幂的运算知识要点归纳及答案解析
初中幂知识点总结

初中幂知识点总结一、概念介绍幂运算是数学中常见的运算形式,它表示一个数自身相乘若干次。
例如,2的3次方表示2自身相乘3次,即2*2*2=8。
在幂运算中,2称为底数,3称为指数。
幂运算有着广泛的应用,尤其在代数中起着至关重要的作用。
二、幂的性质1. 幂的乘法法则a^m * a^n = a^(m+n)幂的乘法法则指出:底数相同的幂相乘,底数不变,指数相加。
例如:2^3 * 2^4 = 2^(3+4) = 2^72. 幂的除法法则a^m / a^n = a^(m-n)幂的除法法则指出:底数相同的幂相除,底数不变,指数相减。
例如:5^6 / 5^3 = 5^(6-3) = 5^33. 幂的乘方法则(a^m)^n = a^(m*n)幂的乘方法则指出:一个数的幂再次乘方,底数不变,指数相乘。
例如:(2^3)^4 = 2^(3*4) = 2^124. 幂的零指数a^0 = 1(a≠0)任何非零数的0次幂都等于1。
5. 幂的负指数a^(-n) = 1 / a^n(a≠0)底数为非零数,指数为负数的幂,可以转换为倒数形式。
三、幂的应用1. 计算面积在几何中,幂运算经常用于计算面积。
例如,正方形的面积就是边长的平方,即a^2,其中a为边长。
2. 科学计数法科学计数法用幂运算来表示很大或者很小的数,例如6.02 * 10^23。
3. 计算利息在金融中,利息的计算经常使用幂运算,例如利息的计算公式为:S = P(1 + r/n)^(nt),其中P为本金,r为年利率,n为复利次数,t为年数。
四、常见错误1. 底数和指数的混淆在进行幂运算时,最常见的错误就是混淆底数和指数。
学生往往容易混淆2^3和3^2,计算时要格外注意。
2. 幂的乘法法则的错误使用许多学生在使用幂的乘法法则时,常常出现错误。
例如,错误地将a^m * a^n = a^m+n中的指数直接相加,而遗漏了底数不变的原则。
3. 幂的符号错误有时学生会忽视底数和指数的符号,导致计算错误。
高考数学复习考点知识与结论专题讲解12 幂的运算及幂函数

高考数学复习考点知识与结论专题讲解第12讲幂的运算及幂函数通关一、五种常见幂函数的图像与性质知识通关通关二、幂函数的性质1. 幕函数在(0,)+∞上都有定义;2. 幕函数的图像过定点(1,1);3. 当0α>时, 幕函数的图像都过点(1,1)和(0,0) , 且在(0,)+∞上单调递增;4. 当0α<时, 幕函数的图像都过点(1,1) , 且在(0,)+∞上单调递减;5. 幕函数在第四象限无图像.结论一、幂函数的图像特征1. 当0α<时, 函数图像与坐标轴没有交点, 类似于1y x -=的图像, 且在第一象限内,逆时针方向指数在增大;2. 当0α>时,函数图像倾向x 轴, 类似于y =的图像;3. 当1α>时, 函数图像倾向y 轴, 类似于3y x =的图像,而且逆时针方向指数在增大,再结合函数的奇偶性可得一般幂函数的图像及性质.【例1】以下命题正确的是(),①幂函数的图像都经过(0,0);②幂函数的图像不可能出现在第四象限;③当0n =时,函数n y x =的图像是两条射线;④若n y x =(0n <)是奇函数,则n y x =在定义域内为减函数.A. ①②B. ②④C. ②③D. ①③【答案】C【解析】①幂函数的图像不都经过(0,0) ,比如1y x=,因此错误; ②因为当0x >时, 0x α>, 幂函数的图像不可能出现在第四象限,因此正确;③当0n =时,函数0x α>的图像是一条直线,但是去掉(0,1), 因此正确;④若n y x =(0n <)是奇函数,则n y x =在定义域内不具有单调性, 例如1y x=, 不正确. 综上,故选 C. 【变式】如图所示的曲线是幂函数y x α=在第一象限的图像,已知11{4,,,4}44α∈-- , 相应曲线1234,,,C C C C 对应的α值依次为().A. 114,444--,,B. 114,444,-,- C. 11444-,-,4, D. 114,444,-,- 【答案】B【解析】结合幂函数的单调性及图像,易知曲线1234,,,C C C C 对应的α值依次为114,444,-,-, . 故选 B.结论二、幂函数比较大小1. 当幂的底数相同,指数不同时,可以利用指数函数的单调性比较;2. 当幂的底数不同,指数相同时,可以利用幂函数的单调性比较;3. 当幂的底数和指数都不相同时,一种方法是作商,通过商与1的大小关系确定两个幂值的大小;另一种方法是运用媒介法,即找到一个中间值,通过比较两个幂值与中间值的大小,确定两个幂值的大小;4. 比较多个幂值的大小,一般也采用媒介法,即先判断这组数中每个幂值与0,1,等数的大小关系,据此将它们分成若干组,然后将同一组内的各数再利用相关方法进行比较,最终确定各数之间的大小关系.【例2】已知01m n <<<且1a b <<,则下列各式中一定成立的是()A.m n b a >B. m n b a <C.b a m n >D.b am n <【答案】D【解析】因为()(1)a f x x a =>在(0,)+∞上为单调递增函数,且01m n <<<,所以.a m n α< 又()(01)x g x m m =<<在R 上为单调递减函数,且1a b <<,所以.b a m m <综上,b a m n <.故选D.【变式】当01a b <<<,下列不等式正确的是()A.1(1)(1)b b a a ->-B.(1)(1)a b a b +>+C. 2(1)(1)b b a a ->-D.(1)(1)a b a b ->-【答案】D【解析】因为0(1)(1)1a b <-<-<,又函数(1)x y b =-为减函数,ay x =在(0,1)上为增函数, 所以(1)(1)(1).b a a b b a -<-<-故选D. 结论三、幂函数单调性若0,y x αα>=在(0,)+∞上是增函数;若0,y x αα<=在(0,)+∞上是减函数.【例3】幂函数223()(1)m m f x m m x+-=--在(0,)+∞上是减函数,则实数m 的值为() A.2或-1B.-1C.-2D.-2或1【答案】B【解析】由于幂函数223()(1)m m f x m m x +-=--在(0,)+∞上是减函数,故有221130m m m m ⎧--=⎨+-<⎩,解得 1.m =-故选B. 【变式】已知幂函数221()(1)m f x m m x--=--在(0,)+∞上单调递增. (1)求实数m 的值;(2)若(1)(32)m m k k +<-,求实数k 的取值范围.【答案】(1)1-;(2)23(,1)(,)32-∞-⋃【解析】(1)由题意得211m m --=,解得1m =-或2m =.因为()f x 在(0,)+∞上 单调递增,所以210m -->,即12m <-,所以1m =-. (2)由于1y x=在区间(,0),(0,)-∞+∞上都是减函数,分三种情况讨论: ①当1032k k +<<-,即1k <-时,原不等式成立;②当10k +<且320k -<时,有132k k +>-,即13223k k k ⎧⎪<-⎪⎪>⎨⎪⎪>⎪⎩,解集为空集; ③当10k +>,且,320k ->时,有,132k k +>-解得2332k <<. 综上可知,k 的取值范围是23(,1)(,).32-∞-⋃。
(完整版)幂的运算知识点总结

欢迎共阅第八章幂的运算知识点总结
