幂的运算8.1-8.2 复习
幂的运算 复习课

2.填上适当的指数:
⑴ a2 a( ) a5
⑶ a3 a9
⑵ a5 a a2
3.填上适当的代数式
(1) x3 x4
x8
(2)
1
2008
2009 2
2
典型例题:
例1:计算:
1 2x3 3 2x3 2x3 2 2x3 5 x2 3 2 x3 4 x2 3 x x5
x5 x5
2.注意符号
0
例2:
1若xm 1 , xn 3,求x3mn的值
5
2已知n为正整数,且x2n 5,求3 x3n 2 9 x2 2n的值
例2:
1若xm 1 , xn 3,求x3 的值 mn
5
解:x3mn x3m xn
xm 3 xn
xm 1 , xn 3 5
原 式 1 3 3 3
5
125
(2)已知n为正整数,且 x2n 5 ,
求 3 x3n 2 9 x2 2n的值
提示:3 x3n 2 9 x2 2n 3x6n 9x4n 3 x2n 3 9 x2n 2
353 952
150
小结: 1.变换指数 2.变换底数
年级:七年级 学科名称:数学 《幂的运算》复习课件
授课学校: 授课教师:
1.同底数幂的乘法法则: 文字叙述:同底数幂相乘,底不变,指数相加
公式表示:am an amn (m、n是正整数)
2.幂的乘方法则: 文字叙述: 底数不变,指数相乘
公式表示: am n amn(m、n是正整数)
3.积的乘方法则: 文字叙述: 积的乘方等于乘方的积
公式表示: abn anbn (n是正整数 ) 4.同底数幂的除法法则: 文字叙述:同底数幂相除,底不变,指数相减
幂的运算阶段复习

( b2)4=_____;
( 103)5 =____ ;
(y3)2 ·(y2)4=____ (-3a)3=_______;(-2xy4)2=_____
(- a2)4·(- a)=____________
计算时,注意系数的符号,不要漏掉了 某些因数的乘方,同时要注意运算顺序。
(5) a3·b5=(ab)8 ( ×)
这是逆用公式! (3n)2=320,则n=________
一变:若a5·(am)3=a11,则m=___ 二变:若64×82=8x,则x= _____
拓展训练,深化提高
1、已知:am=2, an=3. 求am+n =?
2、已知: 10x =5,求103x = ?
幂的运算阶段复习
已学过幂的哪些运算? 其法则分别底数幂相乘:
逆用
am·an=am+n
am+n=am·an
幂的乘方:
(am)n=amn
amn=(am)n
积的乘方: (ab)n=anbn
anbn=(ab)n 同指数幂相乘
25×24=______; a5 · a2=________; (a+b)3·(a+b)8 = __________; a3· a4 · a5 = _______。
解法二:
(x3y2)2·(x3y2)3 =(x3y2)2+3 =(x3y2)5 =x15y10
考眼力,辩真伪
判断(正确的打“√”,错误的打“×”)
(1) x3·x5=x15 ( ×) (2) x3+x3=x6 ( ×)
(3) (-x2) ·(-x)3 = x5 (√ ) (4) a3·a2 - a2·a3 = 0 ( √ )
幂的运算性质复习PPT教学课件

1.计算:
(1). a2 (a)3 (a)2 (a3 )
解 : 原式 a5 a5 2a5
(2). 2n4 (2) 2n
解 : 原式 2 2
n41n
2n5
(3). (a4 )3 (a2 )5 a (a23 )
解 : 原式 a12 a10 a (a23 ) a 46
3、意义:
缓解沿海地区人地矛盾 拓展人类生存空间
二、海洋空间开发利用的主要方式:
1、海洋交通与通讯 海洋的广阔性连续性成为洲际联
系的重要通道 (1)海洋运输三要素:
概念:船舶停靠地,海运物资的集散地
港口:
世界主要港亚口洲::上海、香港、新加坡、孟买、 北美:纽约、旧金欧山洲:伦敦加、尔马各赛答、等鹿特丹、汉
(3)世界主要石油航线:
波斯湾-霍尔木兹海峡-印度洋-好望角-大西洋-西欧、北美 波斯湾-霍尔木兹海峡-印度洋-马六甲海峡-太平洋-日本
二、海洋空间开发利用的主要方式:
(4)海洋交通运输方式的变化
二、海洋空间开发利用的主要方式:
(4)海洋交通运输方式的变化
中国首个运距超过100公里的跨海铁路轮渡项目——烟(台)
沟通印度洋-太平洋的马六甲海峡—海上北生海命-线波罗的海--基尔 美印国度东洋西大岸西便洋捷的士通便运道捷河-通-道巴-拿-马苏运伊河印度洋大西运洋望河深角水航道-好
探究2:台湾是我国人口最大的省级行政区之一,而且山
区面积广,人口对土地的压力很大。请问,能否采取围、填 海造陆的方式在其东侧大规模地提供生存空间?
