沪教版七年级数学秋季班讲义第十一讲因式分解综合训练
2023年春上海七年级下数学辅导讲义(沪教版)第11讲 全等三角形的概念和性质及判定(讲义)解析版

第11讲 全等三角形的概念和性质及判定本节主要针对全等三角形的相关概念和性质及全等三角形的判定进行讲解,重点是全等三角形的性质的运用和判定两个三角形全等的四个判定定理,要求同学们可以达到灵活运用判定定理进行说明三角形全等的理由.本节课是几何说理的基础,综合性不高,相对简单.模块一:全等三角形的概念和性质知识精讲全等形、全等三角形及其相关的概念(1) 全等形:能够重合的两个图形叫做全等形.(2) 能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边.如下图所示:已知:△ABC ≌DFE ,A 与D ,B 与F 是对应顶点,则:(C 与E 是对应顶点) 对应边有:AB 与DF ,AC 与DE ,BC 与FE .对应角有:A D B F C E ∠∠∠∠∠∠与,与,与.全等三角形的数学语言:三角形ABC 与三角形A ′B ′C ′全等,记作△ABC ≌△A ′B ′C ′,读作“三角形ABC 全等于三角形A ′B ′C ′”.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等.全等三角形中应注意的问题:(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义;(2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等;(3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上;A B C D E F画三角形:确定三角形形状、大小的条件:六个元素(三条边、三个角)中的如下三个元素:两角及其夹边;两边及其夹角;三边.例题解析例1.(2019·上海浦东新区·)下列四组三角形中,一定是全等三角形的是()A.周长相等的两个等边三角形B.三个内角分别相等的两个三角形C.两条边和其中一个角相等的两个三角形D.面积相等的两个等腰三角形【答案】A【分析】依据全等三角形的概念即可做出选择.【详解】解:A. 周长相等的两个等边三角形,三边都相等,故A正确;B. 三个内角分别相等的两个三角形,三角形相似,不一定全等,故B错误;C. 两条边和其中一个角相等的两个三角形,只有这个角是两边夹角三角形才全等,故C错误;D. 面积相等的两个等腰三角形,不一定全等,故D错误;答案为:A.【点睛】本题考查了全等三角形的定义,即全等三角形不仅形状相同,而且大小相等.例2.下列说法正确的是()A.全等三角形是指形状相同的三角形 B.全等三角形是指面积相等的三角形C.全等三角形的周长和面积都相等 D.所有的等边三角形都全等【难度】★【答案】C【解析】A错,形状相同,大小也要相同;B错,面积相等不一定全等,反例同底等高的三角形;D错,大小不一定相等.【总结】本题主要考查全等三角形的概念.例3.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等【难度】★【答案】C【解析】等底同高,所以面积相等.【总结】本题主要考查同底等高的两个三角形的面积相等的运用.例4.如图所示,△ABC≌△CDA,且AB=CD,则下列结论错误的是()A .∠1=∠2B .AC =CA C .∠B =∠D D .AC =BC【难度】★【答案】D【解析】全等三角形对应角相等,对应边相等.【总结】考察学生对全等三角形性质的理解及运用.例5.下列各条件中,不能作出唯一的三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【难度】★【答案】C【解析】C 选项是边边角,不能作为全等的判定条件.【总结】考查全等三角形的判定定理的运用.例6.练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=;(2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===;(3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒;(4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒.例7.下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是() A .1个B .2个C .3个D .4个【难度】★★【答案】B【解析】(1)错,大小不一定相等;(2)面积相等不一定全等,反例同底等高;(3)对;(4)对,故选B .【总结】考察学生对全等三角形的概念及性质的理解.例8.下列说法中错误的是( )A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边【难度】★★【答案】C【解析】全等三角形的公共顶点不一定是对应顶点,两个全等三角形任意放置,使得三 角形的一个顶点与另一个三角形的不对应的顶点重合.【总结】考察学生对全等三角形的概念的辨析能力,以及正确的举反例.例9.如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A .80°B .100°C .60°D .45°【难度】★★【答案】A【解析】设1=28x ∠,25x ∠=,33x ∠=,则36180x =,解得:5x =.1140∴∠=︒,225∠=︒,315∠=︒,22ABC ACB ∴∠∂=∠+∠212280=∠+∠=︒.【总结】考察学生对全等三角形的应用以及翻折知识的理解及运用.例10.(2021·安仁县思源实验学校七年级期末)若ABC DEF △≌△,70A ∠=︒,50B ∠=︒,点 A 的对应点是D ,AB DE =,那么F ∠的度数是_______.【答案】60︒【分析】根据全等三角形的性质求解;【详解】解:ABC DEF ≌,70A ∠=︒,50B ∠=︒,18060F C A B ︒︒∴==--=∠∠∠∠.故答案为:60︒.【点睛】本题考查全等三角形的性质,理解相关性质正确推理计算是解题关键.例11.(2020·福建泉州市·七年级期末)如图,△ABC≌△ADE,且点E在BC上,若∠DAB=30°,则∠CED=_____.【答案】150°【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【详解】∵△ABC≌△ADE,∴∠B=∠D,∵∠BHE=∠DHA,∴∠BED=∠DAB=30°,∴∠CED=180°﹣∠BED=150°.故答案为:150°.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键.△≌△,DEF的例12.(2020·黑龙江省红光农场学校七年级期末)已知ABC DEF周长是32cm,DE=9cm,EF=12cm,则AB=_______, BC=______,CA=_____【答案】9cm 12cm 11cm【分析】作出图形,先求出DF,再根据全等三角形对应边相等解答即可.【详解】解:∵△DEF的周长是32cm,DE=9cm,EF=12cm,∴DF=32-9-12=11cm,∵△ABC≌△DEF,∴AB=DE=9cm,BC=EF=12cm,DF=AC=11cm.故答案为:9cm;12cm;11cm.【点睛】本题考查了全等三角形对应边相等的性质,熟记性质是解题的关键,作出图形更形象直观.∆≅∆,例13.(2020·河南周口市·七年级期末)如图,ABC DEF120,20∠=︒∠=︒,则DB F∠=__________°.【答案】40【分析】根据全等三角形的性质得出∠E=∠B=120°,再根据三角形的内角和定理求出∠D 的度数即可.【详解】解:∵△ABC≌△DEF,∴∠E=∠B=120°,∵∠F=20°,∴∠D=180°-∠E-∠F=40°,故答案为40.【点睛】本题考查了全等三角形的性质和三角形的内角和定理的应用,注意:全等三角形的对应角相等,对应边相等.例14.(2019·海南七年级期末)如图,在3×3的正方形网格中,∠1+∠2=_______度.【答案】90【分析】根据网格特点可知两个三角形全等,故可求解.【详解】由网格的特点可知两个三角形全等∴∠2=∠3∴∠1+∠2=∠1+∠3=90°,故答案为:90°.【点睛】此题主要考查三角形的角度求解,解题的关键是熟知全等三角形的性质及网格的特点.例15.(2019·山东泰安市·七年级期中)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =________.【答案】11【分析】根据全等三角形的性质求出x和y即可.【详解】解:∵这两个三角形全等∴x=6,y=5∴x + y =11故答案为11.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.例16.(2018·全国七年级课时练习)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出对应边和其他对应角.【答案】AB与AC,AE与AD,BE与CD是对应边;∠D与∠E是对应角.【分析】先根据△ABE≌△ACD,可以确定点A的对应点是A,点B的对应点是C,点D的对应点是E,然后根据对应顶点,结合图形即可找出对应边和对应角.【详解】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴点A的对应点是A,点B的对应点是C,点E的对应点是D,∴∠E与∠D是对应角,AB与AC,BE与CD,AE与AD是对应边.【点睛】本题考查了全等三角形的性质,一般情况下,对于图形的全等来说,能够完全重合的部分是相互对应的,实际应用中,应结合图形将对应点写在对应位置上,以免出现错误.例17.(2019·沂源县中庄中学七年级月考)如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.(1)求△ABC的周长;(2)求△ACE的面积.【答案】(1)24;(2)50【分析】(1)根据三角形全等得到AC=CE,即可得出答案;(2)根据三角形全等得到∠ACB=∠CED,∠BAC=∠DCE,进而求出∠ACB+∠DCE=90°,即可得出答案.