Atmospheric acidification of mineral aerosols a source of bioavailable phisphorus for the oceans
2019年1月26日雅思机经真题回忆

2019年1月26日雅思机经真题回忆于某事Dishes get served 上菜Easily get influenced by adrenalin 轻易受肾上腺素影响【阅读】考试概述今天阅读考试整体文章难度不大,但是因为综合了较多题型,并且第三篇出现了主旨匹配和人名匹配的综合,使得整体考试难度有所上升。
题目分析Passage 1文章题材:说明文(自然科普)文章题目:新西兰儿童Robin发现头盖骨之谜文章难度:★★文章内容:新西兰儿童Robin发现了海边的一个头盖骨,三位博士对此发现进行了研究,并测定这个头骨的年代属于296年。
题型及数量:9填空题+4判断题1. TRUE2. FALSE3. NOT GIVEN4. FALSE5. specialists6. European7. radiocarbon8. 2969. race10. gender11. Australia12. archaeologists13. shipwreck可参考真题:C7T3P2:Population movements and genetics Passage 2文章题材:说明文(自然科普)文章题目:Coral Reef (珊瑚礁)文章难度:★★★文章内容:文章介绍了珊瑚礁的分布和价值,存在的问题(减少)以及人们为保护珊瑚礁做出的努力。
题型及数量:6个段配信息+6个判断+1主旨类单选14. 待补充15. A16. C17. A18. F19. C20. NOT GIVEN21. TRUE22. NOT GIVEN23. FALSE24. NOT GIVEN25. TRUE26. C. economic importance about coral reef可参考真题:C8T2P2:The Little Ice Age考试原文:Coral reefsCoral reefs are underwater structures made from calcium carbonate secretedby corals. Coral reefs are colonies of tiny living animals found in marinewaters that contain few nutrients. Most coral reefs are built from stony corals,which in turn consist of polyps that cluster in groups.A Coral reefs are estimated to cover 284,300 km2 just under 0.1% of theoceans' surface area, about half the area of France. The Indo-Pacific regionaccounts for 91.9% of this total area. Southeast Asia accounts for 32.3% of thatfigure, while the Pacific including Australia accounts for 40.8%. Atlantic andCaribbean coral reefs account for 7.6%. Yet often called “rainforests of thesea", coral reefs form some of the most diverseecosystems on Earth. Theyprovide a home for 25% of all marine species, including fish, mollusks , worms,crustaceans, echinoderms, sponges, tunicates and other cnidarians.Paradoxically, coral reefs flourish even though they are surrounded byoceanwaters that provide few nutrients. They are most commonly found at shallowdepths in tropical waters, but deep water and cold water corals also exist onsmaller scales in other areas. Although corals exist both in temperate andtropical waters, shallow-water reefs form only in a zone extending from 30°N to30°S of the equator. Deep water coral can exist at greater depths and coldertemperatures at much higher latitudes, as far north as Norway. Coral reefs arerare along the American and African west coasts. This is due primarily toupwelling and strong cold coastal currents that reduce water temperatures inthese areas (respectively the Peru, Benguela and Canary streams). Corals areseldom found along the coastline of South Asia from the eastern tip ofIndia(Madras) to the Bangladeshand Myanmar borders. They are also rare along thecoast around northeastern South America and Bangladesh due to the fresh waterrelease from the Amazon and Ganges Rivers, respectively.B Coral reefs deliver ecosystem services to tourism, fisheries andcoastline protection. The global economic value of coral reefs has beenestimated at as much as $US375 billion per year. Coral reefs protect shorelinesby absorbing wave energy, and many small islands would not exist without theirreef to protect them.C The value of reefs in biodiverse regions can be even higher. In parts ofIndonesia and the Caribbean where tourism is the main use, reefs are estimatedto be worth US$1 million per square kilometer, based on the cost of maintainingsandy beaches and the value of attracting snorkelers and scuba divers.Meanwhile, a recent study of the Great Barrier Reef in Australia found that thereef is worth more to the country as an intact ecosystem than an extractivereserve for fishing. Each year more than 1.8 million tourists visit the reef,spending an estimated AU$4.3 billion (Australian dollars) on reef-relatedindustries from diving to boat rental to posh island resort stays. In theCaribbean, says UNEP, the net annual benefits from diver tourism was US$2billionin 2000 with US$625 million spent directly on diving on reefs. Further, reeftourism is important source of employment, especially for some of the world'spoorest people. UNEP says that of the estimated 30 million small-scale fishersin the developing world, most are dependent to a greater or less erextent oncoral reefs. In the Philippines, for example, more than one million small-scalefishers depend directly on coral reefs for their livelihoods. The reportestimates that reef fisheries were worth between $15,000and $150,000per squarekilometer a year, while fish caught for aquariums were worth $500 a kilogramagainst $6 for fish caught as food. The aquarium fish export industry supportsaround 50,000 people and generates some US$5.5 million a year in SriLankaalong.D Unfortunately, coral reefs are dying around the world. In particular,coral mining, agricultural and urban runoff, pollution (organic andinorganic),disease, and the digging of canals and access into islands and baysare localized threats to coral ecosystems. Broader threatsare sea temperaturerise, sea level rise and pH changes from ocean acidification , all associatedwith greenhouse gas emissions. Some current fishing practices are destructiveand unsustainable. These include cyanide fishing, overfishing and blast fishing.Although cyanide fishing supplies live reef fish for the tropical aquariummarket, most fish caught using this method are sold in restaurants, primarily inAsia, where live fish are prized for their freshness. To catch fish withcyanide, fishers dive down to the reef and squirt cyanide in coral crevices andon the fast-moving fish, to stun the fish making them easy to catch. Overfishingis another leading cause for coral reef degradation. Often, too many fish aretaken from one reef to sustain a population in that area. Poor fishingpractices, such as banging on the reef with sticks (muro-ami),destroy coralformations that normally function as fish habitat. In some instances, peoplefish with explosives (blast fishing), which blast apart the surroundingcoral.E Tourist resorts that empty their sewage directly into the watersurrounding coral reefs contribute to coral reef degradation. Wastes kept inpoorly maintained septic tanks can also leak into surrounding ground water,eventually seeping out to the reefs. Careless boating, diving, snorkeling andfishing can also damage coral reefs. Whenever people grab, kick, and walk on, orstir up sediment in the reefs, they contribute to coral reef destruction. Coralsare also harmed or killed when people drop anchors on them or when peoplecollect coral.F To find answers for these problems, scientists and researchers study thevarious factors that impact reefs. The list includes the ocean's role as acarbon dioxide sink, atmospheric changes, ultraviolet light , oceanacidification, viruses, impacts of dust storms carrying agents to far flungreefs, pollutants, algal blooms and others. Reefs are threatened well beyondcoastal areas. General estimates show approximately 10% of the world’s coralreefs are dead. About 60% of the world's reefs are at risk due to destructive,human-related activities. The threat to the health of reefs is particularlystrong in Southeast Asia, where 80% of reefs are endangered.G In Australia, the Great Barrier Reef is protected by the Great BarrierReef Marine Park Authority, and is the subject of much legislation, including abiodiversity action plan. Inhabitants of Ahus Island, Manus Province, Papua NewGuinea, have followed a generations-old practice of restricting fishing in sixareas of their reef lagoon. Their cultural traditions allow line fishing, butnot net or spear fishing. The result is both the biomass and individual fishsizes are significantly larger than in places where fishing is unrestricted.Passage 3文章题材:说明文(商业科普)文章题目:Flexible Work文章难度:★★★文章内容:文章介绍了弹性的工作制度给员工和公司带来的好处题型及数量:LOH(主旨匹配)8题+填空题3题+人名匹配3题题目及答案:27. C28. A29. D30. B31. 待补充32. F33. H34. I35. C36. A37. B38. satisfaction39. email40. tasks可参考真题:C13T2P3:Making the most of trends【写作】TASK 1题目:The table below shows the improvements in medical care in threedifferent European countries between 1980 to 2000.类型:表格题/动态图考点/写作要点:1. 时态:过去时;2. 该题数据很多,可以先看总体趋势,基本上病人的数量和医院床位都呈上升趋势,住院时间呈下降趋势;3. 其次可以进行各项之间数据的趋势比较(max/min/倍数/分数),英国的病人数量是三个国家中最多的,在2000年刚好是澳大利亚的三倍;4. 三个国家住院时间下降的趋势相似,值得注意的是在1990-2000年期间,美国的医院病床数量增加的趋势最快,其次是澳大利亚。
行星撞击恐龙原因英文作文

行星撞击恐龙原因英文作文Title: The Impact of Planetary Collision on the Extinction of Dinosaurs。