则anbn=__________
再见
第五章 海洋开发 第四节 海洋空间的开发利用
一、海洋空间开发利用的特点和意义
1、海洋空间资源包括 海运动
七年级数学8.1幂的运算讲解与例题

8.1 幂的运算1.了解幂的运算性质,会利用幂的运算性质进行计算.2.通过幂的运算性质的形成和应用,养成观察、归纳、猜想、论证的能力,提高计算和口算的能力.3.了解和体会“特殊—一般—特殊”的认知规律,体验和学习研究问题的方法,培养思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯.1.同底数幂的乘法(1)同底数幂的意义“同底数幂”顾名思义,是指底数相同的幂.如32与35,(-5)2与(-5)6,(a+b)4与(a+b)3等表示的都是同底数的幂.(2)幂的运算性质1同底数幂相乘,底数不变,指数相加.用字母可以表示为:a m·a n=a m+n(m,n都是正整数).(3)性质的推广运用当三个或三个以上的同底数幂相乘时,也具有这一性质,如:a m·a n·a p=a m+n+p(m,n,p是正整数).(4)在应用同底数幂的乘法的运算性质时,应注意以下几点:①幂的底数a可以是任意的有理数,也可以是单项式或多项式;底数是和、差或其他形式的幂相乘,应把这些和或差看作一个“整体”.②底数必须相同才能使用同底数幂的乘法公式,若底数不同,则不能使用;注意:-a n 与(-a)n不是同底数的幂,不能直接用性质.③不要忽视指数是1的因数或因式.【例1-1】(1)计算x3·x2的结果是______;(2)a4·(-a3)·(-a)3=__________.解析:(1)题中的底数都是x,是两个同底数幂相乘的运算式子,只需运用同底数幂相乘的性质进行运算,即x3·x2=x3+2=x5;(2)应先把底数分别是a,-a的幂化成同底数的幂,才能应用同底数幂的乘法性质,原式=a4·(-a3)·(-a3)=a4·a3·a3=a4+3+3=a10.答案:(1)x5(2)a10正确运用幂的运算性质解题的前提是明确性质的条件和结论.例如同底数幂的乘法,条件是底数相同,且运算是乘法运算,结论是底数不变,指数相加.【例1-2】计算:(1)(x+y)2·(x+y)3;(2)(a-2b)2·(2b-a)3.分析:(1)把(x+y)看作底数,可根据同底数幂的乘法性质来解;(2)题中(a-2b)2可转化为(2b-a)2,或者把(2b-a)3转化为-(a-2b)3,就是两个同底数的幂相乘了.解:(1)原式=(x+y)2+3=(x+y)5;(2)方法一:原式=(2b -a )2·(2b -a )3=(2b -a )5;方法二:原式=(a -2b )2·[-(a -2b )3]=-(a -2b )5.本题应用了整体的数学思想,把(x +y )和(a -2b )看作一个整体,(2)题中的两种解法所得的结果实质是相等的,因为互为相反数的奇次幂仍是互为相反数. 2.幂的乘方(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘.如(a 5)3是指三个a 5相乘,读作“a 的五次幂的三次方”,即有(a 5)3=a 5·a 5·a 5=a 5+5+5=a 5×3;(a m )n 表示n 个a m 相乘,读作“a 的m 次幂的n 次方”,即有(a m )n =m m m n a a a ⋅⋅⋅L 1442443个=m m m n a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅L L L L 142431424314243144444424444443个个个个=a mn(m ,n 都是正整数) (2)幂的运算性质2幂的乘方,底数不变,指数相乘.用字母可以表示为:(a m )n =a mn(m ,n 都是正整数).这个性质的最大特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘. (3)性质的推广运用幂的乘方性质可推广为: [(a m )n ]p =a mnp(m ,n ,p 均为正整数).(4)注意(a m )n 与am n的区别 (a m )n 表示n 个a m 相乘,而am n 表示m n 个a 相乘,例如:(52)3=52×3=56,523=58.因此,(a m )n ≠am n .