【详解】解:(1))∵△ABC≌△CDE∴AC=CE∴△ABC的周长=AB+BC+AC=24(2)∵△ABC≌△CDE∴AC=CE,∠ACB=∠CED,∠BAC=∠DCE又∠B=90°∴∠ACB+∠BAC=90°∴∠ACB+∠DCE=90°∴∠ACE=180°-(∠ACB+∠DCE)=90°∴△ACE的面积=150 2AC CE⨯⨯=【点睛】本题考查的是全等三角形的性质以及三角形的周长和面积公式,需要熟记三角形的周长和面积公式.例18.如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于F.(1)∠DEF和∠CBE相等吗?请说明理由;(2)请找出图中与ED相等的线段(不另添加辅助线和字母),并说明理由.【难度】★★【答案】(1)相等;(2)ED BC AD ==.【解析】(1)90DEF CEB ∠+∠=︒,90CBE CEB ∠+∠=︒,DEF CBE ∴∠=∠(同角的余角相等)(2)AE 平分DAB ∠, 45DAE ∴∠=︒,DE AD ∴=. AD BC =, DE AD BC ∴==.【总结】考察学生对图形的理解和掌握,能够迅速的根据图形发现同角的余角相等,再 利用特殊的角度45得出等腰直角三角形,从而解题.例19.如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长.【难度】★★【答案】(1)1=55∠°;(2)4AC cm =.【解析】(1)ADF BCE ≅,30A B ∴∠=∠=︒,AD BC =,155A F ∴∠=∠+∠=︒;(2)ADF BCE ≅,AD BC ∴=, 514AC AD CD cm ∴=-=-=.【总结】考察学生对全等三角形对应边相等,对应角相等的掌握,并且学会正确运用. 例20.如图,在△ABC 中,∠A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,试旋转前后的△A ’B ’C ’中的顶点B ’在原三角形的边AC 的延长线上,求∠BCA ’的度数.【难度】★★【答案】40︒.【解析】设2A x ∠=,5B x ∠=,11ACB x ∠=,则18180x =, 解得:10x =,∴110BCA ∠=,70BCB '∠=.110A CB ''∠=, 40BCA '∴∠=.【总结】考察学生对旋转的理解,注意利用全等三角形的性质进行解题.例21.如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =1050,∠CAD =100,∠ADE =250,求∠DFB 和∠AGB 的度数.【难度】★★【答案】∠DFB =85︒,∠AGB =45︒.【解析】证明:ABC ADE ≅,25ADE ABC ∴∠=∠=︒,50CAB EAD ∠=∠=︒,10502585DFB ∴∠=︒+︒+︒=︒,1801102545AGB ∠=︒-︒-︒=︒.【总结】本题主要考察学生对全等三角形的性质及三角形外角性质和内角和定理的综合 运用.例22.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时.(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED 的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.【难度】★★★【答案】(1)AED A ED '≅,A A '∠=∠,AED A ED '∠=∠,ADE A DE '∠=∠;(2)11802x ∠=-,21802y ∠=-;(3)()1122A ∠=∠+∠. 【解析】(3)证明:∵()180A x y ∠=-+,1+2=3602()x y ∠∠-+,∴()1122A ∠=∠+∠. 【总结】本题一方面考查翻折的性质,另一方面考查全等三角形的性质及三角形内角和 定理的运用.例23.如图(1)所示,把△ABC 沿直线BC 移动线段BC 那样长的距离可以变到△ECD 的位置;如图(2)所示,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图(3)所示,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置,像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换,问题:如图(4),△ABC ≌△DEF ,B 和E 、C 和F 是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.AB CD E (1)AB C D (2)AB C D E (3)A B C (4)D E F【难度】★★★【答案】翻折变换,平移变换或旋转变换,平移变换.【解析】AB ED =,BC EF =,AC DF =.【总结】考察学生对图形的运动的理解和掌握,需要学生进行一定的空间想象. 模块二:全等三角形的判定知识精讲本模块复习了全等三角形的4个判定定理,主要是已知条件为“两边及夹角对应 相等(SAS )”,“两角及夹边对应相等(ASA )”,“两角及其中一角的对边对应相等(AAS )”“三边对应相等(SSS )”的两个三角形全等.例题解析例1.如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由.【难度】★★【解析】证明:12∠=∠,12DAC DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠.在ABC 和DAE 中,B D BAC DAE AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (A.A.S ).【总结】考察学生对全等三角形的判定条件的掌握.例2.如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么?【难度】★【解析】证明:在ABE 和ADC 中,A A C E BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE ADC ∴≅(A.A.S ), AB AD ∴=.【总结】考察学生对全等三角形的判定及性质的综合运用.例3.如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由.【难度】★【解析】证明:AD BC =,AE BE =,DE CE ∴=.在ACE 和BDE 中,AE BE =AEC BED ∠=∠,ACE BDE ∴≅(S.A.S )AC BD ∴=,C D ∠=∠(全等三角形的对应边相等,对应角相等)【总结】考察学生对全等三角形的判定及性质的综合运用.例4如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由.【难度】★【解析】证明:连接BD在ABD 和CDB 中,AB CD AD BC BD DB =⎧⎪=⎨⎪=⎩, (..)ABD CDB S S S ∴≅A C ∴∠=∠(全等三角形的对应角相等)【总结】考察学生对全等三角形的判定及性质的综合运用.例5.如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由.【难度】★★【解析】//AE CF , E EFC ∴∠=∠.∵BD 是△ABC 的中线, ∴AD CD =.在ADE 和CDF 中,ADE FDC AD CD ⎪∠=∠⎨⎪=⎩, ADE CDF ∴≅(A.A.S ). 【总结】考察学生对全等三角形的判定条件的掌握.例6.如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由.【难度】★★【解析】证明:(1)//AC BD ,C D ∴∠=∠.在AOC 和BOD 中,C D AOC BOD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AOC BOD ∴≅(A.A.S ); (2)AOC BOD ≅, CO DO ∴=.在CEO 和DFO 中,C D CO DOCOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()CEO DFO ASA ∴≅, EO FO ∴=.【总结】考察学生对全等三角形的判定及性质的综合运用.例7.如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由.【难度】★★【解析】CD AB BE AC ⊥⊥,, 90BDC DEC ∴∠=∠=︒.在BDO 和CEO 中,DO EODOB COE ⎪=⎨⎪∠=∠⎩, (..)BDO CEO A S A ∴≅. DO EO ∴=,B C ∠=∠, BO CO =, BE CD ∴=.在ABE 和ACD 中,A A BE CDBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABE ≌ACD (A.S.A ), AB AC ∴=(全等三角形的对应边相等)【总结】本题主要考察学生对全等三角形的判定条件的掌握,注意利用多次全等. 例8.如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么?(2) 说明AB =CD 的理由;(3) 图中有哪几对全等三角形?【难度】★★【解析】证明:(1)全等,//AD BC , DAC ACB ∴∠=∠.//BF DE ,DEF BFE ∴∠=∠, AED BFC ∴∠=∠.在AED 和BFC 中,DAC ACB AE CF AED BFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, (..)ADE CBF A S A ∴≅;(2)ADE CBF ≅, AD BC ∴=.在ABC 和ADC 中AD BC DAC ACB AC AC =⎧⎪∠=∠⎨⎪=⎩,(..)ABC ADC S A S ∴≅,AB CD ∴=(全等三角形的对应边相等);(3)AED CFB ≅;DEC BFA ≅;ABC CDA ≅.