数理方程第1讲-课件
数理方程第1讲

CDx
v+Dv
x+Dx
10
L—每一回路单位的串联电感; C—每一单位长度的分路电容. i LDx v x CDx i+Di
v+Dv x+Dx
11
i v (v Dv) LDx t v i L x t
i LD x v x CDx i+Di
(1.4)
v+Dv x+Dx
12
div D (1.11) J—传导电流面密度,—电荷的体密度.
26
D rot H J t B rot E t div B 0 div D
(1.8) ( 1.9) (1.10) (1.11) (1.12)
D E B H J E
(1.13) (1.14)
1
第一章 一些典型方程和定解条件的推导 §1.1 基本方程的建立
2
例1 弦的振动 设有一根均匀柔软的细弦, 平衡时沿直线拉紧, 而且除受不随时间而变的张力作用外, 不受外 力影响. 下面研究弦作微小横向振动的规律. 所谓"横向"是指全部运动出现在一个平面上, 而且弦上的点沿垂直于x轴的方向运动. 所谓"微小"是指的振动的幅度及弦在任意位 置处切线的倾角都很小, 以致它们的高于一次 方的项都可略而不计.
32
例4 热传导方程 在物体中任取一闭曲面S, 它所包围的区域记 作V. 假设在时刻t区域V内点M(x,y,z)处的温度 为u(x,y,z,t), n为曲面元素DS的法向(从V内指向 V外). 由传热学中傅里叶实验定律可知, 物体在无穷 小时间段dt内, 流过一个无穷小面积dS的热量 dQ与时间dt, 曲面面积dS, 以及物体温度u沿曲 面dS的法线方向的方向导数三者成正比
数理方程 - 01 - 数理方程绪论

2015/10/13
11
通解(一般解)
• 一般来讲,一阶偏微分方程的解依赖一个任意函数, 二阶方程依赖两个任意函数。 • 通解或一般解:m 阶偏微分方程的解如果包含有 m 个任意函数。 • 注意:这 m 个函数不能合并,如 f + g 其实就相当于 一个任意函数。
2015/10/13
12
例
• 求 tuxt 2ux 2 xt 的通解
M1
M2 d
O
x
x+x
x
2015/10/13
15
受力分析
3. 惯性力:
▫ 惯性会使物体有保持原有运动状态的倾向,若是以该 物体为参照物,看起来就仿佛有一股方向相反的力作 用在该物体上,故称之为惯性力:F = -ma。 每点的质量为 dm ( x)dx ,每点的加速度为 a utt , 所有点求和得到积分,即惯性力为
2 ▫ 设 v ux ,则化为 vt v 2 x t
▫ 视 x 为参数,则为关于 v 的一阶常微分方程,
2 2 dt dt 2 2 3 t t ▫ 由求解公式可得 v e 2 xe dt G( x) t G ( x) xt 3
《数理方程》第一讲

通过Ω 的边界流出Ω 外的热量为Q2 , Ω 内温度变化所需要的热量为 Q3 。
10
9.1.2 热传导方程的导出
则
Q1
Q1 Q2 Q3
t2 t1
1.6
F ( x, y, z, t )dVdt
1.7
由热力学的Fourier实验定理得:
t2 u u dQ 2 k d dt Q2 k d dt t1 n n
1.13
16
9.1.2 热传导方程的导出
可得
U U 2U R GU C t L G t C t2 2U 2U U LC RC LG RGU 2 2 t x t 2U I 2I I U R L 2 x IR L t t t t x2 I I U 2U U 2 G C GU C x xt x t x
20
9.1 典型方程的建立
三类典型方程: 波动方程 热传导方程 Poisson方程
utt a 2 u f
ut a 2 u f
u g
21
9.2
定解条件与定解问题
utt a2 u f ut a2 u f
u g 三类方程 如果有解,则其解应该不唯一。 在这众多的解中确定出所需要的解,还需要 增加另外的条件,即定解条件,使之成为定 解问题,在此条件下,再来讨论适定性,即 存在性、唯一性和稳定性。
Q3
t2 t1
u u u k ( cos cos cos )dSdt t1 x y z t2 2u 2u 2u Q2 k 2 2 dvdt 2 t1 y z x
数理方程-第1章第2章-研究生ppt课件

示单位长度弦的质量,则长为dx的一小段弦的质量为
d x。u t t 是弦的加速度,及单位长度弦上所受的外力
大小为F(x,t).