知识点一:同底数幂相乘
同底数幂的乘法数
数,负数的偶次幂是正数;负数的奇次幂是负正数的任何次幂都是正逆运算:
是正整数相加。
即法则:底数不变,指数a a a a a a m n m n m m n n
n )
,m (知识点二:幂的乘方与积的乘方
1、幂的乘方)
()()
,(a a a a m n m m n
mn mn n 逆运算:是正整数即底数不变,指数相乘。
2、积的乘方(ab)
(ab)n n n n n n )
(,b a b a n 逆运算;是正整数再把所得的幂相乘。
即
把每一个因式分别乘方知识点三:同底数幂的除法
同底数幂的除法m
nm a n m n m a a a a a a n 10101095-5n -0n -m n m 1)
0010(02.50000502.0)
1-10(96.6696000)
,
0a (110)0a (1),,,0a (的个数数字前第一个非的负几次方原数字个数的几次方科学记数法是正整数定负整指数幂的意义:规的数的零次幂都等于。
即任何不等于零指数幂的意义:规定是正整数变,指数相减。
即同底数幂相除,底数不。
第八章 幂的运算知识点总结及习题

第八章 幂的运算8.1 同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()m n m n a a a m n +⋅=、为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 ()m n p m m p a a a a m n p ++⋅⋅=、、为正整数 注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例题:例1: 计算列下列各题(1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅- 练习:简单:一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a4 2. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5 ④p 2+p 2+p 2=3p 2 正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=10104、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
(完整版)幂的运算方法总结

•幂的运算方法总结幂的运算的基本知识就四条性质,写作四个公式:①a m×a n=a m+n②(a m)n=a mn③(ab)m=a m b m④a m÷a n=a m-n只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。
问题1、已知a7a m=a3a10,求m的值。
思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。
方法思考:只要是符合公式形式的都可套用公式化简试一试。
方法原则:可用公式套一套。
但是,渗入幂的代换时,就有点难度了。
问题2、已知x n=2,y n=3,求(x2y)3n的值。
思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。
因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。
方法原则:整体不同靠一靠。
然而,遇到求公式右边形式的代数式该怎么办呢?问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。
思路探索:试逆用公式,变形出与已知同形的幂即可代入了。
简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。
方法原则:逆用公式倒一倒。
当底数是常数时,会有更多的变化,如何思考呢?问题4、已知22x+3-22x+1=48,求x的值。
思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。
由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。
简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x=6×22x=48 ∴22x=8 ∴2x=3∴x=1.5方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。
幂的运算知识要点归纳及答案解析

幂的运算知识要点归纳及答案解析【要点概论】要点一、同底数幂的乘法特点+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一特点,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,算法更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭重点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,算法时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算特点,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题解析】类型一、同底数幂的乘法特点1、算法:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【标准答案与解析】 解:(1)原式234944++==.(2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,算法时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】算法:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【标准答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()ppp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅ 【标准答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m nm n aa a +=⋅.类型二、幂的乘方法则3、算法:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【标准答案与解析】解:(1)2()m a 2m a =.(2)34[()]m -1212()m m =-=. (3)32()m a-2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【标准答案与解析】 解:∵ 25mx=,∴ 62331115()55520555m m x x -=-=⨯-=.【总结升华】(1)逆用幂的乘方法则:()()mnm n n m a a a ==.(2)本题培养了学生的整体思想和逆向思维能力. 