【总结】本题主要考察全等三角形的判定与性质的综合运用.例9.如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由.【难度】★★【解析】在ABC 和BCD 中,AB CD AC BD BC BC =⎧⎪=⎨⎪=⎩, (..)ABC DCB S S S ∴≅, ABC BCD ∴∠=∠,在ABM 和DCM 中,AB CD ABC BCD BM CM =⎧⎪∠=∠⎨⎪=⎩,(..)ABM DCM S A S ∴≅, AM DM ∴=.【总结】本题主要考察全等三角形的判定与性质的综合运用,利用多次全等进行证明. 例10.如图,∠1=∠2,AC =BD ,E 、A 、B 、F 在同一条直线上,说明:∠CAD =∠DBC 的理由.【难度】★★【解析】12∠=∠, CAB DBA ∴∠=∠.在CAB 和DBA 中,AC BD CAB DBA AB AB =⎧⎪∠=∠⎨⎪=⎩, (..)CAB DBA S A S ∴≅,CBA DAB ∴∠=∠,又CAB DBA ∠=∠,CAD DBC ∴∠=∠.【总结】本题主要考察全等三角形的判定与角的和差的综合运用.例11.如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由.【难度】★★【解析】证明:在ABE 和ACE 中,AB AC BE CE AE AE =⎧⎪=⎨⎪=⎩,(..)ABE ACE S S S ∴≅,BAD CAD ∴∠=∠.在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, (..)ABD ACD S A S ∴≅,90ADB ADC ∴∠=∠=, AD BC ∴⊥.【总结】本题主要考查全等三角形的判定的综合运用,通过多次全等得到垂直. 例12.如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由.【难度】★★【解析】证明:在ADC 和AEB 中,AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴(..)ADC AEB S A S ≅B C ∴∠=∠(全等三角形的对应角相等)AB CA =,AD AE =,BD CE ∴=.在BDO 和CEO 中,DOB COE ∠=∠B C ∠=∠BD CE =(..)BDO CEO A A S ∴≅, OD OE ∴=(全等三角形的对应边相等)【总结】本题主要考查全等三角形的判定的综合运用,注意对全等的多次运用. 例13.(2019·上海奉贤区·七年级期末)阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE △≌△,写出证明过程和依据即可.【详解】解:过点E 作//EF AC 交BC 于F ,∴ACB EFB ∠=∠(两直线平行,同位角相等),∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.例14.(2019·上海市民办新竹园中学七年级期中)如图,△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥GF ,交AB 于点E ,连接EG ,EF.(1)说明:BG=CF ;(2)BE ,CF 与EF 这三条线段能否组成一个三角形?【分析】(1)由BG ∥AC 得出∠DBG=∠DCF,从而利用ASA 得出△BGD 与△CFD全等,进一步证得结论(2)根据△BGD与△CFD全等得出GD=FD,BG=CF,再又因为DE⊥GF,从而得出EG=EF,从而进一步得出结论【详解】(1)∵BG∥AC∴∠DBG=∠DCF又∵D为BC中点∴BD=CD又∵∠BDG=∠CDF∴△BGD≅△CFD(ASA)∴BG=CF(2)能证明如下:∵△BGD≅△CFD∴BG=CF,GD=DF又∵DE⊥GF∴GE=EF∵BE,BG,GE组成了△BGE∴BE,BG,GE三边满足三角形三边的关系同理,与BG,GE相等的两边CF,EF与BE三条线段亦满足三角形三边关系∴BE,CF,EF这三条线段可以组成三角形【点睛】本题主要考查了三角形全等的综合运用,熟练掌握三角形全等的判断及性质是关键例15.(2018·华东理工大学附属中学七年级月考)如图,在△ABC中,已知点D、E、F分别在边BC、AC、AB上,且FD=DE,BF=CD,∠FDE=∠B,请说明∠B=∠C【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠B+∠DFB ,再根据∠FDE=∠B ,证明∠DFB=∠EDC ,然后根据边角边定理证明△DFB 与△EDC 全等,根据此思路进行解答即可.【详解】证明:∵∠FDC=∠B+∠DFB (三角形的一个外角等于与它不相邻的两个内角的和) 即∠FDE+∠EDC=∠B+∠DFB又∵∠FDE=∠B (已知)∴∠DFB=∠EDC在△DFB 与△EDC 中FB=ED (已知),∠DFB=∠EDC ,BF=CD (已知)∴△DFB ≌△EDC (SAS )∴∠B =∠C .【点睛】本题考查了全等三角形的判定与全等三角形的性质,熟练掌握判定定理与性质定理,理清证明思路是写出理由与步骤的关键.例16.(2019·上海浦东新区·)公园里有一条“Z ”字形道路ABCD ,如图所示,其中AB CD ∥,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE CF =,M 是BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上.(提示:可通过证明180EMF =∠)【分析】先根据SAS 判定△BEM ≌△CFM ,从而得出∠BME=∠CMF.通过角之间的转换可得到E ,M ,F 在一条直线上.【详解】证明:∵AB CD ∥(已知)∴B C ∠=∠(两直线平行,内错角相等)在EBM △与FCM △中,BE CF B CBM CM =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(中点的意义)∴(...)EBM FCM S A S △≌△∴BME CMF ∠=∠(全等三角形的对应角相等)∵180BMF CMF +=∠∠(平角的意义)∴180BMF BME ∠+∠=(等量代换)∴E ,M ,F 三点共线(平角的意义)【点睛】本题主要考查了学生对全等三角形的判定的掌握情况,关键是共线的证明方法. 例17.(2019·上海浦东新区·)如图,已知ABC △中,AB AC =,O 是ABC △内一点,且OB OC =,试说明AO BC ⊥的理由.【分析】先证明AOB AOC △≌△,再利用全等三角形的性质得到BAO CAO ∠=∠,然后利用等腰三角形三线合一的性质,即可证明.【详解】证明:在AOB 与AOC △中,AB AC OB OCAO AO (已知)(已知)(公共边)=⎧⎪=⎨⎪=⎩∴(...)AOB AOC S S S △≌△∴BAO CAO ∠=∠(全等三角形的对应角相等)∵AB AC =(已知)∴AO BC ⊥(等腰三角形的三线合一)【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题和等腰三角形三线合一性质的运用.例18.(2018·上海市第八中学七年级月考)如图,点E 、F 位于线段AC 上,且 AF=CE , AB ∥CD , BE ∥DF 。
沪科版数学七年级下册因式分解课件

x
3 2x2
x
3 2x2
不是
5x2 y 3x2 y 2x2 y
(不是)
学校打算把操场重新计划一下,分为绿化带、运动场、主席台三个部分, 如下图,计算操场总面积。
a
b
c
m
方法一:S = m ( a + b + c ) 方法二:S = ma + mb + mc
a
b
c
mm
m
方法一:S = m ( a + b + c )
3、系数与字母相乘
例1 用提取公因式法因式分解: ①9a2b 15ab2c = 3ab (3a–5bc)
最a大的公b最的因低最数指低为数指3为数1为1
② 12s3t 2 8st 3 4st 2 = – 4 s t2 (3s2–2t+1)
例2
把下列各式分解因式
(1)4m²-8mn (2)3ax²-6axy+3a
8.4 因式分解
知识复习: 多项式的乘法:
xx 1 __x_2___x__ x 1x 1 ___x_2 __1__ 2x3x 7 _6_x_2__1_4_x_
乘法分配律倒用:
x2 x __x_x___1_ ___
完全平方公式倒用:
x2 1 ___x___1__x__1
x2 1 x 1x 1
方法二:S = ma + mb + mc 下面两个式子中哪个是因式分解?
m ( a + b + c ) = ma + mb + mc
ma + mb + mc = m ( a + b + c )
在式子ma + mb + mc中,m是这个多项式中每 一个项都含有的因式,叫做 公因式 。
初中数学沪教版七年级上册因式分解复习 课件PPT

(口答) 因式分解 (1)ab ac b c
(2) a2 2ab b2 9
因式分解口诀:
首先提取公因式 然后考虑用公式 十字相乘试一试 分组分解要合适 结果必是连乘式
将因式分解分解到不能分解为止
二、辨一辨
1. 下列用提取公因式法分解因式是否正确?
x (D)9 x2 (3 x)(3 x)
因式分解的步骤:
第一步: 提取公因式法 (首选)
第二步:二项式 三项式
因式分解的平方差公式 因式分解的完全平方公式 十字相乘法
四项式或 四项以上
分组分解法 (2+2或3+1)
因式分解分解到不能再分解为止
因式分解的基本方法:提取公因式法
ma mb m(a b)
尝试练习:
1.已知a b 3, 其中x, y互为倒数, 求a2xy 2abxy b2xy的值。
2.已知a b 3, ab 2,求 (1)a2 b2的值; (2)a4 b4的值。
六、探究与活动
因式分解:x(x 2) 3
解 x(x 2) 3 x2 2x 3 (x 3)(x 1)
(1)3a 9ab 3a 3b 9ab (2)2(x y) (x y)2 (x y)(2 x y) (3)(m n)2 (n m)3 (n m)2 (1 n m)
2.下列多项式哪些能用乘法公式分解因式?
