的点 ,