【例2】(1)计算(x 3)2的结果是( ).A .x 5B .x 6C .x 8D .x 9(2)计算3(a 3)3+2(a 4)2·a =__________.解析:(1)根据性质,底数不变,指数相乘,结果应选B ;(2)先根据幂的乘方、同底数幂相乘进行计算,再合并同类项得到结果.3(a 3)3+2(a 4)2·a =3a 3×3+2a 4×2·a =3a 9+2a 8·a =3a 9+2a 9=5a 9.答案:(1)B (2)5a 9防止“指数相乘”变为“指数相加”,同时防止“指数相乘”变为“指数乘方”.如(a 4)2=a 4+2=a 6与(a 2)3=a 23=a 8都是错误的.3.积的乘方(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(2ab )3,(ab )n等.(2ab )3=(2ab )·(2ab )·(2ab )(乘方意义)=(2×2×2)(a ·a ·a )(b ·b ·b )(乘法交换律、结合律) =23a 3b 3.(ab )n =n ab ab ab ()()()L 1442443个=n a a a (⋅⋅⋅)L 14243个n b b b (⋅⋅⋅⋅)L 14243个=a n b n(n 为正整数).(2)幂的运算性质3积的乘方等于各因式乘方的积.也就是说,先把积中的每一个因式分别乘方,再把所得的结果相乘.用字母可以表示为:(ab )n =a n b n(n 是正整数). (3)性质的推广运用三个或三个以上的乘方也具有这一性质,如(abc )n =a n b n c n(n 是正整数).【例3】计算:(1)(-2x )3;(2)(-xy )2;(3)(xy 2)3·(-x 2y )2;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34.分析:(1)要注意-2x 含有-2,x 两个因数;(2)-xy 含有三个因数:-1,x ,y ;(3)把xy 2看作x 与y 2的积,把-x 2y 看作-1,x 2,y 的积;(4)-12ab 2c 3含有四个因数-12,a ,b 2,c 3,先运用积的乘方性质计算,再运用幂的乘方性质计算.解:(1)(-2x )3=(-2)3·x 3=-8x 3;(2)(-xy )2=(-1)2·x 2·y 2=x 2y 2;(3)(xy 2)3·(-x 2y )2=x 3(y 2)3·(-1)2·(x 2)2y 2=x 3y 6·x 4y 2=x 7y 8;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34=⎝ ⎛⎭⎪⎫-124a 4(b 2)4(c 3)4=116a 4b 8c 12.(1)在计算时,把x 2与y 2分别看成一个数,便于运用积的乘方的运算性质进行计算,这种把某个式子看成一个数或字母的方法的实质是换元法,它可以把复杂问题简单化,它是数学的常用方法.(2)此类题考查积的乘方运算,计算时应特别注意底数含有的因式,每个因式都分别乘方,不要漏掉,尤其要注意系数及系数的符号,对系数是-1的不可忽略.负数的奇次方是一个负数,负数的偶次方是一个正数.4.同底数幂的除法 (1)幂的运算性质4同底数幂相除,底数不变,指数相减.用字母可以表示为:a m ÷a n =a m -n(a ≠0,m ,n 都是正整数,且m >n ).这个性质成立的条件是:同底数幂相除,结论是:底数不变,指数相减.和同底数幂的乘法类似,被除式和除式都是幂的形式且底数一定要相同,商也是一个幂,其底数与被除式和除式的底数相同,商中幂的指数是被除式的指数与除式的指数之差.因为零不能作除数,所以底数a ≠0.(2)性质的推广运用三个或三个以上的同底数幂连续相除时,该性质仍然成立,例如a m ÷a n ÷a p =a m -n -p(a ≠0,m ,n ,p 为正整数,m >n +p ).【例4】计算:(1)(-a )6÷(-a )3;(2)(a +1)4÷(a +1)2;(3)(-x )7÷(-x 3)÷(-x )2. 分析:利用同底数幂的除法性质进行运算时关键要找准底数和指数.(1)中的底数是-a ,(2)中的底数是(a +1),(3)中的底数可以是-x ,也可以是x .