(1) x2 4 (2) x2 4xy y2 (3) (m n)2 6(m n)(m n) 9(m n)2
变试训练:
(1)x2 2xy 3y2 (2)(x 4 y)2 2(x 4 y) 3
【最新】七年级数学因式分解复习课课件沪科版 课件

如何分解? 【最新】七年级数学因式分解复习 课课件沪科版 课件
本节课你有什么收获呢?
【最新】七年级数学因式分解复习 课课件沪科版 课件
因式分解的步骤: 1、首先考虑提取公因式法; 2、第二考虑公式法。 3、因式分解要分解到不能再分解为止。 因式分解的规律: 1、首先考虑提取公因式法; 2、两项的在考虑提公因后多数考虑平方差公式。 3、三项的在考虑提公因后考虑完全平方公式。 4、多于三项的在考虑提公因后,考虑分组分解。 5、分解后得到的因式,次数高于二次的必须再考虑 是否能继续分解,确保分解到不能再分解为止。
【最新】七年级数学因式分解复习 课课件沪科版 课件
拓展 提高 :已知多项式2x3-x2-13x+k分解因式后有 一个因式为2x+1。求k的值。 提示:因为多项式2x3-x2-13x+k有一个因式是2x+1,所以
当2x+1=0时,多项式2x3-x2-13x+k=0,
即:当x= 1 时,多项式2x3-x2-13x+k=0。
【最新】七年级数学因式分解复习 课课件沪科版 课件
提取公因式法
如果多项式的各项有公因式,可以把这个公因式提到括号 外面,将多项式写成乘积的形式。这种分解因式的方法叫 做提公因式法。
练习:
1、把多项式m2(a-2)+m(2-a)分解因式等于( C ) A.(a-2)(m2+m) B.(a-2)(m2-m) C.m(a-2)(m-1) D.m(a-2)(m+1)
2、把下列多项式分解因式
(1) a2x2yax2y
上海七年级数学因式分解专题讲解

优秀学习资料欢迎下载上海七年级数学因式分解专题讲解一、提取公因式1、因式分解的概念:把一个多项式化为几个整式的积得形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
例 1、下列各式从左边右边的变形,哪些是因式分解?那些不是因式分解?( 1)2a23a 1a(2a3) 1;( 2)xy1xy(11 ) ;xy( 3)(a 1)(a 1)a2 1 ;(5)x22x1( x1)2;42例 2、指出下列各式中的公因式:( 1)4a 4、8a3b2、2b2()3(a b)2、b)3、()32a26(a- 9 a b(3)3a2 m、18a m2、提取公因式的注意事项(1)、如果多项式的首项是负数时,一般应先提出“—”号,是括号内的第一项系数是正数,然后再对括号内的多项式进行提取公因式。
例:12a2b 8ab2(12a 2b 8ab2 )4ab(3a 2b)(2)利用提取公因式法分解因式时,一定要“提干净”。
也就是说当一个多项式提出公因式后,剩下的另一个因式中应该已经没有可以提取的公因式了;若发现还有公因式必须要再次提取,否则因式分解就不彻底,没有完成。
(3)注意避免出现分解因式的漏项问题,一般提取公因式后,括号里的多项式项数应与原多项式的项数一致。
例: 4x26xy 2x 2 x(2x 3 y 1) ,不能写成 4x26xy 2x 2x(2x 3y)(4)多项式的公因式可以是数字、字母,也可以是单项式,还可以是多项式,当把多项式作为公因式提出来时,要特别注意同一字母的排列序,要设法结合相关知识进行转化,使之成为完全相同的因式时再提取公因式,否则容易出现负号上的错误。
例: m(a b) 3n(b a) 2m( a b)3n( a b) 2(a b) 2 ( ma mb n)例 3、分解因式:9x3 y 6x 2 y 218 x2 y4例 4、将下列各组中的整式写成他们的公因式与另一公因式相乘的形式:( 1) 6a 3、 4a ;(2)8x 3 y 2、 4xy 3 ;279( 3)3x(ab) 2、 2 (a3;( ) a) 2 、;51x b) 4 (m 3x(a m)例 5、已知关于 x 的二次三项式 2x2mx n 因式分解的结果是 (2 x 1)( x1) ,求4m 、 n 的值?例 6、在物理电学中,求串联电路的总电压是有公式R 1 31.7, R 2 32.4, R 3 35.9, I 2.5 时,求电压 U 的值?U IR 1IR 2IR 3 ,当3、整式乘法与因式分解有什么关系?整式乘法是一种求几个因式的积的运算,它的最后结果是和或差的形式,是一个多项式。
沪教版 七年级数学 暑假同步讲义 第11讲 十字相乘法(解析版)

十字相乘法是在学生学习了多项式乘法、整式乘法、分解质因数、整式加减法、提取公因式和运用乘法公式对多项式进行分解因式等知识的基础上,在学生已经掌握了运用完全平方公式进行分解因式之后,自然过渡到具有一般形式的二次三项式的分解因式,是从特殊到一般的认知规律的典型范例.首先,这种分解因式的方法在数学学习中具有较强的实用性,一是对它的学习和研究,不仅给出了一般的二次三项式的分解因式方法,能直接运用于某些形如2x px q++这类二次三项式的分解因式,其次,还间接运用于解一元二次方程和确定二次函数解析式上,为以后的求解一元二次方程、确定二次函数解析式等内容奠定了基础,十字相乘法在初中阶段的教学中具有十分重要的地位.十字相乘法:如果二次三项式2x px q++中的常数项q能分解成两个因式a、b的积,而且一次项系数p又恰好是a b+,那么2x px q++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b++=+++=++要将二次三项式2x px q++分解因式,就需要找到两个数a、b,使它们的积等于常数项q,和等于一次项系数p, 满足这两个条件便可以进行如下分解因式,即:22()()()x px q x a b x ab x a x b++=+++=++.由于把2x px q++中的q分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.十字相乘法知识结构知识精讲内容分析班假暑级年七2/ 13【例1】 如果()()2x px q x a x b -+=++,那么p 等于(). A .abB .a b +C .ab -D .()a b -+【答案】D【解析】22()()()x a x b x a b x ab x px q ++=+++=-+. 【总结】利用十字相乘法以及待定系数.【例2】 不能用十字相乘法分解的是() A .22x x +-B .23103x x -+C .22568x xy y --D .242x x ++【答案】D【解析】根据系数非负,无法把二次项系数和常数项分解之后其之和等于1,判断出D . 【总结】直接利用十字相乘法以及待定系数.【例3】 分解因式:(1)256x x ++;(2)256x x -+.【答案】(1)(3)(2)x x ++;(2)(3)(2)x x --. 【解析】直接十字相乘即可.【总结】直接利用十字相乘,注意如何分解二次项系数和常数项去凑一次项系数.【例4】 分解因式: (1)2712x x -+; (2)2412x x --; (3)2812x x ++;(4)21112x x --.【答案】(1)(3)(4)x x --;(2)(6)(2)x x -+;(3)(6)(2)x x ++;(4)(12)(1)x x -+. 【解析】直接十字相乘即可.【总结】直接利用十字相乘,注意如何分解二次项系数和常数项去凑一次项系数. 【例5】 m 为下列各数时,将关于x 的多项式242x mx +-分解因式. (1)1m =-;(2)19m =.【答案】(1)(6)(7)x x +-;(2)(21)(2)x x +-. 【解析】(1)242(7)(6)x x x x --=-+;例题解析(2)21942(21)(2)x x x x +-=+-.【总结】直接利用十字相乘,注意如何分解二次项系数和常数项去凑一次项系数.【例6】 分解因式:(1)212x x +-;(2)222064xy y x -++.【答案】(1)(3)(4)x x -+-;(2)(16)(4)x y x y --. 【解析】(1)原式=2(12)(3)(4)x x x x ---=-+-;(2)原式=222064(16)(4)x xy y x y x y -+=--.【总结】直接利用十字相乘,注意如何分解二次项系数和常数项去凑一次项系数.【例7】 分解因式:(1)22815a ab b ++;(2)22752500x y xy --.【答案】(1)(5)(3)a b a b ++;(2)(100)(25)xy x -+. 【解析】直接十字相乘即可.【总结】直接利用十字相乘法分解,注意如何分解二次项系数和常数项去凑一次项系数.【例8】 分解因式:(1)322718a a b ab +-;(2)3223246xy x y x y --.【答案】(1)(9)(2)a a b a b +-;(2)2(3)()xy y x y x -+. 【解析】(1)原式22(718)(9)(2)a a ab b a a b a b =+-=+-;(2)原式222(23)2(3)()xy y xy x xy y x y x =--=-+.【总结】本题需要先提取公因式后再利用十字相乘法分解,一般有公因式时要先提取公因式.【例9】 分解因式:(1)432654a a a --;(2)642244379a a b a b -+.【答案】(1)2(34)(21)a a a -+;(2)2(2)(2)(3)(3)a a b a b a b a b +-+-. 【解析】(1)原式222(654)(34)(21)a a a a a a =--=-+; (2)原式2422422222(4379)(4)(9)a a a b b a a b a b =-+=--2(2)(2)(3)(3)a a b a b a b a b =+-+-.