举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【标准答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【标准答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题算法是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【标准答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略.【典型例题】类型一、同底数幂的乘法特点1、算法:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 【标准答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()nnnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则 2、算法:(1)23[()]a b --; (2)32235()()2y y y y +-g ; (3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【标准答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x xx =⋅=.【总结升华】(1)运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n变成323288(8)(8)m n m n ⨯=⨯,再代入算法.【标准答案与解析】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算特点,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mm ab ==,则()()()36322mm m m a b a b b +-⋅= .【标准答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、算法:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算特点进行算法. 【标准答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-. (2)24333[()]a a b -⋅-231293636274227()()()a a b a a ba b =-⋅-=-⋅-⋅=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【标准答案】A ;提示:只有⑤正确;()3236928x yx y -=-;()326m maa -=-;()3618327aa =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一特点. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nna a -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算特点仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0na a -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、算法:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则算法.(2)、(4)两小题要注意符号. 【标准答案与解析】解:(1)83835x x xx -÷==.(2)3312()a a aa --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行算法的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、算法下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷- (3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再算法,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【标准答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行算法.3、已知32m =,34n =,求129m n+-的值.【标准答案与解析】解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和算法,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【标准答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1, ∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、算法:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【标准答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】算法:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【标准答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭ 45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m =,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________. 【标准答案与解析】解: ∵ 331133273m -===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-. ∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122n n -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三: 【变式】算法:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭; 【标准答案】 解:(1)原式424626b a b c a c --==. (2)原式8236981212888b b c b cb c c---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数:(1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067【标准答案与解析】解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯;(3)-0.000135=41.3510--⨯;(4)0.00067=46.710-⨯.