16
则根据牛顿第二定律,有
dxuttF T,x dxsin2F T,xsin1F (x,t)dx. F T,xdxcos2F T,xcos10.
uyyuxxA2uxB2uyC2uD2,
双曲型方程的第一标准形和第二标准形。
方程 标准形。
uyy A3uxB3uy C3uD3, 称为抛物型方程的
uxx A4uxB4uy C4uD4,
方程 u x x u y y A 5 u x B 5 u y C 5 u D 5 ,称为椭圆型方程的 标准形。
11
2
2i
变量方程(1)化为标准形 u u A u B u C u D ,
其中A,B,C,D都是 , 的已知函数。
13
第三节 经典方程的导出
一、方程的建立 1、弦振动方程(一维); 2、热传导方程(一维);
14
弦的振动方程的导出
(考察一根均匀柔软的细弦,平衡时沿ox轴绷紧) 考察一根长为l的细弦,给定弦的一个初始位移和初始 速度,弦作横振动,确定弦上各点的运动规律。
未知函数u的偏导数。
5
定义:偏微分方程中未知函数的最高阶偏导数的阶 数称为偏微分方程的阶。
定义:如果一个偏微分方程对于未知函数及其各阶 偏导数都是一次的,其系数仅依赖于自变量,就称 为线性偏微分方程。
二阶线性偏微分方程的一般形式:
i,n j1aijx i2 u xj i n1bi x ui cuf(x1, ,xn).
数理方程课件一

数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
3、拉普拉斯方程
稳定的温度分布导热物体内的热源分布和边界条件不随时间变化 故热传导方程中对时间的偏微分项为零,从而热传导方程 即变为下列拉普拉斯方程和泊松方程.
∂2u ∂2u ∂2u + 2 + 2 =0 2 ∂x ∂y ∂z
∂2u ∂2u ∂2u 1 + 2 + 2 = − 2 f (x, y, z) ∂x2 ∂y ∂z a
如果在位移方向上还受外力的作用, 如果在位移方向上还受外力的作用,设单位长度上受 的外力为 f, 则
单位质量所受外 力,力密度
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
说明: 说明:
• 质点的位移是以t为自变量的函数,其运动是以t为 质点的位移是以t为自变量的函数,其运动是以t 自变量的常微分方程; 自变量的常微分方程; • 弦的位移是x,t的函数,其运动方程是以x,t为自变 弦的位移是x,t的函数,其运动方程是以x,t为自变 x,t的函数 x,t 量的偏微分方程。 量的偏微分方程。 • uxx项反映弦上的各个质点彼此相联 。 • utt项反映弦在各个时刻的运动之间的联系。 项反映弦在各个时刻的运动之间的联系。
第1章 典型方程和定解条件的推导
第一章 一些典型方程和 定解条件的推导
一、 基本方程的建立 二、 定解条件的推导 三、 定解问题的概念
数学物理方程与特殊函数
第1章 典型方程和定解条件的推导
一、 基本方程的建立
导出步骤: 导出步骤:
1、确定物理量,从所研究的系统中划出一小部分,分析邻 确定物理量,从所研究的系统中划出一小部分, 近部分与它的相互作用。 近部分与它的相互作用。 2、根据物理规律,以算式表达这个作用。 根据物理规律,以算式表达这个作用。 3、化简、整理。 化简、整理。
数理方程课件

一阶常微分方程在物理学、工程学、经济学等领域有广泛应用。