【总结】本题需要先提取公因式后再利用十字相乘法分解,一般有公因式时要先提取公因式,另外注意因式分解一定要分解到不能分解为止.【例10】 分解因式:()()22141m m m ---.【答案】2(1)(2)m m --.【解析】原式()()2222141(1)(44)(1)(2)m m m m m m m m =---=--+=--.【总结】本题主要是利用提取公因式法和公式法分解因式,注意因式分解一定要分解到不能分解为止.【例11】 分解因式:()2222abcx a b c x abc +++.【答案】()()abx c cx ab ++. 【解析】原式()()abx c cx ab =++.【总结】直接利用十字相乘,注意带字母系数之间的十字相乘方法仍旧要和数字相同.【例12】 分解因式:(1)4245x x +-;(2)42224x x --.【答案】(1)2(1)(1)(5)x x x -++;(2)22(6)(4)x x -+.【解析】(1)原式222(1)(5)(1)(1)(5)x x x x x =-+=-++;(2)原式22(6)(4)x x =-+.【总结】利用整体法进行十字相乘,注意因式分解要彻底.【例13】 分解因式:(1)()()229210x y x y ----; (2)()()2214248a b a b +-++.【答案】(1)(210)(21)x y x y ---+;(2)(26)(28)a b a b +-+-. 【解析】直接利用十字相乘法,其中把括号内2x y -与2a b +看作整体即可. 【总结】利用整体法进行十字相乘,注意因式分解要彻底.【例14】 分解因式: (1)()22234x x --;(2)()2229x x --.【答案】(1)(3)(1)(3)(1)x x x x -++-;(2)2(3)(1)(23)x x x x -+-+. 【解析】(1)原式22(32)(32)(3)(1)(3)(1)x x x x x x x x =---+=-++-;(2)原式22[(2)3][(2)3](23)(23)x x x x x x x x =---+=---+2(3)(1)(23)x x x x =-+-+.【总结】先平方差公式的运用,再进行十字相乘,注意因式分解要彻底.【例15】 分解因式:(1)()()2221760x x x x +-++;(2)()()2222728x x x x +-+-.【答案】(1)2(4)(3)(5)x x x x +-+-;(2)2(4)(2)(1)x x x +-+.班假暑级年七6/ 13【解析】(1)原式222(12)(5)(4)(3)(5)x x x x x x x x =+-+-=+-+-;(2)原式222(28)(21)(4)(2)(1)x x x x x x x =+-++=+-+.【总结】利用整体法进行十字相乘,注意因式分解要彻底.【例16】 分解因式:(1)()()2222222x x x x ----;(2)()()211a b ab +-+.【答案】(1)2(2)(1)(22)x x x x -+--;(2)22(1)(1)a ab b ab +-+-. 【解析】(1)原式222(22)(2)(2)(1)(22)x x x x x x x x =----=-+--;(2)原式2222()()1[()1][()1](1)(1)ab a b a b a a b b a b a ab b ab =+-++=+-+-=+-+-.【总结】利用整体法进行十字相乘,注意因式分解要彻底.【例17】 分解因式:()()()()222222261561121x x x x x x ++++++++.【答案】229(41)(1)x x x +++.【解析】原式2222[2(61)(1)][(61)2(1)]x x x x x x =++++++++ 22(3123)(363)x x x x =++++ 229(41)(21)x x x x =++++229(41)(1)x x x =+++.【总结】利用整体法进行十字相乘,注意合并同类项与因式分解要彻底.师生总结十字相乘法的基本步骤和方法是什么?【习题1】 如果()22530x a b x b x x ++⋅+=--,则b 为()A .5B .6-C .5-D .6【答案】B【解析】∵1530a b b +=-=-,,∴6b =-.【总结】利用十字相乘法以及待定系数.【习题2】 填空题:已知:()()256m m m a m b --=++,a =__________,b =__________.【答案】61a b ==-,或16a b =-=,.【解析】256(6)(1)m m m m --=-+,所以61a b ==-,或16a b =-=,. 【总结】利用十字相乘法以及待定系数.【习题3】m 为下列各数时,将关于x 的多项式236x mx ++分解因式.(1)20m =; (2)13m =-.【答案】(1)(18)(2)x x ++;(2)(9)(4)x x --.【解析】(1)22036(18)(2)x x x x ++=++;(2)21336(9)(4)x x x x -+=--.【总结】直接利用十字相乘法分解,注意如何分解二次项系数和常数项去凑一次项系数.【习题4】 分解因式: (1)2820x x +-; (2)2524x x --;(3)21227x x ++;(4)2812x x -+.【答案】(1)(10)(2)x x +-;(2)(8)(3)x x -+;(3)(9)(3)x x ++;(4)(6)(2)x x --. 【解析】直接利用十字相乘法即可.【总结】直接利用十字相乘,注意如何分解二次项系数和常数项去凑一次项系数.【习题5】 将下述多项式分解后,有相同因式1x -的多项式有().随堂检测①21x -; ②2242x x -+; ③232x x ++;④256x x --; ⑤2224x x --; ⑥256x x --. A .2个 B .3个C .4个D .5个【答案】A【解析】①原式(1)(1)x x =+-; ②原式22(1)x =-; ③原式(2)(1)x x =++;④原式(6)(1)x x =-+;⑤原式(6)(4)x x =-+;⑥原式(8)(7)x x =-+.故包含因式1x -的多项式只有①和②.【总结】本题主要考查因式分解的综合运用.【习题6】 填空:当k =______时,多项式237x x k +-有一个因式为__________.(只需填写一个合理答案即可) 【答案】参考答案:-4;(34)(1)x x ++【解析】根据十字相乘法则,只要满足二次项系数与常数项分解后之和为7即可. 【总结】利用十字相乘法以及待定系数,本题难度较大,注意二次项系数不等于1.【习题7】 若6x y -=,1736xy =,则代数式32232x y x y xy -+的值为__________. 【答案】17【解析】3223222172(2)()361736x y x y xy xy x xy y xy x y -+=-+=-=⋅= 【总结】利用因式分解求代数式的值.【习题8】 分解因式:2612x x -+-. 【答案】(34)(23)x x --+.【解析】原式2(612)(34)(23)x x x x =-+-=--+. 【总结】直接利用十字相乘,注意符号问题.【习题9】 分解因式:(1)421336x x ++;(2)42536x x --.【答案】(1)22(4)(9)x x ++;(2)2(3)(3)(4)x x x -++.【解析】(1)原式22(4)(9)x x =++;(2)原式222(9)(4)(3)(3)(4)x x x x x =-+=-++.【总结】利用整体法进行十字相乘,注意因式分解要彻底.【习题10】 分解因式: (1)22616x xy y +- ;(2)22524x xy y +-;(3)221124x xy y -+.【答案】(1)(2)(8)x y x y +-;(2)(8)(3)x y x y +-;(3)(3)(8)x y x y --.【解析】(1)原式(2)(8)x y x y =+-;(2)原式(8)(3)x y x y =+-;(3)原式(3)(8)x y x y =--.【总结】直接利用十字相乘法分解因式,注意多项式中含有两个字母,因此分解的因式中也要含有两个因式.【习题11】 分解因式:()()2x a b c x a b c +++++.【答案】()()x a b x c +++.【解析】()()2()()x a b c x a b c x a b x c +++++=+++.【总结】直接利用十字相乘,注意带字母系数之间的十字相乘方法仍旧要和数字相同.【习题12】 分解因式:(1)()()226227x y x y +++-;(2)()()21556a b a b +-++;(3)()()222812a a a a +-++.【答案】(1)(29)(23)x y x y +++-;(2)(7)(8)a b a b +-+-;(3)(3)(2)(2)(1)a a a a +-+-.【解析】(1)原式(29)(23)x y x y =+++-;(2)原式(7)(8)a b a b =+-+-;(3)原式22(6)(2)(3)(2)(2)(1)a a a a a a a a =+-+-=+-+-.【总结】利用整体法进行十字相乘,注意因式分解要彻底.【习题13】 分解因式: (1)2673x x --;(2)22935x x --;(3)2253x x --.【答案】(1)(23)(31)x x -+;(2)(25)(7)x x +-;(3)(21)(3)x x +-. 【解析】直接十字相乘即可.【总结】直接利用十字相乘,注意二次项系数的分解,综合性较强.【习题14】 分解因式:()()22222848a a a a +-++.