【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】一.选择题1. ()()35c c -⋅-的值是( ).A. 8c -B. ()15c -C. 15cD.8c 2.2n n a a +⋅的值是( ).A. 3n a +B. ()2n n a +C. 22n a +D. 8a 3.下列算法正确的是( ).A.224x x x +=B.347x x x x ⋅⋅=C. 4416a a a ⋅=D.23a a a ⋅=4.下列各题中,算法结果写成10的幂的形式,其中正确的是( ).A. 100×210=310B. 1000×1010=3010C. 100×310=510D. 100×1000=4105.下列算法正确的是( ).A.()33xy xy =B.()222455xy x y -=-C.()22439x x -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25m n ==,则2m n +=____________.8. 若()319x a a a ⋅=,则x =_______.9. 已知35n a =,那么6n a =______.10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦ ______; ()523-=______.12.若n 是正整数,且210n a =,则3222()8()n n a a --=__________.三.解答题13. 判断下列算法的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335n n x x x +⋅=,求n 的值.(2)若()3915n m a b b a b ⋅⋅=,求m 、n 的值.【标准答案与解析】一.选择练习题1. 【标准答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=. 2. 【标准答案】C ;【解析】2222n n n n n a a a a ++++⋅==.3. 【标准答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=.4. 【标准答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510.5. 【标准答案】D ;【解析】()333xy x y =;()2224525xy x y -=;()22439x x -=.6. 【标准答案】C ;【解析】()333915288,39,315m n m n a ba b a b m n ====,解得m =3,n =5. 二.填空题7. 【标准答案】30;【解析】2226530m n m n +==⨯=g .8. 【标准答案】6;【解析】3119,3119,6x a a x x +=+==.9. 【标准答案】25;【解析】()2632525n n a a ===. 10.【标准答案】5;1;【解析】338,38,5m m a a a a m m +⋅==+==;3143813,314,1x x x +==+==.11.【标准答案】64;9n -;103-;12.【标准答案】200;【解析】()()32322222()8()81000800200n n n n a a a a --=-=-=. 三.解答题13.【解析】解:(1)×;(2)×;(3)×;(4)×14.【解析】解:(1)3843241237()()x x x x x xx ⋅-⋅-=-⋅⋅=-; (2)233322696411()()327a b a b a b a b -+-=-+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272aa a a a a a -+-⋅=-⋅=-. 15.【解析】解:(1)∵3335n n x xx +⋅= ∴ 4335n x x +=∴4n +3=35∴n =8(2)m =4,n =3解:∵()3915n m a b ba b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15∴n =3且m =4就这么多了,祝大家思修不挂科!!!页眉设计。
幂函数知识归纳及习题(含答案)

自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点y =x R R 奇 Z (1,1)y =x 2 R [0,+∞)偶 [0,+∞)Z (-∞,0][y =x 3R R 奇 ZY =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Z Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)[(0,+∞)[(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4C.22D. 2 2.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1 C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-baC .c D.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12, ∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0.故所求范围为:-4<m≤0.答案:(-4,0]10.解:∵f(x)在(0,+∞)上是增函数,∴-12+p+32>0,2p即p2-2p-3<0.∴-1<p<3.又∵f(x)是偶函数且p∈Z,∴p=1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x+1)(x-3),将C(1,-8)代入得-8=a(1+1)(1-3),得a=2.即f(x)=2(x+1)(x-3)=2x2-4x-6.(2)f(x)=2(x-1)2-8,当x∈[0,3]时,由二次函数图像知,f(x)min=f(1)=-8,f(x)max=f(3)=0.(3)f(x)≥0的解集为{x|x≤-1,或x≥3}.12.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。
七年级下册数学第8章《幂的运算》考点+易错讲义