Introduction:The extinction of dinosaurs has long fascinated scientists and the public alike. Among the various theories proposed, one of the most compelling explanations is the impact of a massive celestial body, such as an asteroid or comet, colliding with Earth. In this essay, we will delve into the reasons behind this catastrophic event and its implications for the demise of dinosaurs.The Hypothesis:The hypothesis of a planetary collision leading to the extinction of dinosaurs gained significant traction following the discovery of the Chicxulub crater off the coast of Mexico's Yucatán Peninsula. This crater,measuring approximately 180 kilometers (112 miles) in diameter, is widely believed to be the remnants of the impact that occurred around 66 million years ago, coinciding with the mass extinction event at the end of the Cretaceous period.Mechanism of Destruction:When a celestial body, such as an asteroid or comet, collides with Earth, it releases an immense amount of energy upon impact. The force generated is equivalent to billions of atomic bombs detonating simultaneously. The initial impact causes widespread devastation in the form of shockwaves, earthquakes, and tsunamis, which can ravage the surrounding landscapes and coastlines.Furthermore, the collision ejects vast quantities of debris and dust into the atmosphere, blocking out sunlight and triggering a phenomenon known as "impact winter." This prolonged period of darkness and cold temperatures disrupts ecosystems worldwide, leading to a collapse in photosynthesis and the food chain.Environmental Effects:The environmental effects of a planetary collision are profound and far-reaching. The sudden release of heat and energy upon impact can ignite wildfires across vast regions, further exacerbating the environmental devastation. The atmospheric debris, including soot and aerosols,contributes to a global cooling effect, which can last for years or even decades.Additionally, the acid rain resulting from the interaction of atmospheric gases with the ejected debriscan lead to the acidification of water bodies, further compromising aquatic ecosystems. The combination of these environmental stressors creates a hostile environment for many species, including dinosaurs, pushing them to thebrink of extinction.Impact on Dinosaurs:Dinosaurs, as the dominant terrestrial vertebrates ofthe Mesozoic era, were particularly vulnerable to the effects of a planetary collision. Their large size and specialized ecological niches made them susceptible to changes in food availability and habitat conditions. The disruption of plant life due to reduced sunlight would have had cascading effects on herbivorous dinosaurs, leading to food shortages and population declines.Moreover, the collapse of herbivore populations would have had ripple effects throughout the ecosystem, impacting the carnivorous dinosaurs that preyed upon them. With their food sources dwindling and environmental conditions deteriorating, many dinosaur species would have struggled to survive in the aftermath of the planetary collision.Conclusion:In conclusion, the impact of a planetary collision represents a compelling explanation for the extinction of dinosaurs at the end of the Cretaceous period. The immense energy released upon impact, coupled with the environmental effects of atmospheric debris and global cooling, created acataclysmic event that reshaped the Earth's ecosystems. While other factors may have contributed to the demise of dinosaurs, the evidence supporting the role of a planetary collision is substantial, highlighting the interconnectedness of celestial events and terrestrial life.。
大气氮沉降对森林土壤酸化的影响_肖辉林

第37卷第4期2001年7月林业科学SCIENTIA SILVAE SINICAE Vol .37,No .4Jul .,2001大气氮沉降对森林土壤酸化的影响肖辉林(广东省生态环境与土壤研究所 广州510650)摘 要: 因大气污染而不断增加的大气氮沉降量,在许多地区超过了森林生态系统的氮需求。
氮在土壤中的化学和生物化学反应对H +离子的产生与消耗有重要影响。
NH +4和NO -3输入与输出的平衡状态影响着土壤-土壤溶液系统的酸化速率。
过剩的氮沉降将增加NH +4的硝化和NO -3的淋失,加速土壤的酸化。
土壤酸化对森林有危害作用。
关键词: 大气污染,氮沉降,森林土壤,酸化收稿日期:1999-11-30。
基金项目:广东省农业环境综合治理重点试验室资助项目。
EFFECTS OF ATMOSPHERIC NITROGEN DEPOSITIONON FOREST SOIL AC IDIFIC ATI ONXiao Huilin 1(1.G uangdong Institut e of Ec o -environme ntal and Soil Sciences G uangzhou 510650)A bstract : The increased deposition of atmospheric nitr ogen due to the air pollution has exceeded the demands of forest ec osystems in many areas .The chemical and biochemical reactions of nitrogen in soils have significant effects on the production and consumption of H +.The balance between the inputs and outputs of NH +4and NO -3determines the rate of acidification of the soil -soil solution system .Excessive nitrogen deposition will enhanc e the nitrification ofNH +4and the leaching of NO -3,which are the processes of strong acidification .An increase in the NO -3concentration will increase the acidity and aluminium concentration in the soil solution .Basic cations will be leached out for ac -companying the NO -3leaching ,resulting in the acceleration of soil acidification .Soil acidification is har mful to for -est .Key words : Atmospheric pollution ,Nitrogen deposition ,Forest soil ,Acidification由于人类活动的影响,几十年来,大气氮化合物的沉降量已明显增加(Bartnicki et al .,1989;Brimble -combe et al .,1982)。
不同珊瑚对酸化、苯并[a]芘单一和复合胁迫的生理响应
![不同珊瑚对酸化、苯并[a]芘单一和复合胁迫的生理响应](https://img.taocdn.com/s3/m/b6990ab0f71fb7360b4c2e3f5727a5e9856a27f2.png)
生态毒理学报Asian Journal of Ecotoxicology第18卷第3期2023年6月V ol.18,No.3Jun.2023㊀㊀基金项目:国家自然科学基金资助项目(4196070185);2020年海南省普通高等学校研究生创新科研课题(Hys2020-186)㊀㊀第一作者:陈雨梅(1998 ),女,硕士研究生,研究方向为海洋环境胁迫与生态系统响应,E -mail:*****************㊀㊀*通信作者(Corresponding author ),E -mail:*******************.cnDOI:10.7524/AJE.1673-5897.20221003001陈雨梅,齐钊,尹连政,等.不同珊瑚对酸化㊁苯并[a]芘单一和复合胁迫的生理响应[J].生态毒理学报,2023,18(3):456-464Chen Y M,Qi Z,Yin L Z,et al.Physiological responses of different corals under single and combined stress of acidification and benzo[a]pyrene [J].Asi -an Journal of Ecotoxicology,2023,18(3):456-464(in Chinese)不同珊瑚对酸化㊁苯并[a ]芘单一和复合胁迫的生理响应陈雨梅1,2,齐钊1,2,尹连政1,2,常逢彤1,2,鞠涵烨3,刁晓平1,*1.南海海洋资源利用国家重点实验室,海口5702282.海南大学生态与环境学院,海口5702283.海南师范大学生命科学学院,海口571158收稿日期:2022-10-03㊀㊀录用日期:2023-01-11摘要:海洋酸化和持久性有机污染物的排放对珊瑚礁生态系统的健康具有负面影响㊂为阐明酸化㊁苯并[a]芘(benzo[a]pyrene,BaP)单一及复合胁迫对2种不同形态珊瑚共生虫黄藻光合生理指标和抗氧化酶活性的影响,本研究以澄黄滨珊瑚(Porites lut -ea )和多孔鹿角珊瑚(Acropora milllepora )为研究对象,分析了不同胁迫处理(酸化㊁BaP 胁迫㊁酸化与BaP 复合胁迫)对2种珊瑚的共生虫黄藻密度㊁叶绿素a 含量以及抗氧化酶活性的毒性效应㊂研究结果显示,单一酸化胁迫(pH =7.8)下,多孔鹿角珊瑚共生虫黄藻密度㊁叶绿素a 含量和超氧化物歧化酶(SOD)酶活性呈显著下降(P <0.01),过氧化物酶(POD)酶活性显著上升(P <0.01);澄黄滨珊瑚共生虫黄藻密度㊁叶绿素a 含量无显著变化,SOD ㊁POD 酶活性显著下降(P <0.01)㊂单一BaP(10μg ㊃L -1)胁迫下,多孔鹿角珊瑚共生虫黄藻的密度㊁叶绿素a 含量显著下降(P <0.01),SOD ㊁POD 酶活性无显著变化;澄黄滨珊瑚共生虫黄藻密度无显著变化,叶绿素a 含量显著下降(P <0.01),SOD ㊁POD 酶活性明显升高(P <0.01);在海水酸化复合BaP 胁迫下,多孔鹿角珊瑚的共生虫黄藻叶绿素a 含量㊁SOD 酶活性显著下降(P <0.01),澄黄滨珊瑚共生虫黄藻密度显著升高(P <0.05),POD 酶活性显著下降(P <0.01)㊂研究结果表明,珊瑚对不同环境的胁迫响应存在种间差异,多孔鹿角珊瑚较澄黄滨珊瑚更加敏感;珊瑚共生虫黄藻叶绿素a 含量变化更适合作为海洋酸化㊁BaP 胁迫的指示因子㊂关键词:海水酸化;苯并[a]芘;珊瑚;共生虫黄藻;生理响应文章编号:1673-5897(2023)3-456-09㊀㊀中图分类号:X171.5㊀㊀文献标识码:APhysiological Responses of Different Corals under Single and Combined Stress of Acidification and Benzo [a ]pyreneChen Yumei 1,2,Qi Zhao 1,2,Yin Lianzheng 1,2,Chang Fengtong 1,2,Ju Hanye 3,Diao Xiaoping 1,*1.State Key Laboratory of Marine Resources Utilization in South China Sea,Haikou 570228,China2.College of Ecology and Environment,Hainan University,Haikou 570228,China3.College of Life Sciences,Hainan Normal University,Haikou 571158,ChinaReceived 3October 2022㊀㊀accepted 11January 2023Abstract :The health of coral reef ecosystem has been negatively impacted by ocean acidification (OA)and the第3期陈雨梅等:不同珊瑚对酸化㊁苯并[a]芘单一和复合胁迫的生理响应457㊀discharge of persistent organic pollutants(benzo[a]pyrene,BaP).In order to elucidate the individual and combined effects of OA and BaP on the algal photo-physiology and antioxidant system of coral holobionts,we measured the Symbiodiniaceae density and chlorophyll a content,as well as antioxidant enzyme activities of holobionts in two reef-building corals,Acropora milllepora and Porites lutea,respectively.The results showed that OA(pH=7.8) caused a significant decrease in Symbiodiniaceae density,chlorophyll a content,and superoxide dismutase(SOD) activity,but a significant increase in peroxide(POD)activity(P<0.01)in lepora,whereas no significant vari-ation in two algal photo-physiological indexes and a significant decrease(P<0.01)in SOD and POD activities of P.lutea.An exposure of10μg㊃L-1induced significant decrease in Symbiodiniaceae density and chlorophyll a con-tent(P<0.01),but there has no significant change in SOD and POD activities of lepora.Additionally,chloro-phyll a content significantly decreased(P<0.01),but SOD and POD activities were significantly elevated in P.lutea (P<0.01).Under combined stressors exposure,the chlorophyll a content and SOD activity significantly declined(P <0.01)in lepora,while Symbiodiniaceae density significantly increased(P<0.05)in P.lutea accompanied with significantly decreased POD activity(P<0.01).Our findings suggested that lepora is more sensitive than P.lutea to the environmental stress.The chlorophyll a content appears suitable as the bio-indicator to monitor ocean acidification and BaP pollution.Keywords:acidification;benzo[a]pyrene;coral;Symbiodiniaceae;physiological index㊀㊀海洋酸化已经成为珊瑚礁生态系统健康的主要威胁[1]㊂据美国国家海洋和大气管理局(National O-ceanic and Atmospheric Administration,NOAA)报告,2021年全球平均大气CO2含量为414.72mg㊃L-1㊂如果全球能源需求持续增长,到21世纪末,大气中的CO2含量可能达到800mg㊃L-1甚至更高[2]㊂近20年来,海洋表层水pH值每10年下降0.017~ 0.027个单位[3],随着大气中CO2浓度不断增加,海洋对大气中CO2的吸收速度继续加快㊂预计到21世纪末pH将下降0.2~0.4个单位[4]㊂随着海洋酸化程度的加深,最终会导致珊瑚礁结构的损坏和珊瑚的生长[5]㊂Vogel等[6]指出,酸化程度的加剧对珊瑚产生了负面影响,且海水酸化和其他环境胁迫可能对珊瑚产生累加的负面影响㊂因此,不同种类的珊瑚对海洋酸化的响应差异,以及多种环境压力因素之间的相互作用还需要进行更多的研究[7]㊂苯并[a]芘(benzo[a]pyrene,BaP)是持久性有机污染物多环芳烃(PAHs)的典型代表㊂近年来,持续的人类活动导致更多的PAHs通过空气-水交换和沉积进入海洋,威胁到珊瑚礁生物和整个珊瑚礁生态系统[8]㊂据报道,PAHs广泛存在于南海沿岸甚至近海的海水和珊瑚礁区中[9]㊂在海南岛近岸的部分珊瑚礁区中,水体的PAHs含量为13.60~407.82ng㊃L-1,沉积物中25.3~387.5ng㊃g-1(以干质量计),而珊瑚体内含量达到209.41~824.52ng㊃g-1(以干质量计),显著高于周围环境中的浓度,说明珊瑚对PAHs 