解:(1)(-a )6÷(-a )3=(-a )6-3=(-a )3=-a 3;(2)(a +1)4÷(a +1)2=(a +1)4-2=(a +1)2; (3)方法1:(-x )7÷(-x 3)÷(-x )2=(-x )7÷(-x )3÷(-x )2=(-x )7-3-2=(-x )2=x 2. 方法2:(-x )7÷(-x 3)÷(-x )2=(-x 7)÷(-x 3)÷x 2=x 7-3-2=x 2.运用同底数幂除法性质的关键是看底数是否相同,若不相同则不能运用该性质,指数相减是指被除式的指数减去除式的指数;幂的前三个运算性质中字母a ,b 可以表示任何实数,也可以表示单项式和多项式;第四个性质即同底数幂的除法性质中,字母a 只表示不为零的实数,或表示其值不为零的单项式和多项式.注意指数是“1”的情况,如a 5÷a =a 5-1,而不是a 5-0.5.零指数幂与负整数指数幂(1)零指数幂:任何一个不等于零的数的零次幂都等于1.用字母可以表示为:a 0=1(a ≠0).a 0=1的前提是a ≠0,如(x -2)0=1成立的条件是x ≠2.(2)负整数指数幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.用字母可以表示为:a -p=1ap (a ≠0,p 是正整数).a -p =1ap 的条件是a ≠0,p 为正整数,而0-2等是无意义的.当a >0时,a p 的值一定为正;当a <0时,a -p 的值视p 的奇偶性而定,如(-2)-3=-18,(-3)-2=19.规定了零指数幂和负整数指数幂的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂了,于是同底数幂除法的性质推广到整数指数幂,即a m ÷a n =a m -n(a ≠0,m ,n 都是整数).如a ÷a 2=a 1-2=a -1=1a;正整数指数幂的某些运算,在负整数指数幂中也能适用.如a -2·a -3=a-2-3=a -5等.【例5】计算:(1)1.6×10-4;(2)(-3)-3;(3)⎝ ⎛⎭⎪⎫-53-2;(4)(π-3.14)0;(5)⎝ ⎛⎭⎪⎫130+⎝ ⎛⎭⎪⎫-13-2+⎝ ⎛⎭⎪⎫-23-1.分析:此题是负整数指数幂和零指数幂的计算,可根据a -p=1ap (p 是正整数,a ≠0)和a 0=1(a ≠0)计算.其中(1)题应先求出10-4的值,再运用乘法性质求出结果.解:(1)1.6×10-4=1.6×1104=1.6×0.000 1=0.000 16.(2)(-3)-3=1-33=-127. (3)⎝ ⎛⎭⎪⎫-53-2=⎝ ⎛⎭⎪⎫-352=925. (4)因为π=3.141 592 6…, 所以π-3.14≠0.故(π-3.14)0=1.(5)原式=1+1⎝ ⎛⎭⎪⎫-132+1⎝ ⎛⎭⎪⎫-231=1+9-32=812.只要底数不为零,而指数是零,不管底数多么复杂,其结果都是1.当一个负整数指数幂的底数是分数时,它等于底数倒数的正整数次幂,即⎝ ⎛⎭⎪⎫a b -p =⎝ ⎛⎭⎪⎫b a p .6.用科学记数法表示绝对值较小的数(1)绝对值小于1的数可记成±a ×10-n的形式,其中1≤a <10,n 是正整数,n 等于原数中第一个不等于零的数字前面的零的个数(包括小数点前面的一个零),这种记数方法也是科学记数法.(2)把一个绝对值小于1的数用科学记数法表示分两步:①确定a,1≤a <10,它是将原数小数点向右移动后的结果;②确定n ,n 是正整数,它等于原数化为a 后小数点移动的位数.(3)利用科学记数法表示数,不仅简便,而且更便于比较数的大小,如:2.57×10-5显然大于2.57×10-8,前者是后者的103倍.【例6-1】2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.000 001 56 m ,用科学记数法表示这个数是( ).A .0.156×10-5B .0.156×105C.1.56×10-6 D.1.56×106解析:本题考查科学记数法,将一个数用科学记数法表示为±a×10-n(1≤a<10)的形式,其中a是正整数数位只有一位的数,所以A、B不正确,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零),所以n=6,即0.000 001 56=1.56×10-6.