【答案】2(4)(3)(2)(1)a a a a +-+-. 【解析】()()22222848a a a a +-++22222[()14()24]a a a a =+-++ 222(12)(2)a a a a =+-+-2(4)(3)(2)(1)a a a a =+-+-.【总结】利用整体法进行十字相乘,注意因式分解要彻底.【习题15】 分解因式: (1)()222416x x +-;(2)()()2222321233x x x x ++-++.【答案】(1)22(2)(2)x x -+;(2)2(2)(1)(554)x x x x -+++.【解析】(1)原式2222(44)(44)(2)(2)x x x x x x =+-++=-+; (2)原式2222(321233)(321233)x x x x x x x x =++---+++++ 22(2)(554)x x x x =--++2(2)(1)(554)x x x x =-+++.【总结】先平方差公式的运用,再进行十字相乘,注意判断哪些是无法十字相乘的二次三项式.【习题16】 分解因式:()()2234x x x +++-.【答案】(21)(2)x x ++.【解析】方法一:原式222564252(21)(2)x x x x x x x =+++-=++=++;方法二:原式()()23(2)(2)(2)(32)(2)(21)x x x x x x x x x =++++-=+++-=++.【总结】本题有两种方法,一是先拆开再利用十字相乘法,二是先利用公式再提取公因式.【作业1】 多项式23x x a -+可分解为()()5x x b --,则a ,b 的值分别为(). A .10和2-B .10-和2C .10和2D .10-和2- 【答案】D【解析】由223(5)5x x a x b x b -+=-++,可得:553a b b =+=,,所以2b =-,10a =-.【总结】利用十字相乘法以及待定系数.【作业2】 分解结果等于()()4225x y x y +-+-的多项式是(). A .()()221320x y x y +-++B .()()2221320x y x y +-++ C .()()221320x y x y ++++ D .()()22920x y x y +-++ 【答案】A【解析】()()()()()()2422542521320x y x y x y x y x y x y +-+-=+-+-=+-++⎡⎤⎡⎤⎣⎦⎣⎦.【总结】本题主要考查因式分解与多项式乘法间的关系. 课后作业【作业3】 分解因式:(1)21348x x +-; (2)21772x x ++.【答案】(1)(16)(3)x x +-;(2)(9)(8)x x ++.【解析】直接十字相乘即可.【总结】直接利用十字相乘.【作业4】 分解因式:(1)2672x x -+; (2)2121115x x -- .【答案】(1)(32)(21)x x --;(2)(35)(43)x x -+.【解析】直接十字相乘即可.【总结】直接利用十字相乘,注意二次项系数的分解.【作业5】 分解因式:(1)221112x xy y --; (2)2245a ab b --. 【答案】(1)(12)()x y x y -+;(2)(5)()a b a b -+.【解析】直接十字相乘即可.【总结】直接利用十字相乘,注意其中含有两个字母.【作业6】 分解因式:(1)2282615x xy y +-; (2)22232x xy y -++.【答案】(1)(415)(2)x y x y +-;(2)(2)(2)x y x y -+-.【解析】直接十字相乘即可.【总结】直接利用十字相乘,注意其中含有两个字母.【作业7】 分解因式:42816x x -+.【答案】22(2)(2)x x -+.【解析】422222816(4)(2)(2)x x x x x -+=-=-+、【总结】利用整体法进行十字相乘,注意因式分解要彻底.【作业8】 已知221547280x xy y -+=,求x y的值. 【答案】7435;. 【解析】∵22154728(37)(54)x xy y x y x y -+=--,∴(37)(54)0x y x y --=. ∴37x y =或者54x y =. ∴73x y =或者45x y =. 【总结】利用因式分解求解方程,注意多解情况以及解是否满足题意.。
中考数学专题复习之因式分解综合题训练

中考数学专题复习之因式分解综合题训练1.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC 的形状,并说明理由.2.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金bn元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.3.已知一个各个数位上的数字均不为0的四位正整数M=abcd(a>c),以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s,若s等于M的千位数字与十位数字的平方差,则称这个数M为“平方差数”,将它的百位数字和千位数字组成两位数ba,个位数字和十位数字组成两位数dc,并记T(M)=ba+dc.例如:6237是“平方差数”,因为62﹣32=27,所以6237是“平方差数”;此时T(6237)=26+73=99.又如:5135不是“平方差数”,因为52﹣32=16≠15,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M=abcd是“平方差数”,且T(M)比M的个位数字的9倍大30,求所有满足条件的“平方差数”M.4.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.5.如果一个四位自然数M的各个数位上的数字均不为0,且满足千位数字与十位数字的和为10,百位数字与个位数字的差为1,那么称M为“和差数”.“和差数”M的千位数字的二倍与个位数字的和记为P(M),百位数字与十位数字的和记为F(M),令G(M)=P(M)F(M),当G(M)为整数时,则称M为“整和差数”.例如:∵6342满足6+4=10,3﹣2=1,且P(6342)=14,F(6342)=7,即G(6342)=2为整数,∴6342是“整和差数”.又如∵4261满足4+6=10,2﹣1=1,但P(4261)=9,F(4261)=8,即G(4261)=98不为整数,∴4261不是“整和差数”.(1)判断7736,5352是否是“整和差数”?并说明理由.(2)若M=2000a+1000+100b+10c+d(其中1≤a≤4,2≤b≤9,1≤c≤9,1≤d≤9且a、b、c、d均为整数)是“整和差数”,求满足条件的所有M的值.6.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“博雅数”.定义:对于三位自然数N,各位数字都不为0,且它的百位数字的2倍与十位数字和个位数字之和恰好能被7整除,则称这个自然数N为“博雅数”.例如:415是“博雅数”,因为4,1,5都不为0,且4×2+1+5=14,14能被7整除;412不是“博雅数”,因为4×2+1+2=11,11不能被7整除.(1)判断513,427是否是“博雅数”?并说明理由;(2)求出百位数字比十位数字大6的所有“博雅数”的个数,并说明理由.7.如果一个四位自然数的百位数字大于或等于十位数字,且千位数字等于百位数字与十位数字的和,个位数字等于百位与十位数字的差,则我们称这个四位数为亲密数,例如:自然数4312,其中3>1,4=3+1,2=3﹣1,所以4312是亲密数;(1)最小的亲密数是,最大的亲密数是;(2)若把一个亲密数的千位数字与个位数字交换,得到的新数叫做这个亲密数的友谊数,请证明任意一个亲密数和它的友谊数的差都能被原亲密数的十位数字整除;(3)若一个亲密数的后三位数字所表示的数与千位数字所表示的数的7倍之差能被13整除,请求出这个亲密数.8.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.9.(1)阅读材料:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数“,a,b为x的一个平方差分解.例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解.①请直接写出一个30以内且是两位数的雪松数,并写出它们的一个平方差分解;②试证明10不是雪松数;(2)若a,b正整数,且ab+a+b=68,求ab的值.10.探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:x2+6x+9=;x2﹣4x+4=;4x2﹣20x+25=;(2)探究发现:观察以上三个多项式的系数,我们发现:62=4×1×9;(﹣4)2=4×1×4;(﹣20)2=4×4×25;归纳猜想:若多项式ax2+bx+c(a>0,c>0)是完全平方式,猜想:系数a,b,c之间存在的关系式为;(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论;(4)解决问题:若多项式(n+1)x2﹣(2n+6)x+(n+6)是一个完全平方式,利用你猜想的结论求出n的值.11.第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.12.阅读材料:,上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:x2+2x﹣3;(2)求多项式x2+6x﹣10的最小值;(3)已知a、b、c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.13.