具有较强的富集效应[10-11]㊂由于全球变化和人类活动的影响,海水酸化和BaP均已成为威胁珊瑚生存的重要环境因子,而海洋酸化与有机污染物污染在海洋环境中更多是相伴出现,海水酸化极有可能改变BaP等污染物的海洋环境行为,进而影响其毒理效应㊂目前,海水酸化和BaP对造礁珊瑚毒理效应的相关研究大多是针对单一的因素开展,关于酸化和BaP联合胁迫影响珊瑚的研究尚鲜有文献报道,与单一环境因子相比,联合因子的协同作用对珊瑚的影响研究更复合实际[12]㊂珊瑚共生虫黄藻的叶绿素含量和细胞密度情况以及珊瑚共生体抗氧化酶活性可以反映珊瑚的健康状况[11,13-14],因此,本研究选用2种不同形态的珊瑚为受试对象,探究酸化㊁BaP单一和复合污染对珊瑚共生虫黄藻细胞密度㊁叶绿素含量和珊瑚共生体抗氧化酶活性的影响,筛选出敏感的生物标志物,以期为阐明海洋酸化-BaP的联合毒性效应和不同形态珊瑚的环境耐受性提供科学依据和基础数据㊂1㊀材料与方法(Materials and methods)1.1㊀实验试剂苯并[a]芘(BaP)为色谱纯,购自Sigma公司,二甲基亚砜(DMSO)为分析纯,购自西陇科学股份有限公司㊂超氧化物歧化酶(SOD)㊁过氧化物酶(POD)和考马斯亮蓝法蛋白定量(TP)均由南京建成生物工程458㊀生态毒理学报第18卷研究所提供㊂1.2㊀实验材料2021年6月在三亚凤凰岛采集澄黄滨珊瑚(Porites lutea)和多孔鹿角珊瑚(Acropora milllepora),分为3~5cm2左右的断枝,继续进行2周适应性养殖㊂养殖珊瑚使用经过沉淀和0.5μm滤膜过滤的自然海水,盐度34‰~35‰,pH为8.10ʃ0.20,每天固定12h光照和12h黑暗,光照强度为300μmol photons㊃m-2㊃s-1,水温保持在24~25ħ㊂之后,健康的珊瑚块被用于单一胁迫和海水复合BaP胁迫实验㊂1.3㊀珊瑚暴露实验及样品采集依据文献报道和实验室前期研究结果[11,13-16],实验设置空白对照组(CK)㊁酸化处理组(pH7.80)㊁BaP处理组(10μg㊃L-1)和酸化BaP复合处理组(pH 7.80,BaP10μg㊃L-1)㊂所有实验处理组均设3个平行,每组放置9~16个珊瑚断枝㊂实验期间,其海水温度㊁盐度㊁光照时间与驯养期间的保持一致㊂酸化胁迫pH控制:由CO2加富器(武汉瑞华仪器设备有限公司,CE100D型)注入CO2,实现水体pH调节,并使用pH计(梅特勒-托利多仪器(上海)有限公司,Five Easy Plus FP20pH/mV,仪表级别0.01级)进行监测㊂BaP胁迫浓度控制:BaP处理组中溶剂DMSO 的终浓度低于海水体积(5L)的1‰,以避免溶剂干扰;每日定时更换全部海水,并分别向各胁迫组添加固定体积的BaP母液,以确保每日BaP胁迫浓度一致㊂实验样品采集:收集胁迫实验第7天的珊瑚样品,立即转移到-40ħ冰箱保存㊂1.4㊀虫黄藻叶绿素含量和密度的测定珊瑚骨骼表面积测定[11]:锡箔纸包裹缠绕珊瑚表面,只包裹有虫黄藻部分;去除多余锡箔纸,将包裹珊瑚表面的锡箔纸平铺粘贴于测量纸上并备注好对应样品编号,设置标尺㊂扫描结果于Image J估算表面积(至少测3次重复)㊂所测珊瑚骨骼表面积(cm2)用于虫黄藻叶绿素和细胞密度单位面积含量的计算㊂虫黄藻收集:人工海水(GB17378.4 2007)[17]事先放置于4ħ冰箱保存,洗牙器加入人工海水将珊瑚骨骼冲洗至白化,冲洗液过300目细胞筛后装入离心管,4ħ㊁4000r㊃min-1离心10min去上清定容至10mL;定容好的藻液分装5mL用于叶绿素测定,其余用于虫黄藻细胞计数㊂虫黄藻密度测定[11]:100μL藻液每次匀浆并吸取10μL血球计数板于显微镜下(物镜10ˑ,目镜10ˑ)计数,并重复9次㊂按照式(1)计算㊂细胞数(cells㊃mL-1)=80小格细胞数/80ˑ400ˑ104(1)丙酮萃取叶绿素:分装好的5mL藻液于4ħ㊁4000r㊃min-1离心10min,去除海水,加入等体积90%丙酮[11],锡纸包裹避光;细胞破碎仪70Hz破碎60s后放入-20ħ冰箱萃取24h㊂萃取结束后4500r㊃min-1离心15min去除杂质,上清用于紫外分光光度计测量(645nm㊁663nm),测量3次重复㊂按照式(2)计算[11],CHLa=12.7A663-2.69A645(2)式中:CHLa为叶绿素a含量(μg㊃L-1);A663为波长663的吸光度;A645为波长645的吸光度㊂1.5㊀珊瑚抗氧化酶活性的测定人工海水事先放置于4ħ冰箱保存,洗牙器加入人工海水将珊瑚骨骼冲洗至白化,获得珊瑚组织冲洗液,装入50mL离心管里,4ħ㊁4000r㊃min-1离心10min去上清定容至10mL;定容好的珊瑚组织液根据以下方法制备组织匀浆㊂参照试剂盒附送的‘实验方法学“,按照最佳取样量制备对应浓度组织匀浆㊂总蛋白含量:珊瑚组织液4ħ㊁4000r㊃min-1离心10min去上清,获得珊瑚待测组织质量,按珊瑚组织沉淀质量(g)ʒ体积(mL)=1ʒ49的比例加入49倍体积的生理盐水(2%组织匀浆),冰水浴的条件机械匀浆1min,4ħ㊁2500r㊃min-1离心10min,取上清待测㊂SOD酶:珊瑚组织液4ħ㊁4000r㊃min-1离心10min去上清,获得珊瑚待测组织质量,按珊瑚组织沉淀质量(g)ʒ体积(mL)=1ʒ9的比例加入9倍体积的生理盐水(10%组织匀浆),冰水浴的条件机械匀浆1min,4ħ㊁3500r㊃min-1离心10min,取上清待测㊂POD酶:珊瑚组织液4ħ㊁4000r㊃min-1离心10min去上清,获得珊瑚待测组织质量,按珊瑚组织沉淀质量(g)ʒ体积(mL)=1ʒ4的比例加入4倍体积的生理盐水(20%组织匀浆),冰水浴的条件机械匀浆1min,4ħ㊁3500r㊃min-1离心10min,取上清待测㊂匀浆制备完成,上清用于测定总蛋白含量和抗氧化酶活性,所测总蛋白含量用以计算,并统一酶活第3期陈雨梅等:不同珊瑚对酸化㊁苯并[a]芘单一和复合胁迫的生理响应459㊀单位㊂1.6㊀数据分析与统计使用IBM SPSS Statistics 26.0统计软件进行单因素方差分析和Duncan 多重比较,以P <0.05㊁P <0.01作为差异显著水平,使用Origin 2022软件进行数据可视化㊂2㊀结果(Results )2.1㊀单一及复合胁迫对2种珊瑚共生虫黄藻细胞密度的影响酸化㊁苯并[a]芘单一和复合胁迫对澄黄滨珊瑚(P.lutea )和多孔鹿角珊瑚(llepora )共生虫黄藻细胞密度的影响如图1所示㊂胁迫7d 后,酸化组㊁BaP 组澄黄滨珊瑚的共生虫黄藻密度与对照组相比无显著差异(P >0.05),复合胁迫组共生虫黄藻密度则明显升高(P<0.05)㊂多孔鹿角珊瑚的共生虫黄藻密度在酸化组㊁BaP 组明显降低,与对照组相比,具有显著差异(P <0.01);复合胁迫组与对照组相比,虫黄藻密度呈下降趋势,但无显著差异(P >0.05)㊂多孔鹿角珊瑚虫黄藻密度的变化对不同胁迫方式更加敏感㊂图1㊀单一及复合胁迫对2种珊瑚共生虫黄藻细胞密度的影响注:Control 表示空白对照组,Acid 表示海水酸化组,BaP 表示苯并[a]芘胁迫组,Acid+BaP 表示复合胁迫组;*表示P <0.05,**表示P <0.01㊂Fig.1㊀Effects of single and combined stresses on cell densityof two coral symbionts SymbiodiniaceaeNote:Control indicates blank control group,Acid indicates seawater acidification group,BaP indicates benzo[a]pyrene stress group,and Acid+BaP indicates compound stress group;*symbol of significantdifference P <0.05,**symbol of significant difference P <0.01.2.2㊀单一及复合胁迫对2种珊瑚共生虫黄藻叶绿素a 含量的影响酸化-苯并[a]芘复合胁迫对澄黄滨珊瑚(P.lutea )和多孔鹿角珊瑚(llepora )共生虫黄藻叶绿素a 含量的影响如图2所示㊂胁迫7d 后,与对照组相比,澄黄滨珊瑚的共生虫黄藻叶绿素a 含量在酸化组㊁复合胁迫组呈下降趋势,但与对照组相比均无显著差异(P >0.05),BaP 胁迫组虫黄藻叶绿素a 含量明显下降,与对照组相比具有显著差异(P <0.01)㊂酸化组㊁BaP 胁迫组和复合胁迫组多孔鹿角珊瑚共生虫黄藻叶绿素a 含量均明显减低,与对照组相比具有显著差异(P<0.01),说明相较于澄黄滨珊瑚,多孔鹿角珊瑚虫黄藻叶绿素a 含量变化对环境胁迫更加敏感㊂图2㊀单一及复合胁迫对2种珊瑚共生虫黄藻叶绿素a 含量的影响注:*表示显著P <0.05,**表示显著P <0.01㊂Fig.2㊀Effects of single and combined stresses on chlorophylla content of two coral symbionts SymbiodiniaceaeNote:*symbol of significant difference P <0.05,**symbol of significant difference P <0.01.2.3㊀单一及复合胁迫对澄黄滨珊瑚抗氧化酶活性的影响3种不同的胁迫处理对澄黄滨珊瑚SOD 酶(图3(a))和POD 酶活性(图3(b))的影响趋势是一致的,表现为酸化胁迫导致2种酶的活性显著下降,BaP 胁迫则能够明显诱导2种酶的活性,与对照组相比均具有显著差异(P <0.01);复合胁迫后,澄黄滨珊瑚SOD 酶有下降趋势,但与对照组相比,并未存在显著性差异(P >0.05);而POD 酶活性明显降460㊀生态毒理学报第18卷低,表现出显著差异(P <0.01)㊂结果表明,单一胁迫对澄黄滨珊瑚SOD 酶活性的影响要大于复合胁迫,澄黄滨珊瑚SOD 和POD 酶活对不同胁迫的响应一致㊂2.4㊀单一及复合胁迫对多孔鹿角珊瑚抗氧化酶活性的影响不同的胁迫方式对多孔鹿角珊瑚SOD 酶(图4(a))和POD 酶活性(图4(b))的影响不同㊂由图4可知,酸化胁迫后SOD 酶活性受到明显抑制,而POD 酶活性受到诱导增加,与对照组相比具有显著差异(P <0.01);BaP 暴露后,对SOD 酶和POD 酶活性没有明显影响㊂而复合胁迫能抑制2种酶的活性,导致SOD 酶活性显著下降(P<0.01);POD 酶活性与对照组相比虽有下降趋势,但未存在明显差异㊂与其他2种胁迫方式相比,酸化胁迫对多孔鹿角珊瑚抗氧化酶活性的影响更大㊂图3㊀单一及复合胁迫对澄黄滨珊瑚(P.lutea )抗氧化酶活性的影响注:(a)超氧化物歧化酶(SOD)活性,(b)过氧化物酶(POD)活性;*表示显著P <0.05,**表示显著P <0.01㊂Fig.3㊀Effects of single and combined stresses on the antioxidant enzyme activities of P.luteaNote:(a)Superoxide dismutase (SOD)activity;(b)Peroxide (POD)activity;*Symbol of significant difference P <0.05,**Symbol of significant difference P<0.01.图4㊀单一及复合胁迫对多孔鹿角珊瑚(llepora )抗氧化酶活性的影响注:(a)超氧化物歧化酶(SOD)活性,(b)过氧化物酶(POD)活性;*表示显著P <0.05,**表示显著P <0.01㊂Fig.4㊀Effects of single and combined stresses on the antioxidant enzyme activities of lleporaNote:(a)Superoxide dismutase (SOD)activity;(b)Peroxide (POD)activity;*Symbol of significant difference P <0.05,**Symbol of significant difference P <0.01.第3期陈雨梅等:不同珊瑚对酸化㊁苯并[a]芘单一和复合胁迫的生理响应461㊀3㊀讨论(Discussion)珊瑚共生虫黄藻的叶绿素含量和细胞密度可以用来区分珊瑚的应激和功能失调的状态[18],因此可被作为一种生物测定方法用以评估珊瑚所面临的压力㊂有研究显示,珊瑚共生虫黄藻正常发育需要偏碱性环境[19]㊂我们的研究结果显示,在单独的海水酸化条件下(pH=7.8),胁迫第7天时,澄黄滨珊瑚和多孔鹿角珊瑚的共生虫黄藻细胞密度和叶绿素a浓度下降,其中多孔鹿角珊瑚表现为显著下降(P <0.01),表明海水酸化可导致珊瑚单位面积共生虫黄藻的光合色素和虫黄藻密度明显降低,影响珊瑚与共生虫黄藻的共生关系㊂珊瑚共生虫黄藻为珊瑚提供了大部分的营养来源[20],海洋酸化降低了珊瑚共生虫黄藻的密度,影响了虫黄藻的光合作用,进而阻碍了营养的供应,对珊瑚健康造成威胁㊂有研究显示,不同种类的珊瑚对海洋酸化具有不同的抵抗力,我们的研究结果显示,多孔鹿角珊瑚对海水酸化的环境变化更加敏感,这与前人的研究结果相一致[21-22]㊂多孔鹿角珊瑚是枝状珊瑚,与澄黄滨珊瑚(块状)相比,具有更快的生长速度㊂研究发现,生长较快的珊瑚更容易受到海水酸化的影响[23-24]㊂有研究显示,在海洋酸化的背景下,对酸化敏感的物种会相对减少,抗酸性强的物种则会相对增多,生态系统内的多样性随之降低[25],而多样性下降很可能抑制珊瑚的生长和存活并引发负反馈,导致进一步的生态系统衰退[26],因此,枝状珊瑚的多样性,还能够间接体现其生活环境的基本情况㊂BaP主要通过细胞生物过程对生物产生毒性, Kennedy等[27]证实了BaP在共生虫黄藻中的累积会随着时间的推移和正常的光周期的增加而增加,而珊瑚失去共生虫黄藻可能是一种有效的解毒方式㊂有研究表明,BaP暴露可导致不同鹿角珊瑚共生虫黄藻光合效率和虫黄藻密度的降低,珊瑚与共生虫黄藻的共生关系受到胁迫[11,13]㊂在本研究中,BaP (10μg㊃L-1)胁迫7d后,澄黄滨珊瑚和多孔鹿角珊瑚共生虫黄藻的叶绿素a含量显著下降,且多孔鹿角珊瑚共生虫黄藻的细胞密度显著下降,这与上述文献的研究结果基本一致㊂此外,BaP暴露与海水酸化暴露对珊瑚影响的研究结果一致,同样表现为多孔鹿角珊瑚比澄黄滨珊瑚更容易受到影响㊂Scheufen等[18]强调不同珊瑚种类的骨架单元对珊瑚共生虫黄藻光合能力的重要性㊂因此,可以认为,由于形态和骨骼结构的差异,澄黄滨珊瑚(块状)与多孔鹿角珊瑚(枝状)对BaP的响应表现不一,这为识别物种形态在珊瑚表现和竞争能力方面的差异提供了依据㊂值得注意的是,我们研究的2种珊瑚中,耐受性更强的澄黄滨珊瑚在BaP胁迫下其共生虫黄藻密度未发生显著改变,但其共生虫黄藻叶绿素a 含量却显著下降,表明珊瑚共生虫黄藻密度的反应滞后于叶绿素a含量变化,这与雷新明等[28]的研究结果一致㊂由此可见,澄黄滨珊瑚的耐受性可能与更为稳定的珊瑚-虫黄藻共生关系相关㊂我们的研究发现,海水酸化-BaP复合胁迫下,澄黄滨珊瑚比多孔鹿角珊瑚更具耐受性㊂复合胁迫下,多孔鹿角珊瑚的共生虫黄藻单位面积密度㊁叶绿素a含量显著下降;澄黄滨珊瑚的共生虫黄藻单位面积密度显著上升,但其叶绿素a含量无显著变化, Terán等[29]的研究显示,增加虫黄藻密度能更有效地抵消细胞色素失衡,并且增强珊瑚吸收率㊂因此,澄黄滨珊瑚比多孔鹿角珊瑚更具耐受性,可能是其在应对复杂的环境胁迫时,能够增加虫黄藻密度,有效地调控机体内稳态㊂SOD酶是生物体内常见的抗氧化酶,能够消除机内的活性氧(reactive oxygen species,ROS),在抗氧化防御过程发挥了非常重要的作用[30]㊂然而,如果ROS产生过多,超出了机体自身的防御和去除能力,机体就会受到氧化胁迫[31]㊂我们的研究发现,在3种胁迫处理下,澄黄滨珊瑚和多孔鹿角珊瑚中的SOD酶活性呈现相同的反应模式,即与对照组相比,单一海水酸化胁迫和酸化-BaP复合胁迫均导致珊瑚SOD酶活性降低㊂海水酸化暴露7d后,2种珊瑚的SOD酶活性均呈显著下降(P<0.01),说明SOD酶活性受海水酸化(pH=7.8)的影响较大,可能是因为海水酸化刺激了细胞内芬顿(Fenton)反应产生更多的羟基自由基,导致细胞内酸中毒,从而抑制了珊瑚SOD酶的解毒功能[32],而韦晓慧[33]和张天宇等[34]研究中海水酸化(pH=7.6)导致日本虎斑猛水蚤(Tigriopus japonicus)和大马蹄螺(Trochus niloticus)的SOD酶活性上升,与本研究结果相反,可能是由于珊瑚作为共生有机功能体,对海水酸化胁迫更为敏感,pH=7.8时就表现出了免疫功能抑制㊂相较于对照组,BaP暴露7d后,2种珊瑚的SOD酶活性均上升,说明BaP胁迫的刺激促使了珊瑚产生抗氧化防御反应,增加体内的SOD酶活性来消除多余的ROS[13]㊂在海洋无脊椎动物免疫应答过程中,氧化应激462㊀生态毒理学报第18卷产生的抗氧化酶有SOD㊁过氧化氢酶(CAT)㊁POD和谷胱甘肽过氧化物酶(GPx)等,SOD酶能以超氧阴离子为作用底物,将其歧化成为H2O2和O2,紧接着POD酶将H2O2分解或利用,从而避免了氧化伤害[35],POD还参与了黑色素合成途径,具有消除过氧化氢和酚类㊁胺类㊁醛类㊁苯类毒性的双重作用,在大多数情况下为珊瑚提供了抵抗真菌病原体的能力[36-37],有研究证明POD活性较低的珊瑚容易患病[38]㊂黄昇[39]研究发现,酸化海水促进中华乌塘鳢(Bostrychus sinensis)黏液的分泌,引起体表黏液细胞的应激反应,使其皮肤表层免疫力减弱,且海水pH 为7.8时,有利于致病菌的繁殖和生物膜的形成,最终引起中华乌塘鳢出现皮肤红肿病㊂在我们的研究中,澄黄滨珊瑚POD酶活性应对各胁迫处理的响应与SOD酶一致,但POD酶活性反应比SOD酶活性更为灵敏㊂海水酸化会抑制澄黄滨珊瑚POD酶的活性,而BaP胁迫则导致机体产生O2-㊁H2O2和羟基自由基,从而启动POD酶的上调,引发珊瑚的抗氧化防御反应,在复合胁迫处理下,POD酶的活性受到抑制显著下降(P<0.01)㊂与澄黄滨珊瑚不同,多孔鹿角珊瑚在胁迫7d后,海水酸化组的POD酶活性显著上升,而BaP胁迫组和复合胁迫组则无显著变化,珊瑚应对不同的环境因子的响应过程不同且具有种间差异㊂崔雯婷[40]在海水酸化和镉复合胁迫褐牙鲆(Paralichthys olivaceus)仔鱼的研究中发现,海水酸化影响了受试生物抗氧化防御系统对重金属镉暴露的响应㊂我们的研究发现,海水酸化抑制了珊瑚的抗氧化酶活性,BaP则引发珊瑚的抗氧化防御反应,而海水酸化-BaP复合胁迫下,澄黄滨珊瑚和多孔鹿角珊瑚抗氧化酶活性受到抑制,表明海水酸化影响了珊瑚抗氧化防御系统对BaP暴露的响应,与前人研究相类似㊂综上所述,这些生理指标都反映珊瑚在海水酸化和BaP污染的环境胁迫下处于异常状态,且2种珊瑚应对单一及复合胁迫具有不同的生理响应㊂海水酸化(pH=7.8)胁迫7d后,珊瑚共生虫黄藻的光合色素和虫黄藻密度降低,珊瑚与虫黄藻的共生关系受到威胁㊂相较澄黄滨珊瑚,多孔鹿角珊瑚对海水酸化更加敏感;BaP(10μg㊃L-1)胁迫7d后,2种珊瑚单位面积共生虫黄藻的光合色素和虫黄藻密度降低,且多孔鹿角珊瑚共生虫黄藻比澄黄滨珊瑚更容易受到BaP的影响;海水酸化-BaP复合胁迫下,2种珊瑚共生虫黄藻的光合色素含量和密度比单一胁迫组更高㊂海水酸化和BaP污染对珊瑚的抗氧化防疫系统的影响因生理指标类别和珊瑚种类而异, POD㊁SOD酶活性在不同胁迫条件下的变化,体现了珊瑚的抗氧化防御酶在活性氧清除过程中的协调作用㊂珊瑚共生虫黄藻叶绿素a含量变化更适合作为海洋酸化㊁BaP胁迫的指示因子,我们的研究结果显示,多孔鹿角珊瑚对酸化㊁BaP单一胁迫和复合胁迫较澄黄滨珊瑚更加敏感㊂通信作者简介:刁晓平(1963 ),女,博士,教授,主要研究方向为环境胁迫对海洋生物的生态毒理效应㊂参考文献(References):[1]㊀Jiang J Y,Lu Y D.Metabolite profiling of Breviolumminutum in response to acidification[J].Aquatic Toxicol-ogy,2019,213:105215[2]㊀National Oceanic and Atmospheric Administration.Cli-mate Change:Atmospheric carbon dioxide[R].ColoradoBoulder,United States of America:National Oceanic andAtmospheric Administration(NOAA),2022[3]㊀Intergovernmental Panel on Climate Change2019:Chan-ging Ocean,Marine Ecosystems,and Dependent Commu-nities.IPCC Special Report on the Ocean and Cryospherein a Changing Climate[R].Genève:IntergovernmentalPanel on Climate Change(IPCC),2022[4]㊀Meron D,Rodolfo-Metalpa R,Cunning R,et al.Changesin coral microbial communities in response to a naturalpH gradient[J].The ISME Journal,2012,6(9):1775-1785[5]㊀Morais J,Medeiros A P M,Santos B A.Research gaps ofcoral ecology in a changing world[J].Marine Environ-mental Research,2018,140:243-250[6]㊀V ogel N,Meyer F W,Wild C,et al.Decreased light avail-ability can amplify negative impacts of ocean acidificationon calcifying coral reef organisms[J].Marine EcologyProgress Series,2015,521:49-61[7]㊀Kroeker K J,Kordas R L,Crim R N,et al.Meta-analysisreveals negative yet variable effects of ocean acidificationon marine organisms[J].Ecology Letters,2010,13(11): 1419-1434[8]㊀Zhang R J,Han M W,Yu K F,et al.Distribution,fate andsources of polycyclic aromatic hydrocarbons(PAHs)inatmosphere and surface water of multiple coral reef re-gions from the South China Sea:A case study in spring-summer[J].Journal of Hazardous Materials,2021,412: 125214。