第8章《幂的运算》考点+易错知识梳理重难点分类解析考点1 运用幂的基本性质进行运算【考点解读】掌握幂的基本性质是解决问题的关键,要根据算式的特点确定运算的顺序,并选择幂的基本性质进行正确计算,不要混淆同底数幂的乘法、积的乘方以及幂的乘方. 例1 (2017·江西)下列运算正确的是( )A. 5210()a a -=B. 22236a a a =gC. 23a a a -+=-D. 623623a a a -÷=-分析: 5210()a a -=,故选项A 正确;23236a a a =g,故选项B 错误;2a a a -+=-,故选项C 错误;624623a a a -÷=-,故选项D 错误.答案:A【规律·技法】根据合并同类项、幂的乘方及同底数幂的乘法的定义解答. 【反馈练习】1.下列计算正确的是( )A. 224x x x +=B. 3332x x x -=C. 236x x x =g D. 236()x x =点拨:正确应用各类计算法则计算. 2.计算:201320111(3)()3-⨯-= .点拨:应用积的乘方的逆运算,把2013(3)-折分成20112(3)(3)-⨯-.考点2 运用零指数、负整数指数幂的意义进行运算【考点解读】明确零指数、负整数指数幂的规定,同时区分一些形式上相似而实质上不一样的算式,如03与03-,12-与12--等. 例2 计算0112()2-+的结果是 . 分析:0112()1232-+=+=.答案:3 【规律·技法】本题考查了0次幂和负整数指数幂的意义,解答本题的关键是熟记相关法则. 【反馈练习】3.计算018()2---的结果是( )A. 7-B. 7C. 172D. 9 点拨:018()8172---=-=. 4.计算2133-⨯的结果是( )A. 3B. 3-C. 2D. 2- 点拨: 1133-=. 考点3 用科学记数法表示数【考点解读】要善于总结用科学记数法表示数的一般性规律,如:40.000110-=,50.0000110-=,60.00000110-=,70.000000110-=等.例3 (2017·济宁)某桑蚕丝的直径为0.000 016 m ,将0.000 016用科学记数法表示是() A. 41.610-⨯ B. 51.610-⨯ C. 61.610-⨯ D. 61610-⨯ 分析:绝时值小于1的正数也可以利用科学记数法表示,一般形式为10na -⨯,与较大数的科学记数法不同的是其所使用的是负整数幂,指数由原数左边起第一个不为零的数字前面0的个数所决定,则50.000016 1.610-=⨯.答案:B【规律·技法】用科学记数法表示较小的数,一般形式为10na -⨯,其中110a ≤<,n 由原数左边起第一个非零数字前面0的个数所决定. 【反馈练习】5.生物学家发现了一种病毒,其长度为0.000 000 32 mm ,数据0.000 000 32用科学记数法表示正确的是( )A. 73.210⨯ B. 53.210-⨯ C. 73.210-⨯ D. 83.210-⨯ 点拨:确定科学记数法表示较小的数的一般形式10na -⨯中a 和n 的值.6.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m ,将0.000 073用科学记数法表示为 .点拨:确定科学记数法表示较小的数的一般形式10na -⨯中a 和n 的值.考点4 幂的相关运算【考点解读】熟练掌握有关幂的运算法则. 例4 下列运算正确的是( )A. 320a a -=B. 23a a a =gC. 432a a a ÷= D. 325()a a =分析:32a a a -=,故选项A 不正确;23a a a =g ,故选项B 正确;43a a a ÷=,故选项C 不正确;326()a a =,故选项D 不正确.答案:B【规律·技法】本题考查了同底数幂的除法、合并同类项、同底数幂的乘法、幂的乘方,这些运算很容易混淆,一定要记准不同的运算法则. 【反馈练习】7.下列计算结果正确的是( )A. 842a a a ÷=B. 236a a a =g C. 248()a a = D. 236(2)8a a -= 点拨mnm na a a-÷=;m n m na a a+⨯= ;()m n mna a=(m ,n 是整数).8.下列运算正确的是( )A. 5210()a a = B. 1644x x x ÷=C. 224235a a a +=D. 3332b b b =g点拨m n m na a a-÷=;m n m na a a+⨯= ;()m n mna a=(m ,n 是整数).易错题辨析易错点 1 运用同底数幂的乘法法则计算时,漏掉了指数是“1”的因式例1计算: 32m m m ∙g . 错误解答: 32325m m m mm +∙==g s.错因分析:本题错在忽视最后一个因式m 的指数是1,误认为它的指数是0. 正确解答:323216m m m mm ++∙==g .易错辨析:单个字母的指数是1而不是0,只不过指数为1时可以省略不写,但不能认为指数是0.易错点2 运算法则使用不当例2计算:(1) 43(3)xy -; (2) 22(3)a b . 错误解答:(1) 4312(3)3xy xy -=-. (2) 2242(3)6a b a b =.错因分析:积的乘方是将积中的每一个因式分别乘方,而(1)中只将最后一个因式乘方,忽略了3-,x 两个因式的乘方,而(2)中错误地将乘方的次数乘以系数了. 正确解答:(1) 43312(3)27xy x y -=-. (2) 2242(3)9a b a b =.易错辨析:运用积的乘方法则时,要注意不能遗漏因式.易错点3 错用合并同类项法则例3计算: 3223()()x x +.错误解答: 32236612()()x x x x x +=+=.错因分析:本题错在将合并同类项法则与同底数幂乘法法则相混淆,错解中既运用了合并同类项法则,又运用了同底数幂相乘的法则.本题实际上是合并同类项,利用合并同类项法则将系数相加作为和的系数,字母和字母指数不变. 正确解答:3223666()()2x x x x x +=+=. 易错辨析:正确区分合并同类项与同底数幕乘法.易错点4 错用同底数幂除法法则例4计算:62x x ÷. 错误解答: 62623x x xx ÷÷==.错因分析:上面的解法用错了法则,同底数幂相除,底数不变,指数相减,而不是相除. 正确解答: 62624x x xx -÷==.易错辨析:同底数幕除法法则为mnm na a a -÷= (其中m ,n 是整数),注意m n -不能写成m n ÷.易错点5 运算中符号出错例5 计算:62()()y y -÷-. 错误解答:626244()()()()y y y y y --÷-=-=-=-.错因分析: 44444()(1)(1)y y y y -=-=-=g g . 正确解答:626244()()()()y y y y y --÷-=-=-=.易错辨析:当n 为奇数时,()nna a -=-;当n 为偶数时,()nna a -=.反馈练习1.给出下列算式:①43272()()a a c a c --=-g ;②326()a a -=-;③3342()a a a -÷=;④633()()a a a -÷-=-.其中正确的有( )A. 4个B. 3个C. 2个D. 1个 点拨:注意运算的顺序,正确运用法则运算.2.若20.3a =-,23b -=-,21()3c -=-,01()3d =-,则( )A. a b c d <<<B. b a d c <<<C. a d c b <<<D. c a d b <<<点拨:分别计算出,,,a b c d 的值,比较即可.3.给出下列各式:①523[()]a a --g;②43()a a -g ;③2332()()a a -g ;④43[()]a --.其中计算结果为12a -的有( )A.①和③B.①和②C.②和③D.③和④点拨:注意“偶次方”和“奇次方”的符号处理. 4.计算: 23()()p p --=g ;231()2a b -= . 点拨:正确运用法则计算,最后结果化为最简形式.5.