把代数式通过配方等手段,得到完全平方式,再运用完全平方式的非负性来增加题目的已知条件,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:①用配方法分解因式:a2+6a+8.原式=a2+6a+9﹣1=(a+3)2﹣1=(a+3+1)(a+3﹣1)=(a+4)(a+2).②利用配方法求最小值:求a2+6a+8最小值.解:a2+6a+8=a2+2a⋅3+32﹣32+8=(a+3)2﹣1.因为不论x取何值,(a+3)2总是非负数,即(a+3)2≥0.所以(a+3)2﹣1≥﹣1,所以当x=﹣3时,a2+6a+8有最小值,最小值是﹣1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+=(x﹣)2;(2)将x2﹣10x+2变形为(x+m)2+n的形式,并求出x2﹣10x+2的最小值;(3)若M=6a2+19a+10,N=5a2+25a,其中a为任意实数,试比较M与N的大小,并说明理由.14.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.15.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.16.如果一个自然数M 能分解成A ×B ,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A ×B 的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数“;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M是“十全九美数“,“全美分解”为A×B,将A的十位数字与个位数字的差,与B的十位数字与个位数字的和求和记为S(M);将A的十位数字与个位数字的和,与B的十位数字与个位数字的差求差记为T(M).当S(M)T(M)能被5整除时,求出所有满足条件的自然数M.17.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.18.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。
沪教版 七年级(上)数学 秋季课程 第11讲 整式的除法(1)

本节课学习的内容包括三部分:同底数幂的除法,单项式除以单项式,多项式除以单项式.掌握同底数幂的除法和单项式除以单项式、多项式除以单项式的运算法则,重点能够进行准确地计算,理解与整式乘法的逆运算关系.难点是结合之前所学过的加减法与乘法,可以灵活地进行混合运算.1、 同底数幂的除法同底数幂相除,底数不变,指数相减.m n m na a a -÷=(m 、n 是正整数,且m n >,0a ≠)注:底数a 可以是数字、字母,也可以是单项式或多项式. 2、任何不等于零的数的零次幂都等于1 01a =(0)a ≠3、同底数数幂的乘除运算顺序先算积的乘方、幂的乘方、再算同底数幂的乘除;在只有乘除的运算中,应按从左到右的顺序进行,有括号的先算括号里面的.整式除法内容分析知识结构模块一:同底数幂的除法知识精讲2 / 14【例1】若()011x -=,则(). A .1x =B .1x ≠C .1x >D .1x <【例2】计算:(1)82______a a ÷=;(2)7522______33⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭;(3)()()126______ab ab ÷=.【例3】计算()8pm n a a a ⋅÷的结果是(). A .8mnp a - B .()8m n p a ++C .8mp np a +-D .8mn p a +-【例4】计算:(1)()()62_____y y -÷-=; (2)()()151233_____-÷-=;(3)7511______55⎛⎫⎛⎫-÷-= ⎪ ⎪⎝⎭⎝⎭;(4)()()222______nn a a --÷-=.【例5】计算:(1)()()()1894_____a a a -÷-÷-=; (2)()()322______x x x -⋅-÷-=; (3)()()4352______aa -÷-=;(4)()()()()333223452______aa a a ⎡⎤÷÷⋅=⎢⎥⎣⎦. 【例6】计算:(1)()()63_______a b b a -÷-=: (2)()()73222________a ab b a b -+÷-=;(3)()()()()222______mmmx y x y x y x y +÷+⋅+÷=+.【例7】计算:(1)1232525125÷⨯;(2)()()()3222793-⨯-÷-.【例8】(1)已知3a x =,5b x =,则32_____a b x -=;(2)36m =,92n =,则2413______m n -+=.例题解析【例9】已知2552m m ⨯=⨯,求m 的值.【例10】若()021x -无意义,求代数式()2015241x -的值.【例11】已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.【例12】如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.【例13】已知()231x x +-=,求整数x .4 / 141、单项式除以单项式法则两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 2、单项式除以单项式的步骤(1)把系数相除,所得的结果作为商的因式;(2)把同底数的幂分别相除,所得的结果作为商的一个因式; (3)只在被除式里含有的字母,连同其指数作为商的一个因式. 3、单项式混合运算法则通常情况下,应先乘方,在乘除,最后做加减运算,如有括号,先算括号内的运算.【例14】32m n x y x y x ÷=,则(). A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =【例15】计算:(1)2312111_______a bc abc ÷=; (2)2264_______16m n mn ÷=;(3)()()2334252________a b a b -÷-=;(4)()()83610 1.510________⨯÷-⨯=(用科学记数法表示); (5)若()22324262n x y mx y x y ÷=-,则____m =,____n =.模块二:单项式除以单项式知识精讲例题解析【例16】计算:(1)232()()xy x y -÷-;(2)()2886511863a b a b ab ⎛⎫÷-⋅ ⎪⎝⎭;(3)()()2223423xy x y x y -⋅÷-;(4)()453428(2)7()(2)x y x y x y x y ⎡⎤+-÷-+-⎣⎦.【例17】若()22113210234a b c ⎛⎫++-++= ⎪⎝⎭,求()3222423944ac a c c b ⎛⎫⎛⎫-÷⋅- ⎪ ⎪⎝⎭⎝⎭的值.【例18】先化简,再求值:()()()()()()34222222x y x y x x y y x x x xy -÷-⋅---++-, 其中1x =-,2y =-.【例19】有一道题“先化简,再求值:()221(1)x x x ⎡⎤+--÷⎣⎦,其中2007x =.”小强做题时把“2007x =”抄成了“2070x =”,但计算结果也是正确的,请解释这是怎么回事?6 / 14【例20】已知()()()()23232213232m m n n n x y x y x y y x y -÷=÷,求m n +的值.【例21】化简:()()()23222111mmma a a a a a -+⋅--÷--(m 是正整数).1、 多项式除以单项式的法则多项式除以单项式,先把多项式的每一项分别除以单项式,再把所得商相加,用式子表示就是:()am bm c n am n bm n c n ++÷=÷+÷+÷. 2、注意事项(1)多项式除以单项式的结果仍是多项式,项数与原多项式相同.(2)商的次数不高于多项式的次数,商的次数=多项式的次数-单项式的次数. (3)被除式=商式⨯除式+余式.【例22】如果()224343a b ab M a b -÷=-+,那么单项式M 等于().A .abB .ab -C .aD .b -模块三:多项式除以单项式知识精讲例题解析【例23】计算:(1)()32325___________x x x x -+÷=;(2)()()433222236946_________a b a b a b a b -+÷-=. 【例24】计算:(1)()213124*********__________m m m m m m m m a b a b a b a b +++++++-+÷=;(2)若()()23425425533m n m a b a b a b -++-÷=-,则______m n ÷=.【例25】若20a b -=,则代数式()()2222()4a b a b b a b b ⎡⎤+--+-÷⎣⎦的值为__________.【例26】下雨时,常常是“先见闪电,后闻雷鸣”,这是由于光速比声速快的原因,已知光 在空气中传播的速度约为83.010/m s ⨯,它是声音在空气中传播速度的58.8210⨯倍,则声音在空气中的传播速度是___________.(用科学记数法表示,保留两位小数)【例27】已知除式2()31g x x x =-+,商式2()31Q x x x =++,余式()24R x x =-,求被除 式()f x .