环境工程专业英语词汇互译

二氧化碳Carbon dioxide温室气体Greenhouse gases氧气Oxygen臭氧层 Ozone layer大气过程Atmospheric processes空气一水相互作用Air-water interaction大气环流Atmospheric circulation 大气降水Atmospheric precipitation 碳循环Carbon cycle蒸发作用Evaporation降水增加Precipitation enhancement 降雨Rainfall太阳辐射Solar radiation蒸腾作用Transpiration风Winds空气污染Air pollution 酸雨Acid rain空气污染物Air pollutants氯氟碳Chlorofluorocarbons沉降的颗粒物Deposited particulatematter飞灰Fly ash雾Fog薄烟Haze空内空气污染Indoor air pollution 烟雾Smog气候问题Climatic issues气候Climate气候变化Climatic change气候带Climatic zones干旱Drought全球变暖Global warming温室效应Greenhouse effect湿度Humidity海平面上升Sea level rise岩石圈 lithosphere火山Volcanoes风蚀Wind erosion陆地生态系统terrestrialECOSYSTEMS土壤Soils农用土地Agricultural land碱地Alkali lands污染的土地Contaminated land沙坑Gravel pits荒地Heath lands土地承载能力Land carrying capacity土地污染Land pollution土地开垦Land reclamation半干旱地区生态系统Semi-arid land ecosystems森林生态系统Forest ecosystems 植树造林Afforestation 针叶林Coniferous forests 森林砍伐Deforestation 森林保护Forest conservation 森林火灾Forest fires草地火灾Grass fires绿化带Greenbelts再造林Reafforestation 植被恢复Revegetation 亚热带生态系统Sub-tropica l ecosystems温带森林Temperate forests温带林地Temperate woodlands 树木Trees热带生态系统Tropical ecosystems 热带森林Tropical forests 热带森林生态系统Tropical forest ecosystems 林地生态系统Woodland ecosystems 温带生态系统和寒带生态系统Temperate ecosystems and cold zone ecosystems南极生态系统Antarctic ecosystems 南极地区Antarctic region 北极生态系统Arctic ecosystems 北极地区Arctic region ['ar kuk 寒带生态系统Cold zone ecosystems 草地生态系统Grassland ecosystems 永久冻土生态系统Permafrost土地恢复Land restoration 旱作Dry farming土地使用分类Land use classification 沙丘固定Sand dune fixation 沙石开采Sand extraction 沉积Sedimentation 土壤潜力Soil capabilities 土壤保持Soil conservation 土壤污染Soil contamination 土壤退化Soil degradation 土壤侵蚀Soil erosion 土壤改良Soilimprovement 土壤盐碱化Soilsalination 水蚀Water erosion干旱地区生态系统Arid landecosystems干旱土地Arid lands 沙漠化Desertification 抗旱Droughtcontrolecosystems极地生态系统Polar ecosystems 温带生态系统Temperate ecosystems 山地生态系统Mountain ecosystems 高原生态系统Highland ecosystems 湿地生态系统Wetlands ecosystems 红树沼泽Mangrove swamps 水禽Water fowl水涝地Waterlogged lands 流域管理Watershed management 水边开发Waterside development 生物多样性和保护区Biological diversity and protected areas 适应性强的物种Adaptable species 藻类Algae ,况M列生物多样性Biological diversity 生物栖地Biotopes基因资源保护Conservation of genetic resources濒危动物物种Endangered animal species濒危植物物种Endangered plantspecies动物区系F auna植物区系Flora细菌Bacteria酶Enzymes 'enzaimz真菌Fungi原生生物Protozoa病毒Viruses酵母Yeasts诱变剂Mutagens水的盐化Water salination饮用水处理Drinking watertreatment城市配水系统Municipal waterdistribution systems污水处理厂Sewage treatment plants水泵Water pumps可交易的许可证Tradeable permits 隔热Thermal insulation基础设施Infrastructure工业生产过程Industrial processes制铝工业Aluminium industry 适用技术Appropriate technology 高炉Blastfurnaces化学工业Chemical industry 清洁技术Clean technologies 金属加工Metalfinishing 金属电镀Metal plating 金属冶炼Metal smelting矿产业Mineral industry 采矿Mining天然气开采Natural gas extraction 原油开采Oil extraction 石油提炼Petroleum refining 印刷工业Printing industry 纸浆工业Pulp industry 采石Quarrying 橡胶加工Rubber processing 炼钢工业Steel industry 露天采矿Strip mining 焦油生产Tar production 焦油使用Tar沥青use 工业产品Industrial products 危险品Dangerous goods工业材料Industrial materials 包装Packaging涂料Paints可再用容器Reusable containers合成洗涤剂Synthetic detergents 合成纺织纤维Synthet ic textile['tekstailfbres漆Varnishes飞机噪音Aircraft noise沼气Biogas生物量Biomass生物质能Biomass energy煤Coal原油Crude oil矿物燃料Fossil fuels燃料酒精Fuel alcohol地热能Geothermal energy 碳氢化合物Hydrocarbon compounds水电Hydroelectric power液化气Liquefied gas甲烷Methane天然气Natural gas可再生能源Renewable energy sources不可再生能源Non-renewable energyresources无污染能源Non-polluting energysources核能Nuclear energy油类Oils泥炭、泥煤Peat汽油Petrols从废料中提取的燃料Refuse derivedfuels太阳能Solar energy 海洋热能Thermalsea power潮汐能Tidal energy轴Uranium波浪能Wave energy风能Wind energy 电力Electric power 发电厂Electric power plants 无机物质Inorganic substances 酸Acids氧化铝Alumina氯Chlorine盐酸Hydrochloric acid 硫化氢Hydrogen sulphide 硫酸盐Sulphates 硫酸Sulphuric acid光化学试剂Photochemical agents 光化学效应Photochemical effects 有机物质Organic substances有机硅化合物Organosilicon compounds 酚Phenols植物油Vegetable oils生物化学过程Biochemicalprocesses酸化Acidification需氧过程Aerobic processes厌氧过程Anaerobic processes 生物降解Biodegradation脱氮作用Denitrification 富营氧化Eutrophication 电离辐射Ionizing radiation代谢(作用),新陈代谢(作用)Metabolism固氮Nitrogen fixation 光合作用Photosynthesis物理一化学过程Physico-chemicalprocesses毒性Toxicity气溶胶,气雾剂Aerosols 农业废物Agricultural wastes 石棉Asbestos商业噪音Commercial noise 混合污染Composite pollution 二恶英Dioxins带哦个森死危险物质Hazardous substances 危险废物Hazardous wastes 重金属Heavymetals 医院废物Hospital wastes工业废水Industrial effluents 工业排放物Industrial emissions 工业烟尘Industrial fumes 工业噪声Industrial noise无机污染物Inorganic pollutants 铅污染Lead contamination丢弃物,废气物Litter汞污染Mercury contamination 微污染物Micropollutants采矿废物Mining wastes机动车辆排放物Motor vehicle emissions城市废物Municipal waste 氮氧化物Nitrogen oxides 噪声污染Noise pollution 恶臭公害Odour nuisance 有机物污染Organic pollutants 难降解有机污染物Persistent organic pollutants有机溶剂Organic solvents 有机卤化物Organohalogencompounds 医药废物Pharmaceutical wastes塑料废物Plastic wastes多氯联苯Polychlorinated biphenyls聚合物废物Polymer wastes放射性物质Radioactive substances氡Radon橡胶废物Rubber waste热污染Thermal pollution有毒物质Toxic substances 对流层臭氧Tropospheric ozone 水泥工业Cement industry 海洋倾倒Oceandumping石油泄漏Oil spills废金属Scrap metals燃料脱硫Desulphurization of fuels过滤器Filters污染治理设备Pollution abatementequipment污染控制技术Pollution controltechnology洗涤器Scrubbers分离器Separators 电池处理Batterydisposal 废物的化学处理Chemicaltreatment of waste回收Recycling材料再利用Reuse of materials卫生填埋Sanitary landfills 污水处置Sewage disposal 污水处理系统Sewagetreatment systems 固体废物处置Solidwaste disposal 废物同化处置Wasteassimilationcapacities废物转化技术Waste conversiontechniques废物土地处置Waste disposal in the ground废物回收Waste recovery 废物利用Waste use水的再利用Water reuse镉污染Cadmium contamination 污染物分析Pollutant analysis 污染物分布Pollutant distribution 污染物浓度Pollutant levels 污染物监测Pollutant monitoring 污染物路径Pollutant pathways 污染物来源鉴别Pollutant source identification本底监测Baseline monitoring环境标准Environmental criteria环境评价Environmentalassessment环境统计Environmental statistics 色谱分析Chromatographicanalysis气象色谱法Gas chromatography 放射性示踪技术Radioactive tracertechniques采样技术Sampling techniques模拟Simulation污染者付费原则Polluter-paysprinciple危险废物的出口Export of hazardouswastes贸易避垒Trade barriers越境污染Trans-frontier pollution遥感Remote sensing多谱线扫描器Multispectral scanner地理信息系统Geographicinformation systems纬度Latitude经度Longitude。
大气沉降贡献海洋溶解黑碳碳库

大气沉降溶解黑碳的通量,影响区域甚至全球碳库.该 研究结果将有助于将溶解黑碳纳入到海洋碳循环研 究模型中.200400 600 800 1 000WSOG/(nmol • m'3)图1大气气溶胶中W SOC 浓度与W SBC 浓度的相关关系[5]参考文献:[1] ZIOLKOW SKIL 八,DRUFFEL E R M. A gedblackcarbon identified in marine dissolved organic carbon[J]. Geophysical Research Letters ,2010,37(16) : L16601.do i : 10. 1029/2010GL043963.[2] DITTM 八R T ,PAENG J .八 heat-inducedmolecular signature in marine dissolved organic matter [J]. Nature Geoscience, 2009 ,2(3):175-179.[3] JAFFE R, DING Y, NIGGEMANN J, et al.Global charcoalmobilization from soils via dissolution and riverine transport to the oceans[J].Science ,2013,340:345-347.[]JURADO E, DACHS J, DUARTE C M, et al.Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008,42 (37)7931-7939.[5] BAO H Y ,NIGG EM A NN J,LUO L ,et al. Aerosols as asource of dissolved black carbon to the ocean[J]. Nature Communications ,2017,8 (1): 510. doi: 10.1038/s41467-017- 00437-3(曾礼娜编写)溶解黑碳在开阔大洋的年龄可达上万年,是海洋中 到目前为止已知的年龄最老、最大的惰性溶解有机碳碳 库[12],其源汇问题是全球碳循环研究的重要部分.通过 河流向海洋输送是目前已知的海洋溶解黑碳最主要的 来源[3].与河流输送相比,大气输送具有快速和高效的 特点.近期研究表明大气沉降是海洋中黑碳的主要来源 之一[4],而大气输送过程(例如氧化)可以增加黑碳的水 溶性,成为溶解黑碳;此外,沙尘中也可能含有溶解黑 碳.因此考虑到每年生物质和化石燃料燃烧产生的大量 黑碳以及沙尘向海洋传输,大气沉降也可能对海洋溶解 黑碳碳库有显著贡献,但相关的信息非常有限.2017 年 9 月 11 日,《NatureCommunications 》期刊在线发表了厦门大学近海海洋环境科学国家重点实验室高树基教授课题组与德国奥尔登堡大学Thor-stenD ittm ar 教授课题组合作的研究论文[5],首次定 量揭示了大气沉降对海洋溶解黑碳的贡献.该研究通过分析测定2015年春季东海、黄海以 及西北太平洋气溶胶中水溶性有机碳(watersoluble organic carbon , WSOC )和水溶性黑碳(water soluble blackcarbon ,WSBC )的浓度,估算出在春季沙尘爆发期间,大气干沉降对东海、黄海溶解黑碳的贡献约是 河流输入的40%.在该研究中,采用超高分辨质谱-傅 里叶变换离子回旋共振质谱(FT-ICR-MS )解析中国 近海以及西北太平洋气溶胶中水溶性有机质的分子 组成,结果表明海洋气溶胶中有近万种不同的化合物. 这些化合物中的多环芳香化合物中包含WSBC ,可以 表征溶解黑碳的来源.这些多环芳香化合物的组成表 明溶解黑碳的来源主要为生物质燃烧的产物,并且不 同类型的海洋气溶胶中WSBC 的组成无显著差异.通 过比对气溶胶与河流中多环芳香化合物的分子组成, 发现气溶胶中WSBC 的来源与河流相近.该研究进一步发现海洋气溶胶中WSBC 的浓度 与WSOC 的浓度呈极显著相关,W SBC 占W SOC 的 比例平均为2.8%(图1),并基于该相关关系,首次估算出全球海洋大气沉降的溶解黑碳(干湿沉降总和) 约为(1. 8±0. 83) Tg /a ,是海洋溶解黑碳的显著来源 之一.其中沙尘对大气沉降溶解黑碳的贡献约为30%. 预测未来生物质燃烧以及沙尘输送的变化可能增加h ttp : //jxm u.xm 第56卷第6期2017年11月厦门大学学报(自然科学版)Journal of Xiamen University (Natural Science)Vol.56 No. 6Nov 2017doi:10. 6043/j. issn. 0438-0479. 201706210文章编号:0438-0479(2017)06-0766-01厦门大学研究亮点•大气沉降贡献海洋溶解黑碳碳库ooo321(m 二o i )/3e s^。