一阶常微分方程可以用于描述各种实际问题中变量的变化规律,如物理中的自由落体运动、电路中的电流变化等。在经济学中,一阶常微分方程可以用于描述供求关系的变化、消费和储蓄的动态过程等。在工程学中,一阶常微分方程也广泛应用于控制系统、化学反应动力学等领域。
数理方程可以根据其形式和性质进行分类。
总结词
根据其形式和性质,数理方程可以分为线性与非线性、自治与非自治、常系数与变系数等多种类型。这些分类有助于更好地理解和研究数理方程的性质和应用。
详细描述
数理方程的分类
总结词
数理方程在各个领域都有广泛的应用。
详细描述
数理方程在物理学、工程学、经济学、生物学等许多领域都有重要的应用。例如,在物理学中,描述波动、热传导、引力场等问题的方程都是数理方程。在工程学中,流体动力学、电磁学等领域的问题也都可以通过数理方程来描述和解决。
总结词
一阶常微分方程的定义
一阶常微分方程的解法
求解一阶常微分方程的方法主要有分离变量法、积分因子法、常数变易法和线性化法等。
总结词
分离变量法是将方程中的变量分离出来,使方程变为可求解的形式。积分因子法是通过引入一个因子,使方程变为全微分方程,从而简化求解过程。常数变易法适用于形式为y' = f(x)y的方程,通过代入可求解。线性化法则是将非线性方程转化为线性方程,便于求解。
分离变量法
有限差分法
有限元法
变分法
用离散的差分近似代替连续的微分,适用于求解初值问题和边界问题。
将连续的求解区域离散化为有限个小的子区域,适用于求解复杂的几何形状和边界条件。
通过求某个泛函的极值来求解偏微分方程,适用于求解某些特殊类型的方程。
数学物理方程:第1章 数学物理方程的定解问题

第1章 数学物理方程的定解问题§1.1 数学物理方程的一般概念本节讨论:①数学物理方程的基本概念,②三类基本方程的数学表示,③一些简单解法▲数学物理方程的任务与特点 数学物理方程(亦称数理方程)在数学上为二阶偏微分方程。
它的任务有两个方面:①寻找数学定解问题的求解方法,给出解的表达式和计算方法;②通过理论分析得出问题的通解或某些特解的一般性质。
数学物理方程有如下特点:①它紧密地、直接地联系物理学、力学与工程技术中的许多问题。
②它广泛地运用数学物理中许多的技术成果。
如:数学中的复变函数、积分变换、常微分方程、泛函分析、广义函数等等,物理学中的力学、电学、磁学、热力学、原子物理学、振动与波、空气动力学等等。
⒈ 一些基本概念数学物理方程是物理过程中的一些偏微分方程。
由于物理过程是十分复杂的,故它们的数学表达式也是十分广泛的。
本书不能将众多的数学物理方程一一讨论,仅讨论一些常用的二阶线性微分方程。
一般而言,二阶线性偏微分方程可写为2,11nn ij i i j i i j i u u Lu a b cu f x x x ==∂∂=++=∂∂∂∑∑ (1.1.1) 式中:自变量),,(1n x x x ⋅⋅⋅=,系数ij a 、i b 、c 为x 的函数或为常数,并且ji ij a a =。
由于式中关于未知函数u 的导数最高为二阶导数,故方程称为二阶微分方程;同样,由于x 为n 维向量,方程也称为n 维方程;由于方程中对u 的各阶偏导数为线性的,故称为线性方程,否则就称为非线性方程。
若系数ij a 、i b 、c 均为常数,则称为常系数方程,否则称为变系数方程;若0≡f ,则称为齐次方程,反之称为非齐次方程。
▲方程的数学形式 在所有的自变量i x 中,时间变量t 常常被使用,由于它的独特性,人们常常直接用t 表示而不置于i x 之中,关于t 的导数式为:22u u L u a b t t t∂∂=+∂∂ (1.1.2) 故上述方程可改写为:f Lu u L t += (1.1.3)上述方程习惯上也称为n 维方程。