故选C.答案:Cn的值也等于将原数写成科学记数法±a×10-n时,小数点移动的位数.如本题中将0.000 001 56写成科学记数法表示时,a为1.56,即将原数的小数点向右移动了6位,所以n的值是6.【例6-2】已知空气的单位体积质量为 1.24×10-3 g/cm3,1.24×10-3用小数表示为( ).A.0.000 124 B.0.012 4C.-0.001 24 D.0.001 24解析:因为a=1.24,n=3,因此原数是1前面有3个零(包括小数点前面的一个零),即1.24×10-3=0.001 24.答案:D本题可把1.24的小数点向左移动3位得到原数,也可利用负整数指数幂算出10-3的值,再与1.24相乘得到原数.7.幂的混合运算幂的四个运算性质是整式乘(除)法的基础,也是整式乘(除)法的主要依据.进行幂的运算,关键是熟练掌握幂的四个运算性质,深刻理解每个性质的意义,避免互相混淆.幂的混合运算顺序是先乘方,再乘除,最后再加减,有括号的先算括号里面的.因此,运算时,应先细心观察,合理制定运算顺序,先算什么,后算什么,做到心中有数.(1)同底数幂相乘与幂的乘方运算性质混淆,从而导致错误.如:①a3·a2=a6;②(a3)2=a5.解题时应首先分清是哪种运算:若是同底数幂相乘,应将指数相加;若是幂的乘方,应将指数相乘.正解:①a3·a2=a5;②(a3)2=a6.(2)同底数幂相乘与合并同类项混淆,从而导致错误.如:①a3·a3=2a3;②a3+a3=a6.①是同底数幂相乘,应底数不变,指数相加;②是合并同类项,应系数相加作系数,字母和字母的指数不变.正解:①a3·a3=a6;②a3+a3=2a3.【例7-1】下列运算正确的是( ).A.a4+a5=a9B.a3·a3·a3=3a3C.2a4·3a5=6a9D.(-a3)4=a7解析:对于A,两者不是同类项,不能合并;对于B,结果应为a9;对于C,结果是正确的;对于D,(-a3)4=a3×4=a12.故选C.答案:C【例7-2】计算:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3.分析:按照运算顺序,先利用积的乘方化简,即(-2x2y)3=-8(x2)3·y3,8(x2)2·(-x)2·(-y)6=8x4·x2·y6,再利用幂的乘方及同底数幂的乘法化简乘方后的结果,最后合并同类项.解:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3=-8(x2)3·y3+8x4·x2·y6÷y3=-8x6y3+8x6y3=0.8.幂的运算性质的逆用对于幂的运算性质的正向运用大家一般比较熟练,但有时有些问题需要逆用幂的运算性质,可以使问题化难为易、求解更加简单.(1)逆用同底数幂的乘法性质:a m +n =a m ·a n (m ,n 为正整数).如25=23×22=2×24.当遇到幂的指数是和的形式时,为了计算的需要,往往逆用同底数幂的乘法性质,将幂转化成几个同底数幂的乘法.但是一定要注意,转化后指数的和应等于原指数.(2)逆用幂的乘方性质:a mn =(a m )n =(a n )m (m ,n 均为正整数).逆用幂的乘方性质的方法是:幂的底数不变,将幂的指数分解成两个因数的乘积,再转化成幂的乘方的形式.如x 6=(x 2)3=(x 3)2,至于选择哪一个变形结果,要具体问题具体分析.(3)逆用积的乘方性质: a n b n =(ab )n (n 为正整数).当遇到指数相差不大,且指数比较大时,可以考虑逆用积的乘方性质解题.注意,必须是同指数的幂才能逆用性质,逆用时一定要注意:底数相乘,指数不变.(4)逆用同底数幂的除法性质: a m -n =a m ÷a n (a ≠0,m ,n 为整数).当遇到幂的指数是差的形式时,为了计算的需要,往往逆用同底数幂的除法性质,将幂转化成几个同底数幂的除法.但是一定要注意,转化后指数的差应等于原指数.【例8-1】(1)已知3a =2,3b =6,则33a -2b的值为__________;(2)若m p =15,m 2q =7,m r =-75,则m 3p +4q -2r的值为__________.解析:(1)因为3a =2,3b=6,所以33a -2b =33a ÷32b =(3a )3÷(3b )2=23÷62=29.