能源地质学专业术语中英文对照

125
低位沼泽(flat bog,low moor)
126
中位沼泽(medium bog,medium swamp)
127
高位沼泽(raised bog,highmoor)
128
富营养沼泽(eutrophic mire)
129
中营养沼泽(mesotrophic swamp)
97
氯仿沥青A(chloroform bitumen A)
98
族组成(group composition)
99
饱和烃(saturated hydrocarbon)
100
芳烃(aromatic hydrocarbon)
101
胶质(colloid,pectin,colloid substance)
102
116
浅海(shallow sea)
117
泻湖(lagoon,lagune)
118
潮坪(tidal flat)
119
砂坪(sand flat)
120
泥坪(mud flat)
121
混合坪(mixed flat)
122
苔草沼泽(sedge mire)
123
木本沼泽(swamp,woody mire)
124
202
微粒体(micrinite)
203
粗粒体(macrinite)
204
菌类体(sclerotinite)
205
碎屑惰质体(inertodetrinite)
206
孢子体(sporinite)
207
角质体(cutinite)
195
均质镜质体(telocollinite)
西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征

DOI: 10.16562/ki.0256-1492.2020092101西太平洋Kocebu 海山铁锰结壳稀土元素地球化学特征刘凯1,2,王珍岩1,2,3,41. 中国科学院海洋研究所海洋地质与环境重点实验室,青岛 2660712. 中国科学院大学,北京 1000493. 中国科学院海洋大科学研究中心,青岛 2660714. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071摘要:西太平洋麦哲伦海山区是全球重要的铁锰结壳资源分布区,具有丰富的稀土元素资源潜力。
本文对采自麦哲伦海山区Kocebu 海山的11个铁锰结壳表层样(<1 mm )进行稀土元素地球化学研究,探讨其含量特征、成因和影响稀土元素富集的环境因素。
结果表明:Kocebu 海山铁锰结壳表层样品ΣREY (Rare earth elements and yttrium )平均含量为1 366 mg/kg ,低于前人在麦哲伦海山区其他海山以及邻近的马尔库斯–威克海山区的分析结果;样品轻稀土富集和Ce 正异常(平均值为1.45)特征以及稀土元素成因图解、配分曲线和分配系数曲线等均表明该海山结壳属于水成成因;海水中稀土元素含量和溶解氧含量是控制结壳生长的关键环境参数,二者在Kocebu 海山所在海区的浅水环境中含量较低;结壳ΣREY 含量偏低与采样点水深较浅导致的海水稀土元素含量和溶解氧含量较低密切相关,受碎屑矿物的稀释作用影响较小。
在开展铁锰结壳地球化学特征研究和资源勘探评价时应充分考虑采样水深的分布范围,局部水深样品的分析结果可能导致研究结果出现较大偏差。
关键词:铁锰结壳;稀土元素;地球化学特征;成因;麦哲伦海山中图分类号:P744, P736.4 文献标识码:AGeochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western PacificLIU Kai 1,2, WANG Zhenyan 1,2,3,41. Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China2. University of Chinese Academy of Sciences, Beijing 100049, China3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China4. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, ChinaAbstract: The Magellan Seamounts in the Western Pacific, as an important contract area for ferromanganese crusts exploration, contain high potential of rare earth resources. In this paper, the geochemistry of rare earth elements and yttrium (REY) from 11 top surface ferromanganese crust samples (<1 mm) collected from the Kocebu Guyot were studied. We analyzed the REY composition characteristics and genetic type of the samples and discussed the factors which control the enrichment of REY. The results show that the average REY abundance (ΣREY) of the crusts is 1 366 mg/kg, which is lower than that from other seamounts in Magellan Seamounts and Marcus-Wake Seamounts. The Kocebu Guyot is characterized by enriched light REE and high positive Ce anomalies (mean δCe value 1.45). Genetic discrimination diagram, normalized REY plots and REY partition coefficient patterns indicate that all the crusts are hydrogenetic in origin. REY abundance and dissolved oxygen content in seawater should be regarded as primary environmental parameters controlling the growth of crusts. The lower REY abundance in the samples is related to the water depth and affected by lower REY and oxygen content in shallower waters near Kocebu Guyot, but not observably diluted by detrital minerals. Geochemistry research and resource evaluation of ferromanganese crusts in seamount areas should take the influence of water depth into further consideration, the analysis of samples from limited water depth may cause large deviations in the research results.Key words: ferromanganese crusts; rare earth elements; geochemistry; genesis; Magellan Seamounts资助项目:中国科学院战略性先导科技专项“印太交汇区海洋物质能量中心形成演化过程与机制”(XDB42010203),“地球大数据科学工程”(XDA9060401);科技部基础资源调查专项“西太平洋典型海山生态系统科学调查”(2017FY100802)作者简介:刘凯(1994—),男,硕士研究生,研究方向为海洋沉积,E-mail :******************** 通讯作者:王珍岩(1972—),男,副研究员,主要从事海洋沉积学研究,E-mail :**************.cn 收稿日期:2020-09-21;改回日期:2020-11-11. 蔡秋蓉编辑ISSN 0256-1492海 洋 地 质 与 第 四 纪 地 质第 41 卷 第 1 期CN 37-1117/PMARINE GEOLOGY & QUATERNARY GEOLOGYVol.41, No.1铁锰结壳是一种从海水中沉淀出来的“壳状”铁锰沉积物,主要分布于最低含氧带(OMZ)以下,碳酸盐补偿深度(CCD)以上的海山斜坡上,分布水深一般为800~3 000 m[1-2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Atmos.Chem.Phys.,11,6265–6272,/11/6265/2011/doi:10.5194/acp-11-6265-2011©Author(s) Attribution 3.0License.Atmospheric Chemistry and PhysicsAtmospheric acidification of mineral aerosols:a source of bioavailable phosphorus for the oceansA.Nenes 1,2,3,M.D.Krom 4,N.Mihalopoulos 5,3,P.Van Cappellen 1,Z.Shi 4,A.Bougiatioti 5,P.Zarmpas 5,andB.Herut 61Schoolof Earth and Atmospheric Sciences,Georgia Institute of Technology,Atlanta,Georgia,USA2School of Chemical and Biomolecular Engineering,Georgia Institute of Technology,Atlanta,Georgia,USA3Institute of Chemical Engineering and High Temperature Chemical Processes,Foundation for Research and Technology Hellas,Patras,Greece4Earth and Biosphere Institute,School of Earth and Environment,University of Leeds,Leeds,UK 5Department of Chemistry,University of Crete,Heraklion,Crete,Greece 6Israel Oceanographic Limnological Research,Tel Shikmona,Haifa,IsraelReceived:11February 2011–Published in Atmos.Chem.Phys.Discuss.:21February 2011Revised:14May 2011–Accepted:27May 2011–Published:1July 2011Abstract.Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus.De-position of atmospheric aerosols provides the major external source of phosphorus to marine surface waters.However,only a fraction of deposited aerosol phosphorus is water sol-uble and available for uptake by phytoplankton.We propose that atmospheric acidification of aerosols is a prime mecha-nism producing soluble phosphorus from soil-derived miner-als.Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix.Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples col-lected over a 5-yr period at Finokalia,Crete.In addition,at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory ex-periments which simulate atmospheric conditions.Aerosol acidification links bioavailable phosphorus supply to anthro-pogenic and natural acidic gas emissions,and may be a key regulator of ocean biogeochemistry.Correspondence to:A.Nenes (athanasios.nenes@)1IntroductionPrimary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus (Howarth,1988;Elser,2007).Because riverine inputs of phosphorus (P)preferentially accumulate along the continental margins,air-borne sources of P are particularly important for supporting primary production in oligotrophic areas of the open ocean (Paytan and McLaughlin,2007).Similar to the nutrient ele-ments iron and silicon,most P in the atmosphere is associ-ated with particulate matter,primarily mineral aerosols (Ma-howald et al.,2008).The major forms of P in soil-derived dust are minerals from the apatite group and,to a lesser extent,P bound to iron (hydr)oxide minerals (Singer et al.,2004;Eijsink et al.,2000).These minerals are highly insol-uble under the alkaline and oxygenated conditions encoun-tered in oceanic surface waters (Atlas and Pytkowicz,1977).Combined with the short transit times of mineral aerosols through the photic zone,this implies that the main source of bioavailable P in atmospheric deposition is water soluble P produced during airborne processing of soil-derived dust.Mahowald et al.(2008)estimate that globally about 17%of total atmospheric P deposited at the sea surface is water soluble.The soluble fraction,however,is highly variable,with values ranging between 7and 100%(Mahowald et al.,2008).Baker et al.(2006)observed a gradient in soluble P in dust advected off the coast of North Africa.Mahowald etPublished by Copernicus Publications on behalf of the European Geosciences Union.al.(2008)further note that it is not known at present what processes control the amount of soluble P in aerosols.We hypothesize that acid processing of mineral aerosols is a major pathway for the production of water soluble P in the atmosphere.The main acids in the atmosphere,H2SO4and HNO3,are generated by the oxidation of sulfur and nitro-gen gases emitted by biogenic,volcanic and anthropogenic sources(Seinfeld and Pandis,2006).These acids,if present in sufficient amounts in mineral aerosols,will overcome the available carbonate buffer capacity.This causes aerosol pH to drop to low values under clear-sky conditions(Meskhidze et al.,2003),increasing the solubilities of apatite and iron (hydr)oxide minerals by several orders of magnitude(Stumm and Morgan,1996).Production of soluble P is analogous to that invoked to explain the presence of soluble iron and trace metals in atmospheric dust(Meskhidze et al.,2003;Spokes et al.,1994).2Evidence of acid mobilization of P in Eastern Mediterranean aerosolThe Eastern Mediterranean Sea(EMS)offers an ideal set-ting for testing the hypothesis of soluble(leachable)inor-ganic P(LIP)production by aerosol acidification.The EMS is unequivocally P limited with a molar nitrate-to-phosphate ratio of28:1in the deep water(Krom et al.,1991).Dry deposition is a major source of P to the basin and directly affects primary productivity in offshore areas(Krom et al., 2004).The Saharan desert is the principle source region of mineral aerosols reaching the central EMS and can interact with polluted airmasses from Europe and the Middle East. Size segregated aerosol samples were collected over a period offive years at the Finokalia station(35◦20 N,25◦40 E), a remote marine background site on Crete located50m in-land and230m a.s.l.