计算: 2018201952()()25-⨯-= . 点拨:把20192()5-分解为201822()()55--g 即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的运算知识要点归纳及答案解析【要点概论】要点一、同底数幂的乘法特点+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一特点,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,算法更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭重点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,算法时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算特点,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题解析】类型一、同底数幂的乘法特点1、算法:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【标准答案与解析】 解:(1)原式234944++==.(2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,算法时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】算法:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【标准答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()ppp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅ 【标准答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m nm n aa a +=⋅.类型二、幂的乘方法则3、算法:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【标准答案与解析】解:(1)2()m a 2m a =.(2)34[()]m -1212()m m =-=. (3)32()m a-2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【标准答案与解析】 解:∵ 25mx=,∴ 62331115()55520555m m x x -=-=⨯-=.【总结升华】(1)逆用幂的乘方法则:()()mnm n n m a a a ==.(2)本题培养了学生的整体思想和逆向思维能力. 举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【标准答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【标准答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题算法是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【标准答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略.【典型例题】类型一、同底数幂的乘法特点1、算法:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 【标准答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()nnnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则 2、算法:(1)23[()]a b --; (2)32235()()2y y y y +-g ; (3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【标准答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x xx =⋅=.【总结升华】(1)运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n变成323288(8)(8)m n m n ⨯=⨯,再代入算法.【标准答案与解析】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算特点,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mm ab ==,则()()()36322mm m m a b a b b +-⋅= .【标准答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、算法:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算特点进行算法. 【标准答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-. (2)24333[()]a a b -⋅-231293636274227()()()a a b a a ba b =-⋅-=-⋅-⋅=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【标准答案】A ;提示:只有⑤正确;()3236928x yx y -=-;()326m maa -=-;()3618327aa =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一特点. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nna a -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算特点仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0na a -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、算法:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则算法.(2)、(4)两小题要注意符号. 【标准答案与解析】解:(1)83835x x xx -÷==.(2)3312()a a aa --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行算法的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、算法下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷- (3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再算法,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【标准答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行算法.3、已知32m =,34n =,求129m n+-的值.