【例28】计算:(1)()623523360.90.645x y x y x y xy ⎛⎫+-÷- ⎪⎝⎭;(2)()()22(4)2x y y y x x ⎡⎤+-+÷-⎣⎦;(3)()()21123201482n n n n n n a b a b a b a b --+--+÷-;8 / 14(4)247263211393a b a b ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭;(5)()()4322213756423x x x x x x x ⎛⎫-+÷---÷ ⎪⎝⎭;(6)()24225225(4)(2)()2a a a a a ⎡⎤-+-÷-÷-⎣⎦.【例29】设梯形的面积为223525m n mn -,高线长为5mn ,下底长为4m ,求上底长(m n >).【例30】化简求值:()()32232322()4a x a x a x ax ⎡⎤⎡⎤---÷-⎣⎦⎢⎥⎣⎦,其中12a =,4x =-.【例31】阅读下列材料: ()()2326x x x x +-=+-,()()2623x x x x ∴+-÷-=+.这说明26x x +-能被()2x -整除,同时也说明多项式26x x +-有一个因式()2x -; 另外,当2x =时,多项式26x x +-的值为零. 回答下列问题:(1)根据上面的材料猜想:多项式的值为0、多项式有因式()2x -、多项式能被()2x -整除,这之间存在着一种什么样的联系?(2)探求规律:更一般地,如果一个关于字母x 的多项式M ,当x k =时,M 的值为0,那么M 与代数式()x k -之间有何种关系? (3)应用:利用上面的结果求解:已知()2x -能被214x kx +-,求k 的值.【习题1】(1)()2323_______a a -÷=;(2)()21113________3n n n a a a ++-⎛⎫+÷-= ⎪⎝⎭;【习题2】若()233222412124xy m x y x y x y ⋅=-+,则多项式_____________m =. 【习题3】已知被除式是3232x x +-,商式是x ,余式是2-,则除式是__________. 【习题4】若()()23252mnx y x y x y ÷=,则_____m =,_____n =.【习题5】计算:()5______m n a a -÷=.随堂检测10 / 14【习题6】若42x y -=,则33162_______x y ÷=. 【习题7】计算: (1)()()632ab ab ab ÷⋅;(2)()()()5221n n n x x x x -+-⋅-÷⋅;(3)()23532513463a x ax a x a x ⎛⎫÷⋅-÷ ⎪⎝⎭;(4)()()242322321363x yx y x y ⎛⎫÷--- ⎪⎝⎭.【习题8】计算: (1)2265423222433x y xy y y ⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭;(2)()()644114214244a a a a a ⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭;(3)222121212121211111263224n n n n n n n n x y x y x y x y xy +++---⎛⎫⎛⎫⋅-++÷- ⎪ ⎪⎝⎭⎝⎭.【习题9】已知23m =,48n =,求:3232m n -+的值.【习题10】先化简,再求值:()22231342ab ab b ÷÷,其中1a =-,2b =.【习题11】将一多项式()()221734x x ax bx c ⎡⎤-+-++⎣⎦,除以()56x +后,得商式为()21x +, 余式为0,求_______a b c --=.【习题12】若2243()6153f x x x m x x =--+-能被1x +整除,求m 的值.【习题13】观察下列各式:()()()()()()232432*********xx x xx x x x x x x x -÷-=+-÷-=++-÷-=+++(1)写出()()11n x x -÷-的结果是______________________;(2)利用上题得到的规律,试计算:2122++++322.12 / 14【作业1】若()011a -=,下列结论正确的是( ).A .0a ≠B .1a ≠C .1a ≠-D .1a ≠±【作业2】计算()263x x x ⎡⎤÷÷-⎣⎦的结果是__________. 【作业3】若n 为正整数,且23n a =,则()()224327n n a a ÷的值为__________. 【作业4】计算:(1)1152793n n n +-⨯÷; (2)()201272201313112525⎛⎫⨯⨯⨯ ⎪⎝⎭.【作业5】计算:(1)222(4)8x y y ÷; (2)2322393m n m n n m a b c a b ---÷;(3) 8293(2)[(2)](2)(2)a a a a -÷--÷-;(4)()()32121866x x x x -+÷-;(5)()()()2325253232(34)3a a a a a a ⎡⎤-÷-+-÷-⎢⎥⎣⎦;课后作业(6)()()()()()223221232x x y x y x y x y x y ⎡⎤⎡⎤+++--+÷-+⎢⎥⎣⎦⎣⎦.【作业6】利用因式分解进行除法运算:(1)()()26273____________x x x --÷+=;(2)()()()2226969____________x x x x +-÷++=.【作业7】若()322m n m n x x x -÷÷与32x 是同类项,且513m n +=,求225m n -的值.【作业8】先化简,再求值:2473826331114293a b a b a b ab ⎛⎫⎛⎫+-÷- ⎪ ⎪⎝⎭⎝⎭,其中12a =,4b =-.【作业9】已知()211x x +-=,求整数x 的解.【作业10】已知四个三项式:24xy-,3xy.请你用加、减、乘、除四种2x y,2-,322x y运算中的一种或几种,使它们的结果为2x,请写出你的算式.14/ 14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲:因式分解综合训练
1.熟练使用四种因式分解的方法对多项式进行因式分解;
2.掌握利用因式分解法简化相关计算.
归纳我们所学过的四种因式分解的方法,并说说每一种发放对应的多项式
的特点.
提取公因式是首先要考虑的,公式法都是有两项或三项,而且都是二次项的形式,十字相乘是二次三项式的形式,分组分解重点讲解的是四项,可以“一三”和“二二”两种分解方法。
可以结合下面的思维导图讲解
练习:
1、分解因式:3312x x -= .
2、分解因式:()()2
2155x x y x x y +-+= .
3、分解因式:41x -= .
4、多项式29x mx ++是一个完全平方式,则m = .
5、分解因式:256x x +-= .
6、若()()282x px x x q ++=--,则p = ,q = .
7、分解因式:2229a ab b ++-= .
8、分解因式:1x y xy +++= .
例1. 因式分解:21(1)44n n n a a a ++++ 11(2)4n n a a +--
试一试:因式分解:212(1)6n n n a a b a b ++-- 11(2)248n n n a a a +--+
例2. 因式分解:2(1)()3()2m n m n ---+ 2(2)(21)6(12)9x x -+-+
试一试:因式分解:222(1)(4)(4)20x x x x +-+- 222(2)(4)8(4)48x x x x -+--
例3. 因式分解:2222(1)1x y x y --+ 22(2)23310a ab b a b -+-+-
试一试:因式分解:22(1)192a b a +-- 22(2)2444x xy y x y -+-++
例4. 如果a 、b 、c 为ABC ∆的三边,且22220a c ab bc -+-=,试判定ABC ∆的形状.
1、若2425x kx ++是一个完全平方式,则k = .
2、分解因式:2()_________________a b a b --+=.
3、分解因式:2()10()25______________b a a b ---+=.
4、分解因式:221______________39
m m --= 5、分解因式:
22(1)3()27a a b ab +- 1111(2)484n n n n n n x y x y x y ++---+
2(3)(2)6(2)27x y x y +++- 222(4)(4)(4)20x x x x +-+-
2(5)()444x y x y --++ 22(6)2443x y xy x y +--++
本节课主要知识点:四种因式分解方法及每种方法的特点。
【巩固练习】
1、分解因式:
5324
x x x x
+-++
(2)()18()72
-+-222 x x y xy
(1)21632
22(3)(32)4()m n m n +-- 22(4)310x xy y -++
2(5)(21)6(12)9x x -+-+ 22(6)464n n x x +--
2、已知2246130x y x y ++-+=,求22x y - 的值.
【预习思考】
同底数幂的乘法法则:________m n a a ⋅=(m ,n 都是正整数)
我们通过同底数幂相乘的运算法则可知, ()()
()235555-⨯-=- 那么,根据除法是乘法的逆运算可得()()5
255-÷-=。