(Sciare et al.,2003).HYSPLIT back trajectories(/ready/hysplit4.html)indicate that the air masses sampled at Finokalia originate from the marine boundary layer,Northern Africa,Europe,Asia Minor and the Middle East.Air masses from Europe,the former So-viet Republics and Asia Minor tend to exhibit the highest an-thropogenic pollutant loadings(aerosol sulfates and nitrates), while the Mediterranean and Northern Africa typically yields cleaner air masses(Mihalopoulos et al.,1997).Hence,Saha-ran dust reaching Finokalia has experienced variable degrees of interaction with polluted air.2.1Collection and chemical analysis of aerosol samples Aerosol samples were collected using a virtual impactor(VI; Loo and Cork,1988).The VI was modified to divide parti-cles into two size fractions:fine(aerodynamic particle diam-eter,D a<1.3µm)and coarse particles(D a>1.3µm).The inlet preceding each VI has a cut-off size of10µm.The operationalflow rate is16.7l min−1,divided into1.7and 15.0l min−1minor and majorflows,respectively.The aver-age sampling time was two days(from1to3days).Polyte-trafluoroethylene(PTFE)filters(Millipore Fluoropore;pore size3.0µm;diameter47mm)were used for sampling. Samples were pre-and post-weighed using a6-digit mi-crobalance(ATI-CAHN/CA27).The readability of the bal-ance is10µg with a precision of40µg corresponding to mass concentration uncertainties of0.86and0.77µg m−3forfine and coarse fractions,respectively.After weighing,the sam-ples were stored in a freezer in Petrislides(Millipore Inc.). Samples were analyzed for water-soluble ions and LIP.One quarter of each PTFEfilter was extracted using20ml of nanopure water.The solutions obtained were analyzed by ion chromatography(IC)for anions(Cl−,Br−,NO−3,SO2−4,C2O42−)and cations(Na+,NH+4,K+,Mg2+and Ca2+). Accuracy was determined by comparing results with certi-fied WMO and DIONEX standards and was better than5% for all elements(n=5).More details on the IC method are given in Bardouki et al.(2003).LIP was analyzed colorimet-rically following Bardouki et al.(2003).2.2Thermodynamic modelling of atmospheric samples The chemical composition,speciation and phase state of the aerosols collected on thefilter samples were modelled us-ing the ISORROPIA/ISORROPIA-II aerosol thermodynamic models(/ISORROPIA;Nenes et al.,1998;Fountoukis et al.,2007).These models have been extensively evaluated against in-situ observations(e.g.,Yu et al.,2005;Fountoukis et al.,2009),and are currently used for driving simulations in US,Asian and European global, regional and air quality models.ISORROPIA/ISORROPIA-II simulates the composition of aerosol in equilibrium with the surrounding gas phase,in-cluding the transformations taking place when freshly emit-ted dust is mixed with acidic pollution.The model takes as input the amount of“aerosol precursor”sodium,potassium, ammonium(gas-phase NH3plus aerosol ammonium),sul-fate(in the form of neutral sulfate and bisulfate ions),mag-nesium,calcium,chloride(gas-phase HCl plus aerosol chlo-ride),nitrate(gas-phase HNO3plus aerosol nitrate),relative humidity and temperature.Based on this input,the model predicts at thermodynamic equilibrium the phases present in the aerosol particles(aqueous,solid,or both),the amount and chemical composition of each phase,and,the concentra-tions of semi-volatile species(i.e.,NH3(g),HNO3(g),HCl(g)) in the gas phase.Compositions are calculated by solving a system of equa-tions derived from the equilibrium reactions and chemical potential of the species involved.The number of equa-tions and iterations required is minimized by considering compositional“regimes”;because of this,ISORROPIA-II is considered one of the most computationally efficient ther-modynamic equilibrium models available.Activity coeffi-cients are calculated using pre-calculated lookup tables orAtmos.Chem.Phys.,11,6265–6272,/11/6265/2011/a combination of Kusik-Meissner and Bromely models(the latter of which was used in this study).The amount of water contained within the aerosol is in equilibrium with the gas phase,so that the water activity must equal to the fractional relative humidity.Predictions were carried out assuming that the aerosol par-ticles are in equilibrium at an ambient relative humidity of 95%,a temperature of298K,and with compositions con-strained from the observations.The equilibrium assumption applies well to submicron(fine)aerosol but may introduce errors when applied to coarse mode aerosol(e.g.,Capaldo et al.,2000).Thermodynamic calculations are therefore car-ried out for all thefine aerosol samples,and for well-aged coarse aerosol samples(for which the carbonate buffer has been neutralized).The pH of the aerosol is predicted by ISORROPIA/ISORROPIA-II;the concentration of total dis-solved P is calculated by dividing the measured LIP with the calculated aerosol liquid water content.2.3Apatite solubility calculationsDissolution of apatite,Ca5(PO4)3(OH,F,Cl),is the primary source of mineral phosphorus in soils(Newman,1995; Nezat et al,2007).Reported solubility products for apatite minerals are highly variable,because of solid solution formation,incorporation of impurities(e.g.,carbonate) and non-stoichiometric composition.Solubility calcula-tions were carried out considering the pure end-member minerals hydroxyapatite(HAP)and the less-solublefluo-rapatite(FAP)in NaCl solutions.The calculations provide a lower estimate of solubility,as the formation of aqueous phosphate complexes–in particular with magnesium–will increase the solubility of an apatite mineral relative to that in a NaCl solution of the same ionic strength(Her-shey et al.,1989).The incorporation of carbonate in the apatite structure further enhances the mineral solubility relative to that of the pure end-member phases(Jahnke, 1984).Dissolution of HAP and FAP is assumed to occur in a background electrolyte solution(i.e.,containing no dissolved calcium,phosphate offluoride initially)using the following solubility products for HAP and FAP at 25◦C and1bar:K HAP=(Ca2+)5(HPO2−4)3(OH−)/(H+)3=10−20.47and K FAP=(Ca2+)5(HPO2−4)3(F−)/(H+)3=10−23.12(Van Cappellen and Berner,1991),where(X) denotes the activity of ionic species X in solution.Theconcentration of LIP,m TP,is related to that of HPO2−4viam TP=mHPO−24 ∗K3/(H+)+1+(H+)/∗K2+(H+)2/∗K1∗K2,where m refers to aqueous concentrations inmolal units,(H+)is the activity of hydronium ions in solu-tion,and∗K1,∗K2,∗K3are the conditional(stoichiometric) ionization constants of phosphoric bining the min-eral solubility equilibria,the phosphoric acid dissociation equilibria and the mass balance constraints,m Ca/5=m TP/3= m HAP and m Ca/5=m TP/3=m F=m HAP,the total dissolved phosphate concentrations in equilibrium with HAP and FAP can be computed.Representative solubility calculations were performed for HAP and FAP dissolving in pure electrolyte(NaCl)solutions at25◦C.The conditional ionization constants for phosphoric acid(measured up to6m NaCl)were taken from Hershey et al.