(2)m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.答案:(1)29 (2)15【例8-2】(1)计算:⎝ ⎛⎭⎪⎫18 2 011×22 012×24 024;(2)已知10x =2,10y =3,求103x +2y的值.分析:(1)本题的指数较大,按常规方法计算很难,观察式子特点发现:4 024是2 012的两倍,可逆用幂的乘方性质,把24 024化为(22)2 012,这样再与22 012逆用积的乘方性质,此时发现与⎝ ⎛⎭⎪⎫18 2 011底数互为倒数,但指数不相同,因此逆用同底数幂的乘法及逆用积的乘方性质,简化计算;(2)可逆用幂的乘方,把103x +2y化为条件中的形式.解:(1)原式=⎝ ⎛⎭⎪⎫18 2 011×22 012×(22)2 012(逆用幂的乘方)=⎝ ⎛⎭⎪⎫18 2 011×(2×22)2 012(逆用积的乘方) =⎝ ⎛⎭⎪⎫18 2 011×82 012 =⎝ ⎛⎭⎪⎫18 2 011×82 011×8(逆用同底数幂的乘法) =⎝ ⎛⎭⎪⎫18×8 2 011×8(逆用积的乘方) =8.(2)因为103x =(10x )3=23=8,102y =(10y )2=32=9,所以103x +2y =103x ·102y=8×9=72. 9.利用幂的运算性质比较大小 在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能.这时可利用幂的运算性质比较幂的大小.比较幂的大小,一般有以下几种方法:(1)指数比较法:利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.(2)底数比较法:利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.(3)作商比较法:当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b ”比较.有关幂的大小比较的技巧和方法除灵活运用幂的有关性质外,还应注意策略,如利用特殊值法、放缩法等.【例9】(1)已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .a <b <c D .b >c >a(2)350,440,530的大小关系是( ).A .350<440<530B .530<350<440C .530<440<350D .440<530<350(3)已知P =999999,Q =119990,那么P ,Q 的大小关系是( ).A .P >QB .P =QC .P <QD .无法比较解析:(1)因为a =8131=(34)31=3124,b =2741=(33)41=3123,c =961=(32)61=3122,又124>123>122,所以3124>3123>3122,即a >b >c .故选A .(2)因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440.故选B .(3)因为P Q =999999×990119=9×119999×990119=99×119999×990119=1,所以P =Q .故选B . 答案:(1)A (2)B (3)B10.幂的运算性质的实际应用利用幂的运算可以解决一些实际问题,所以要熟练掌握好幂的运算性质,能在实际问题中灵活地运用幂的运算性质求解问题.解决此类问题时,必须认真审题,根据题意列出相关的算式,进而利用幂的运算性质进行运算或化简,特别地,当计算的结果是比较大的数时,一般要写成科学记数法的形式.【例10】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103m/s ,则卫星运行3×102s 所走的路程约是多少?分析:要计算卫星运行3×102s 所走的路程,根据路程等于时间乘以速度可解决问题.本题实际是一道同底数幂的乘法运算问题.解:因为7.9×103×3×102=(7.9×3)×(103×102)=23.7×105=2.37×106,所以卫星运行3×102 s 所走的路程约为2.37×106m . 11.