1 ch1 数理方程第一章1

∂u ( x2 , t ) Qx2 = − k ∇u • n( x2 ) = − k ∂x
24
• 在 dt 时段内通过微元的两端流入的热量
∂u ( x2 , t ) ∂u ( x1 , t ) dQ1 = −(Qx1 + Qx2 ) dt = k ( ) dt − ∂x ∂x x2 2 ∂ u ( x, t ) = k∫ dxdt 2 ∂x x1
i =1
∞
7
数学物理方程的导出
• 波动方程
– 均匀弦的微小横振动方程 – 推广
• 扩散方程
– 一维热传导方程 – 推广
• 稳定场方程
8
• 弦振动方程
• 弦的特点:匀、细、软、紧的一根弹性细线。 • 振动特性:微小的、横向振动:在一个平面内弦上各点
的运动方向垂直于最初的平衡位置. “微小的”是指弦上各 点的位移与弦的长度相比很小, 弦的纵向伸长可以忽略不 计
数理方程的基本概念
一. 偏微分方程的基本概念
偏微分方程:凡含有多元未知函数及未知函数关于自变量 的偏导数的等式。 自变量 1 2 n
x = (x , x ,
,x )
u ( x) = u ( x1 , x2 ,
, xn )
未知函数
1
偏微分方程: Partial Differential Equation, 简写 为: PDE
在流体柱上任意取一微元在流体柱上任意取一微元处两个截面处两个截面任取一个时段任取一个时段流体在流体在这段时间间隔内从x这段时间间隔内从x处截面流入的质量为处截面流入的质量为处截面流出的质量为处截面流出的质量为所以流体在所以流体在时间间隔内微元中流体净增量为时间间隔内微元中流体净增量为由于在时刻t的流体质量为在时刻的流体质量为由于在时刻t的流体质量为在时刻的流体质量为时间内微元内的流体净增量为时间内微元内的流体净增量为由于流动的连续性和质量守恒因此由于流动的连续性和质量守恒因此上面的方程称为一维的连续性方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M u 2u x 2 2u
x 2
y 2
L 2 3 x xy y3
与
M
2 x2
x2
2 y2
都称为微分算子。
我们定义具有下列性质的算子为线性算子。
(1)常数c可以从算子中提取出来 LcucL u
9
(2) 算子作用于两个函数之和所得的结果等于算子分 别作用于两个函数所得结果之和。
例如: 书中例1.1、1.2
y2u2xy2uu1
x2
y2
(二阶线性偏微分方程)
否则称之为非线性偏微分方程。 书中例1.5
7
4. 半线性偏微分方程:若非线性方程中未知多元函 数的所有最高阶偏导数都是线性的,而其系数不含 有未知多元函数及其低阶偏导数,则称为半线性偏 微分方程。如书中例1.6
5. 拟线性偏微分方程:若非线性方程中未知多元函 数的所有最高阶偏导数都是线性的,而其系数含有 未知多元函数或其低阶偏导数,则称为拟线性偏微 分方程。如书中例1.8
6. 非齐次项和非齐次方程:在线性偏微分方程中, 不含未知函数及其偏导数的非零项称为非齐次项, 而含有该非齐次项的方程称之为非齐次方程。如书 中例1.1
8
下面简单讨论一下偏微分方程中经常遇到的线性算子。
算子是一种数学法则,把它作用在一个函数上时,便 产生另外一个函数。例如,在下列表达式中:
Lu u 2u 3u
其中 a2 T , f F.