(1989).The Pitzer ion interaction model was used to calculate the activity coefficients(Hershey et al.,1989; Millero and Schreiber,1982).The latter is applicable up to3–4m NaCl,typical of electrolyte concentrations calcu-lated using the ISORROPIA-II model predictions for aerosol at∼95%RH.2.4Results from Eastern Mediterranean aerosolanalysisUnder typical marine conditions(relative humidity80–95%),soluble electrolytes in the aerosol cause the uptake of water from the gas phase,forming an aqueous solution that is in contact with the insoluble components of the dust aerosol (Seinfeld and Pandis,2006).This aerosol solution provides the medium for reacting and dissolving mineral-bound P.A proxy of the acidity of the aerosol aqueous phase is given by the soluble ion balance,I b=2[SO4]+[H2PO4]+[NO3] +[Cl]−2[Ca]−[NH4]−[Na]−2[Mg]−[K](where “[X]”represents the measured concentration of species“X”expressed inµmoles per m3air,and I b has units ofµgreqs per m3air,“greqs”being“gram-equivalents”).When I b>0,the aerosol tends to be acidic(as excess H+is required in the as-sociated aqueous phase to neutralize the excess anions)and vice versa.The coarse(diameter>1.3µm)andfine(diameter<1.3µm)aerosol fractions exhibit distinct acidities(Fig.1):I b(and aerosol acidity)in thefine fraction is largely con-trolled by sulfate and in the coarse fraction by nitrate.When the aerosol is acidic(I b>0),nitrate tends to partition to the gas-phase in the form of nitric acid(Meskhide et al.,2003). When the aerosol is neutral or alkaline(I b<0),nitrate parti-tions to the aerosol phase,displacing chloride and carbonate ions(from seasalt and carbonate minerals)to the gas phase (in the form of HCl and CO2,respectively;Meskhidze et al., 2003).As expected,coarse particles contain relatively low sulfate levels,typical of marine background aerosols(∼0.1–1µg m−3;Seinfeld and Pandis,2006).Sulfate concentrations offine particles were distinctly higher,indicative of conti-nental pollution(∼1–10µg m−3;Seinfeld and Pandis,2006). Aerosol nitrate and sulfate concentrations no longer corre-late with I b when I b<−0.05µgreqs m−3,probably because insufficient acid was present to titrate the carbonate buffer of dust.For alkaline particles the measured mass ratio of soluble phosphorous to soluble calcium generally fell well below the P:Ca ratio of the mineral apatite(Fig.2a).As aerosol acidity increased however,the soluble P:Ca ratios also increased and approached the value expected for the stoichiometric dissolu-tion of apatite.The scatter in the data can in part be attributed/11/6265/2011/Atmos.Chem.Phys.,11,6265–6272,2011Fig.1.Distributions of key acidic aerosol species in the Finokalia data set.Shown are the concentrations of(a)nitrate and(b)sulfate against the“ion balance”,I b,calculated as I b=2[SO4]+[H2PO4] +[NO3]+[Cl]−2[Ca]−[NH4]−[Na]−2[Mg]−[K],where “[X]”represents the concentration of species“X”in the aerosol sample,in mol m−3air.Data for coarse andfine aerosol fractions are presented as blue and magenta symbols,respectively.to chemical(and,hence,pH)variability across particle size and time,which were averaged during aerosol collection(the pH of individual particles depends especially on their car-bonate content which is known to be variable;samples col-lected over several days may also combine particles from somewhat different air masses).Nevertheless,the observed trend between the soluble P:Ca ratio and I b is strongly con-sistent with acid mobilization of phosphate from apatite,the dominant form of P in Saharan dust(see below).Examining the data for periods wherefires are at a minimum(October–March)results in a plot very similar to Fig.2a(not shown); thus biogenic P from biomass burning is not the prime cause for the correlation between acidity and P:Ca.In itself,I b does not directly yield the exact pH level in the aerosol solution nor the amount of water avail-able for dissolution of P from dust.Both can be esti-mated using ISORROPIA-II(Fountoukis and Nenes,2007; Sect.2.2).Using typical levels of relative humidity andIon balance (μmol -3)MolarratioP:Ca0.11-0.1-0.0500.050.1---0123456pHTotaldissolvedP(M)10110010-110-210-310-4Fig.2.(a)The molar ratio of LIP over Ca as a function of ion balance,I b.Fine fraction samples are shown with magenta sym-bols,coarse particles with blue symbols.Also shown is the P:Ca ratio for the mineral apatite.(b)Predicted concentration of total dissolved P against aerosol pH.Predictions are carried out using the ISORROPIA-II thermodynamic model(Fountoukis and Nenes, 2007),assuming that the aerosol particles are at thermodynamic equilibrium with an ambient relative humidity(RH)of95%,a temperature of298K,and with aqueous compositions constrained from the observations.Also shown are the solubility lines for the end-member mineralsfluorapatite,Ca5(PO4)3F and hydroxya-patite,Ca5(PO4)3OH.Repeating the calculations for lower RH de-creases pH,so that the aerosols become even more unsaturated with respect to the apatite minerals.For clarity only the solubility lines at ionic strength3m are plotted.observed temperatures,the vast majority offine aerosols at Finokalia exhibited low pH and were predicted to be highly undersaturated with respect to the most insoluble end-member apatite mineral,crystallinefluorapatite(Fig.2b). Thus,thermodynamically,soil-derived apatite and iron-bound P are expected to dissolve during aerosol acidification. Variations in relative humidity do not affect this model out-come.In fact,pH could substantially increase above4only if the aerosol particles were to reside in clouds and were ac-tivated into cloud droplets.Given however that atmosphericAtmos.Chem.Phys.,11,6265–6272,/11/6265/2011/particles reside in subsaturated water vapor(non-cloud)con-ditions for most of their atmospheric residence time(Seinfeld and Pandis,2006),the pH predictions and solubility consid-erations presented in Fig.2b reflect the most frequently oc-curring state in the atmosphere.3Testing P mobilization hypothesis in the laboratory The Finokalia data and subsequent thermodynamic analy-sis suggest that acidification plays an important role in pro-ducing LIP.We tested the proposed mechanism by exposing Saharan soil and dust samples to pH levels consistent with the aerosol acidities derived from the Finokalia data.Soil samples were collected from two locations known to be ma-jor sources of modern Sahara dust:the Tibesti Mountains (hereafter Tibesti),and the Western Sahara(hereafter WS) (Brooks and Legrand,2000;Prospero et al.,2002;Washing-ton et al.,2009).The samples were wet-sieved to less than 20µm(PM20).We also generated PM10(particulate matter less than10µm)from the re-suspended soils(called Tibesti-PM10and WS-PM10hereafter)without wet sieving.Details and chemical compositions of the samples are described in Shi et al.(2011a).In addition,two atmospheric Saharan dust samples were examined;they were collected at Bet Yanai,Is-rael,after dust storms on10May2004and on29March2008 (hereafter BY1and BY2,respectively).Prior to acid pro-cessing,the samples were characterised for the amounts of LIP,iron-bound mineral P(Fe-P),calcium-bound mineral P (Ca-P),and organically-bound P(Org-P)using the SEDEX procedure(Ruttenberg,1992).In order to simulate atmo-spheric processing,the mineral samples were placed in pH2 sulphuric acid for24h.3.1Phosphorus speciation of samplesAll samples were characterised for the amount of LIP,iron-bound phosphorus(Fe-P),Ca-bound phosphorus,residual in-organic P,and organic phosphorus(OP)using the SEDEX procedure(Ruttenberg et al.,2009):–LIP:about100mg of dust or soil samples were leached for2h in10ml of1M MgCl2solution adjusted to pH8 with NaOH.The solutions were thenfiltered through0.2µm pore sizefilters and the residues were treatedwith the same MgCl2solution for another2h and then filtered.P in both extractions was added to obtain the LIP.–Fe-P:0.37g sodium dithionite was added to the residue of previous extraction;10ml of citrate buffer solution(88.41g l−1trisodium citrate and84.32g l−1sodiumbicarbonate)was then added to each sample.The solutions were shaken for8h at25◦C.The samples werefiltered through a0.2µm pore sizefilter.Then 10ml MgCl2solution(same as above)was added to theresidues and left for2h.The samples were thenfiltered again through a0.2µm pore sizefilter.The measured P was defined as Fe-P.–Ca-bound-P:the residues were then treated with10ml 1M sodium acetate solution buffered at pH4with acetic acid for6h and thenfiltered.The residues were then leached with MgCl2solutions(same as above)two times.Thefiltrates were mixed and then diluted for 5times with double distilled water.–Residual inorganic P:the residues were then treated with10ml1M HCl for16h and thenfiltered.The Ca-bound-P and residual inorganic P added together was defined as Ca-P.–Org-P:The residues were ashed at550◦C for2h and treated with10ml1M HCl for16h and thenfiltered.The P was defined as OP.Ca-bound P and residual inorganic P are defined as Ca-P.Fe-P+Ca-P are defined as total inorganic P.And the total inorganic P plus Org-P is total-P.In addition to SEDEX,we also measured the seawater leachable P and total inorganic P(TIP)using indepen-dent method.–Sea water leachable P:about10mg of Tibesti,WS, BY1,or BY2samples were put into15ml tubes,and leached into seawater for30h.The seawater wasfil-tered through a0.2µm pore size polycarbonatefilter and was added with50µl l−1of chloroform.After30h,the samples werefiltrated through a0.2µm pore size Teflon filter.The dissolved phosphorus content of the seawa-ter sample afterfiltration(and those of the blanks)was analyzed within an hour.