【标准答案与解析】解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和算法,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【标准答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1, ∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、算法:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【标准答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】算法:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【标准答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭ 45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m =,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________. 【标准答案与解析】解: ∵ 331133273m -===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-. ∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122n n -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三: 【变式】算法:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭; 【标准答案】 解:(1)原式424626b a b c a c --==. (2)原式8236981212888b b c b cb c c---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数:(1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067【标准答案与解析】解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯;(3)-0.000135=41.3510--⨯;(4)0.00067=46.710-⨯.【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】一.选择题1. ()()35c c -⋅-的值是( ).A. 8c -B. ()15c -C. 15cD.8c 2.2n n a a +⋅的值是( ).A. 3n a +B. ()2n n a +C. 22n a +D. 8a 3.下列算法正确的是( ).A.224x x x +=B.347x x x x ⋅⋅=C. 4416a a a ⋅=D.23a a a ⋅=4.下列各题中,算法结果写成10的幂的形式,其中正确的是( ).A. 100×210=310B. 1000×1010=3010C. 100×310=510D. 100×1000=4105.下列算法正确的是( ).A.()33xy xy =B.()222455xy x y -=-C.()22439x x -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25m n ==,则2m n +=____________.8. 若()319x a a a ⋅=,则x =_______.9. 已知35n a =,那么6n a =______.10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦ ______; ()523-=______.12.若n 是正整数,且210n a =,则3222()8()n n a a --=__________.三.解答题13. 判断下列算法的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335n n x x x +⋅=,求n 的值.(2)若()3915n m a b b a b ⋅⋅=,求m 、n 的值.【标准答案与解析】一.选择练习题1. 【标准答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=. 2. 【标准答案】C ;【解析】2222n n n n n a a a a ++++⋅==.3. 【标准答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=.4. 【标准答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510.5. 【标准答案】D ;【解析】()333xy x y =;()2224525xy x y -=;()22439x x -=.6. 【标准答案】C ;【解析】()333915288,39,315m n m n a ba b a b m n ====,解得m =3,n =5. 二.填空题7. 【标准答案】30;【解析】2226530m n m n +==⨯=g .8. 【标准答案】6;【解析】3119,3119,6x a a x x +=+==.9. 【标准答案】25;【解析】()2632525n n a a ===. 10.【标准答案】5;1;【解析】338,38,5m m a a a a m m +⋅==+==;3143813,314,1x x x +==+==.11.【标准答案】64;9n -;103-;12.【标准答案】200;【解析】()()32322222()8()81000800200n n n n a a a a --=-=-=. 三.解答题13.【解析】解:(1)×;(2)×;(3)×;(4)×14.【解析】解:(1)3843241237()()x x x x x xx ⋅-⋅-=-⋅⋅=-; (2)233322696411()()327a b a b a b a b -+-=-+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272aa a a a a a -+-⋅=-⋅=-. 15.【解析】解:(1)∵3335n n x xx +⋅= ∴ 4335n x x +=∴4n +3=35∴n =8(2)m =4,n =3解:∵()3915n m a b ba b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15∴n =3且m =4就这么多了,祝大家思修不挂科!!!页眉设计。