幂的运算中的规律探究题探究发现型题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以总结.它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或去探索存在的各种可能性以及发现所形成的客观规律.规律探索题是指在一定条件下,需要探索发现有关数学对象所具有的规律性或不变性的题目,要解答此类问题,首先要仔细阅读,弄清题意,并从阅读过程中找出其规律,然后进一步利用规律进行计算.【例11】(1)观察下列各式:由22×52=4×25=100,(2×5)2=102=100,可得22×52=(2×5)2;由23×53=8×125=1 000,(2×5)3=103=1 000,可得23×53=(2×5)3;….请你再写出两个类似的式子,你从中发现了什么规律?(2)x2表示两个x相乘,(x2)3表示3个__________相乘,因此(x2)3=__________,由此类推得(x m)n=__________.利用你发现的规律计算:①(x3)15;②(x3)6;③[(2a-b)3]8.解:(1)如:34×54=(3×5)4,45×55=(4×5)5,等等.规律:a n·b n=(ab)n,即两数n次幂的积等于这两个数的积的n次幂.(2)x2x2×3=x6x mn①(x3)15=x45;②(x3)6=x18;③[(2a-b)3]8=(2a-b)24.。
七年级数学下册《第八章 幂的运算》复习教案 (新版)苏科版

第八章幂的运算课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2,②(-x3)=-(-x)3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.所以103m+2n=103m×102n=64×25=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1,∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.解210=(24)2·22=162·4,∴ <210>=<6×4>=4例5 1993+9319的个位数字是( )A.2 B.4C.6 D.8解1993+9319的个位数字等于993+319的个位数字.∵ 993=(92)46·9=8146·9.319=(34)4·33=814·27.∴993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于 ( )3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
幂的运算知识点总结

幂的运算知识点总结幂的运算知识点总结总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以有效锻炼我们的语言组织能力,因此好好准备一份总结吧。
总结一般是怎么写的呢?下面是小编帮大家整理的幂的运算知识点总结,欢迎大家分享。
教育目标:使学生了解和体会"特殊——一般——特殊"的认知规律,体验和学习研究问题的方法。
培养学生的思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯。
教学重点:了解同底数幂的乘法的性质的形成过程,会利用同底数幂的乘法的性质进行计算。
教学难点:了解同底数幂的乘法的'性质的形成过程,同底数幂乘法的运算性质与整式加法容易混淆。
解决关键:在教学中强调每一个性质得来的根据不同,要引导学生在理解的基础上练习,培养学生的思维严谨。
教学法:观察法,讨论法,启发式教育法教学用具:多媒体辅助教学教学过程:备注一、复习与质疑:上节课我们学习了整式的加减,下面提出以下几个问题请大家思考:(1)①a+a=?②a+a=?(2)①进行运算的依据是什么?②不能继续进行运算的原因是什么?(3)a表示什么意思?可写成什么形式?如果将上面的"+"符号变成"×"①a×a=?①a×a=?又该怎样进行计算呢?在生活和其它领域中,我们有时也会遇到这样的问题:有一种电子计算机,每秒钟可以做10次运算,那么10秒可以做多少次运算呢?根据题意得:10×10=?要丈量一块长方形地块的长是5米,宽是5米,求长方形地块的面积?根据题意得:5×5=?今天我们就来通过学习解决这类问题。