–TIP:about10mg of Tibesti,Tibesti-PM10,WS,or WS-PM10samples were leached with10ml of1M HCl.The solution was left at room temperature overnight (16h)with constant shaking.The solutions were then filtrated through0.2µm pore sizefilters and thefiltrates analysed for phosphorus.Replicate analysis of Tibesti samples(n=4)resulted in rel-ative standard deviation of14.2,9.4,10.6,3.0and7.2%re-spectively for LIP,Fe-P,Ca-bound P,org-P and total-P.The measured P concentration in each extraction solution was corrected for the blanks.TIP measured with SEDEX and with1M HCl only were17.5and17.3µmol g−1in the Tibesti sample,and18.6and18.5µmol g−1in the WS sample,respectively.TIP measured by1M HCl extractions in the Tibesti(17.3µmol g−1)and WS(18.5µmol g−1)were almost the same as that in Tibesti-PM10(17.5µmol g−1)and WS-PM10(18.2µmol g−1),re-spectively,suggesting that the PM20is representative of the PM10./11/6265/2011/Atmos.Chem.Phys.,11,6265–6272,2011Table 1.Dust samples and simulated atmospheric processing results.All concentrations are given in µmol per gram dry weight.Sample Seawater LIPLIP Fe-P Ca-P TIP Org-P Total-P pH 2LIP Tibesti 0.30.5 2.614.417.5 4.521.916.7WS 0.10.7 2.515.318.4 2.821.315.8BY10.9 1.3 5.324.831.3 2.033.425.4BY2 4.03.28.122.033.3 5.638.831.8BYD1*1.95.318.025.23.228.4∗Data from Eijsink et al.(2000).0.20.40.60.81TibesƟWSBY1BY2M a s s f r a c Ɵo n o f P s p e c i e sOrg-PCa-P Fe-PLIPFig.3.(a)Phosphorus speciation in Saharan soil and natural Saha-ran dust.(b)The change in soluble P to total inorganic P as a result of simulated atmospheric processing at pH 2for 24h.3.2Laboratory simulated atmospheric acid processing and analysisAbout 10mg of Tibesti-PM20,Tibesti-PM10,WS-PM20,WS-PM10,BY1or BY2were added to 10ml pH 2sul-furic acid solution,respectively.The samples were stirred continuously for 24h at room temperature.At the end ofeach experiment,the samples were filtered through 0.2µm pore size Teflon filters and the solutions taken for subsequent P analysis.All dissolved phosphorus determinations were carried out by the molybdate-blue method according to Strickland and Parsons (1972)for sea water extractions and Aspila et al.(1976)for all other extractions.3.3Interpreting laboratory acidification experimentsIn agreement with previous studies (Singer et al.,2004;Ei-jsink et al.,2000),we found that Ca-P was by far the domi-nant form of P in Saharan soil dust (>50%)while iron-bound P represents less than 20%(Table 1).LIP represented only 3–10%of total inorganic P in Saharan soil samples and dry fallout collected during Sahara dust storms (Fig.3a).Acid treatment of the samples caused a 10–40times increase of their soluble P fraction of total inorganic P (Fig.3b).In the Saharan soil and dust samples,81–96%of the total inorganic P was released to solution following the acid treatment.Mass balance considerations show that this soluble P was derived from both apatite and iron-bound P.The experimental results overall showed that significant fractions of P present in Saha-ran dust can be solubilised by acidification in the atmosphere.Upon deposition of the aerosols at the sea surface,the solu-bilised P will remain in solution and be available for direct uptake by phytoplankton (Herut et al.,2005).This is in con-trast to soluble iron which precipitates as Fe oxyhydroxide nanoparticles under the alkaline and oxygenated conditions in surface waters (Shi et al.,2009).4Conclusions and implicationsIn recent years,it has become apparent that P (co-)limitation in the ocean is more widespread than previously thought (Elser et al.,2007;Paytan et al.,2007).In view of this,our results suggest that variations in acid gas emissions by natu-ral and anthropogenic sources may play an important role in regulating marine primary productivity and autotroph nutri-ent limitation through their effect on the fraction of soluble P in mineral aerosols.While atmospheric pollution is widelyAtmos.Chem.Phys.,11,6265–6272,2011/11/6265/2011/acknowledged as a major source of new nitrogen(N)to the global ocean(Duce et al.,2008)we propose that anthro-pogenic SO2and NO x emissions may also increase the in-put of bioavailable P.Because primary production in marine environments often exhibits a positive synergistic response to simultaneous enrichments in N and P(Elser et al.,2007), SO2and NO x emissions have the potential to significantly enhance marine primary production,particularly in offshore areas of the ocean where large amounts of mineral aerosol in-teract with polluted air masses,such as in the EMS,the NW Atlantic or the western Pacific.Similar processes are known to affect the fraction of bioavailable Fe in mineral dust(e.g. Shi et al.,2009,2011b).The interaction between these two elements in atmospheric aerosols will no doubt be the subject of future research.In the extreme case that100%of atmo-spheric P deposition were bioavailable it could,assuming P limitation,account for a yearly global oceanic uptake of CO2 of264T moles,that is,more than three times the current CO2 emissions from fossil fuel burning(Mahowald et al.,2008). As shown here,even if total P deposition remains constant, the soluble fraction can significantly increase as a result of aerosol acidification(Fig.3b).Soluble P production by aerosol acidification also helps explain the proposed link between episodes of massive volcanism and global ocean anoxia in the geological past (Adams et al.,2010).On geological time scales,ocean pro-ductivity is P limited because the marine biosphere can ac-commodate any long-term nitrogen deficiency by increas-ing nitrogenfixation(Paytan et al.,2007;Tyrell,1999).A massive release of acidic gases by volcanic activity would then dramatically increase the acid processing of aerosols in the atmosphere(as well as enhance chemical weathering on land).The resulting increase in bioavailable P supply to the oceans would trigger a major increase in primary productiv-ity,which in turn would enhance the supply of organic carbon to the deep ocean eventually resulting in widespread ocean anoxia with its distinctive chemical and isotopic signatures (Adams et al.,2010).On shorter time scales,the potential also exists for a phytoplankton-mediated feedback between aerosol acidifica-tion and ocean productivity.Under conditions of nutrient stress,marine phytoplankton increase emissions of dimethyl sulfide(DMS)from the surface ocean(Sunda et al.,2002). The DMS then converts to sulphuric and methane-sulfonic acid in the atmosphere(Meskhidze et al.,2003;Barnes et al.,2006).Based on the proposed hypothesis,this would in turn increase atmospheric deposition of bioavailable P,hence alleviating the initial nutrient stress.It would thus appear that atmospheric processes could play a far greater role in the biogeochemical cycling of phosphorus than is currently acknowledged.Acknowledgements. A.Nenes acknowledges support by NASA ACMAP and a NSF CAREER award.Z.Shi was supported in this work by NERC(NE/E011470/1,PI:Krom).The ideas in this paper developed while M.D.Krom was on sabbatical leave at the Georgia Institute of Technology.Edited by:M.C.FacchiniReferencesAdams,D.D.,Hurtgen,M.T.,and Sageman,B.B.:V olcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event2,Nat.Geosci.,3,201–204,2010.Aspila,K.I.,Agemian,H.,Chau,and A.S.Y.:A semi-automated method for the determination of inorganic,organic and total phosphate in sediments,Analyst,101,187–197,1976.Atlas,E.and Pytkowicz,R.M.:Solubility behavior of apatites in seawater,Limnol.Oceanogr.,22,290–300,1997.Baker,A.R.,Jickells,T.D.,Biswas,K.F.,Weston,K.,and French, M.:Nutrients in atmospheric aerosol particles along the Atlantic Meridional Transect,Deep Sea Res.,53(14–16),1706–1719, 2006.Bardouki,H.,Liakakou,H.,Economou,C.,Sciare,J.,Smolik,J., Zdimal,V.,Eleftheriadis,K.,Lazaridis,M.,Dye,C.,and Mi-halopoulos,N.:Chemical composition of size resolved atmo-spheric aerosols in the eastern Mediterranean during summer and winter,Atmos.Environ.,37,195–208,2003.Barnes,I.,Hjorth,J.,and Mihalopoulos,N.:Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere,Chem.Rev.,106,940–975,2006.Brooks,N.and Legrand,M.:Dust variability over northern Africa and rainfall in the Sahel,in:Linking Climate Change to Land Surface Change,edited by:McLaren,S.,D.Kniveton Kluwer Acad.,Dordrecht,1–26,2002.Capaldo,K.P.,Pilinis,C.,and Pandis,S.N.:A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models,Atmos.Environ.,34,3617–3627,2000. Duce,R.A.,LaRoche,J.,Altieri,K.,Arrigo,K.R.,Baker,A.R.,Capone, D.G.,Cornell,S.,Dentener, F.,Galloway,J., Ganeshram,R.S.,Geider,R.J.,Jickells,T.,Kuypers,M.M., Langlois,R.,Liss,P.S.,Liu,S.M.,Middelburg,J.J.,Moore,C.M.,Nickovic,S.,Oschlies,A.,Pedersen,T.,Prospero,J.,Schlitzer,R.,Seitzinger,S.,Sorensen,L.L.,Uematsu,M.,Ulloa, O.,V oss,M.,Ward,B.,and Zamora,L.:Impacts of atmospheric nitrogen on the open ocean,Science,320,893–897,2008. Eijsink,L.M.,Krom,M.D.,and Herut, B.:Speciation and burialflux of phosphorus in the surface sediments of the eastern Mediterranean,Am.J.Sci.,300(6),483–504,2000.Elser,J.J.,Bracken,M.E.S.,Cleland,E.E.,Gruner,D.S.,Har-pole,W.S.,Hillebrand,H.,Ngai,J.T.,Seabloom,E.W.,Shurin, J.B.,and Smith,J.E.:Global analysis of nitrogen and phos-phorus limitation of primary producers in freshwater,marine and terrestrial ecosystems,Ecol.Lett.,10,1135–1142,2007. Fountoukis,C.and Nenes,A.:ISORROPIA II:a computation-ally efficient thermodynamic equilibrium model for K+-Ca2+ -Mg2+-NH+4-Na+-SO2−4-NO3−-Cl−-H2O aerosols,At-mos.Chem.Phys.,7,4639–4659,doi:10.5194/acp-7-4639-2007, 2007./11/6265/2011/Atmos.Chem.Phys.,11,6265–6272,2011。