方程(1.4)称为弦的强迫横振动方程。
16
若外力消失F=0,则方程变为
utta2uxx (a2T)
上式称为弦的自由振动方程。
(1.5)
我们虽然称 (1.4)、(1.5)为弦振动方程,但在力学上弹 性杆的纵振动,管道中气体小扰动的传播以及电报方 程等问题,都可以归结为上述偏微分方程的形式。
5
方程(1.1)是在自变量x1,x2, …的n维空间Rn 中的一个适 当的区域D内进行考察的,我们要求能找出在D内恒 满足方程(1.1)的那些函数u。如果这种函数存在,那
么称它们为方程的解。在这些可能解中,我们还要 选出一个满足某些合适的附加条件的特解来。
例如偏微分方程:
2u 2u 0
(1.2)
新
麦克斯韦方程组(描述电磁场变化)
的 数 理
薛定谔方程组(微观粒子) 爱因斯坦方程(确定引力场)
方
广义扩散方程
程
流体力学方程的耦合
随着现代科学和技术的进步,将会不断涌现新 的数学物理方程,而其产生和应用的范围已经 更多地超出了传统的研究领域。
4
§1.1 偏微分方程举例和基本概念
一. 偏微分方程举例
数理方程第1讲
精品
第一章 一些典型方程和定解条件的推导
2
数学物理方程,是指在物理学、力学等自然科 学及工程技术中所提出来的偏微分方程。
拉普利斯方程和泊松方程(描述引力势)
古 纳维-斯托克斯方程组(流体力学有黏
典 数
性)和欧拉方程组(无黏性)
理 圣维南方程组(弹性力学)
方 波动方程
程 热传导方程
3
L u v L u L v
现在来考察二阶线性偏微分方程:
A x 2u 2B x2 u yC y 2u 2D u xE u yFuG
如果取线性微分算子L为
2 2 2 LA x2B x yC y2D xE yF
那么上述偏微分方程可以写成: LuG
或者简写为: LuG
10
§1.2 方程及定解问题的物理推导
11
例1 弦的振动
设有一根均匀柔软的细弦, 其线密度为常数 . 长
为l,两端被固定在O,A两点,且在单位长度上受到 垂直于OA向上的力F作用。当它在平衡位置(取为 x轴)附近作垂直于OA方向的微小横向振动时,求 弦上各点的运动规律。
u
F Q
P
O x x+△x
Ax
12
※所谓“横向”是指全部运动出现在一个平 面上, 而且弦上的点沿垂直于x轴的方向运动.
代入(1.3)式可得
15
T x ( x u x ,t) T x ( x ,u t) F x x ttu
应用微分中值定理可得
Tx(u x x,t) x F x xttu
其中 (0,x) 。令 x0,则上式可写为
简写为
Txu (xx,t)Futt
u tt a 2 u x xf
(1 .4 )
x2 y2
容易验证下列两个函数: u(x,y)(xy)3
u(x,y)six n(y)
都是(1.2)的解。
6
2. 方程的阶:包含在偏微分方程中的未知函数的偏 导数的最高阶数称为方程的阶。
3. 线性偏微分方程:如果一个偏微分方程对于未知 函数及它的所有偏导数来说都是线性的,且方程中 的系数都仅依赖于自变量,那么这样的偏微分方程 就称为线性偏微分方程。
只是其中的未知函数表示的物理意义不同。
17
例2 薄膜平衡方程 将均匀柔软的薄膜张紧于微翘的固定框架上
,除膜自身的重力作用外,无其他外力作用。由 于框架的微翘,薄膜形成一曲面。求静态薄膜上 各点的横向位移。
设展平的薄膜所在平面为oxy坐标面,垂直于oxy 面的方向称为薄膜的横向。设薄膜的面密度为常数ρ
,薄膜所形成的曲面方程为u=u(x,y)。
※所谓“微小”是指弦的振动幅度及弦在任 意位置处切线的倾角都很小, 即弦在偏离平衡位 置后,弦上任何一点的斜率远小于1.
13
横向振动微小,故可认为弦在振动过程中并未伸长,即
弧长PQ=△x ,则所受的张力大小恒为常数T,即与位置
和时间无关。弦是柔软有弹性的,即它不能抵抗弯矩, 因此在任何时刻弦的张力T总是沿着弦的切线方向。
u
F
△x
Q T
P
a
T
N
O
x
N'
x+△x
x
14
或
综合上述分析,由牛顿第二定律可得
a T si T n si F n x x ttu( 1 . 3 )
又 tanaux ,故 sia n taan ux 1ta2na 1ux2
由于弦作微小振动,u x﹤﹤1 ,则
sinaux(x,t) sin ux(xx,t)
二. 基本概念
1. 偏微分方程:方程中除了含有几个自变量和未知函 数外,还含有未知函数的偏导数(也可仅含偏导数)的 方程称为偏微分方程。
一般来说,它可以写成包含几个自变量x,y, …和这些 变量的未知函数u及其偏导数的方程形式:
F (x 1 ,
u ,x n ,u , x 1,
u ,, x n
, x 1 m 1 x 2 m m 2 u x n m n) 0(1.1)