二、导入与创设情景做一做:计算:10×10=____10×10=____2×2=___观察试说出每个运算步骤的根据,并观察条件与结论中的指数与底数各具有怎样的特点和关系。
(同学们展开讨论)例如:10×10=10×10×10=102个101个10通过同学们亲自操作我们会发现,算式的底数相同,其结果的底数仍然是这个底数,而结果的指数则是两个因数(幂)的指数之和。
幂的运算性质复习优秀课件

幂的运算性质复习优秀课件幂的运算性质是数学中的基础概念,在代数学习中占据重要地位。
本文将为大家介绍幂的运算性质,并提供一份优秀的幂的运算性质复习课件,以便大家能更好地理解和掌握这一概念。
一、幂的基本定义及运算我们先来回顾一下幂的基本定义及运算。
假设a是一个实数,n是一个正整数,则a的n次幂可以表示为an。
根据定义,我们可以总结出以下幂的运算性质:1. 幂的乘法法则:an * am = an+m这条性质表明,两个具有相同底数的幂相乘时,底数不变,指数相加。
2. 幂的除法法则:an / am = an-m这条性质表明,两个具有相同底数的幂相除时,底数不变,指数相减。
3. 幂的乘方法则:(an)m = anm这条性质表明,在一个幂的指数再次取幂时,我们可以将指数相乘。
二、幂的负指数及零指数性质除了正整数指数外,幂的负指数及零指数也是我们需要掌握的重要概念。
1. 负指数的性质:a的-m次幂等于1 / an,其中a ≠ 0,m为正整数。
这条性质表明,幂的负指数可以通过取倒数并改变指数符号来表示。
2. 零指数的性质:a的0次幂等于1,其中a ≠ 0。
这条性质表明,任何非零数的0次幂都等于1。
三、幂的运算规律在进行复杂的数学计算时,我们需要了解幂的一些常见运算规律。
1. 括号的运算规律:(a * b)n = an * bn这条规律表明,括号中的乘法可以分别对底数和指数进行运算。
2. 幂的相反数规律:(1 / a)n = 1 / an,其中a ≠ 0这条规律表明,幂的相反数可以通过对幂的倒数进行运算得到。
四、优秀课件展示以下是一份高质量的幂的运算性质复习优秀课件,供大家参考和学习:(这里展示一份优秀幂的运算性质复习课件,可以包括图表、例题和讲解内容。
)通过学习这份优秀课件,我们可以更系统地复习和理解幂的运算性质。
同时,我们还可以通过做一些练习题来巩固这些知识的应用。
总结:幂的运算性质是数学学习中的基本概念之一,掌握这些性质对于进一步的数学学习和应用非常重要。
幂的运算复习课

(- 3) × (- 3) (3)
100
101
例5:比较550与2425的大小。
解:∵550=(52)25=2525
2425<2525
∴550>2425
例6:已知210=a2=4b(其中a,b为正整数),
求ab的值。
解:∵210=a2 ∴(25)2=a2 即a=25=32 又∵210=4b ∴(22)5=45=4b 即b=5 ∴ab=325
本节课你的收获是什么?
பைடு நூலகம்
布置作业:
课本52页复习题8.3 1、 2 补充习题28页 小结与思考
a
例1 (1)地球可以近似地看成球体,半径约
为6.37×103km,地球的体积大约为多少?
你会计算地球的表面积吗? 请你查阅资料,找出计算球体表面积的公 式,再进行计算。
(2)地球可以近似地看成球体,半径约为 6.37×103km,地球的体积大约为多少? 地球上海洋总面积约3.6×108km2,海洋 总面积是地球表面积的百分之几? 按海洋的海水平均深度3.7×103m计算, 求地球上海水的体积(用科学记数法表示).
例2:计算
(1)4×22×84;(2)0.24×0.44×12.54;
1 100 101 ( ) 3 (3) 3
2.110 3 4 (4) 0.311 710
例3:计算
(1)计算:15,25,35,45, …,195; (2)1275的个位上的数字是几?
(3)5811 、 7318的个位上的数字分别 是几?
例4 :
(1)下列算式中,①a3· a3=2a3;②10×109=1019; ③(xy2)3=xy6;④a3n÷an=a3.其中错误的是( ) A、1个 B、2个 C、3个 D、4个 (2)在xm-1· ( ) =x2m+1中,括号内应填写的代 数式是( ) A、x2m B、x2m+1 C、x2m+2 D、xm+2