2003年IMO中国国家集训队选拔考试试题

合集下载

2003年中国数学奥林匹克试题及解答

2003年中国数学奥林匹克试题及解答
就有 !! ,
证明: 在该公司经理的方针之下, 有 (%) #% 2 #! 2 … 2 #3 ’ #1 ’ #%" ; (!) 该公司有超过4"2 的可能性录取到能力最强 的 # 个人之一, 而只有不超过%"2 的可能性录用到能 力最弱的 # 个人之一 & 六、 设 )、 满足 )* . +, ’ %, 点 *、 +、 , 为正实数, ( , ) ( , , , ) 是以原点为圆心的单位圆周 3 4 5 . ’ % ! # 0 . . . 上的四个点 & 求证:
! !
已大于 *&&, 故 因为与 , 、 + 均不互质的数最小是 ,+ , 据条件 (+) 知, 与 之间的 个质数 , , …, *& *&& !* ** *+ 记除 * 和这 !* 个质 /., .) 中最多有一个出现在 # 中, 数外的其余 )/ 个不超过 *&& 的自然数构成集合 / , 我们断言 / 中至少有 ) 个数不在 # 中, 从而 # 中最
)
万方数据 显然, *$ # ( 对于任意两个大于 *& 的质数 , 、 +,
" 由 678"* ・ 678"! $ ! 可得,
!//) 年第 ! 期
! ! " #$%! !& " #$%!! 式!! "! ! ’ " #$%! " #$% !& !! ( #) ! ! 记 " * #$%! 则 !& " #$%!! ,
因此, ( $#% ’ /"5’( $#% . ( $#% % ’ %3"5 ’ #% 在" #$% 的外接圆) 6 上 ’ #! 与 ##% 重合 ’ #、 !、 #% 三点共线 & 其次, 再证 (" $’$ ’ (" %’% ’( $#% ’ /"5 6 ! ! 作 !3 * #$ 于点 3 , !8 * #% 于点 8 & 则 % % ・#$! . ・#$% & !3 !8 " ! ! 设 !3 ’ ( , 则 !8 ’ 9 & 9 9 为" #$% 的内切圆半径) (" #$

2003imo试题

2003imo试题

2003imo试题
以下是2003年国际数学奥林匹克(IMO)的部分试题。

几何题:
1. 设$P$是边长为$1$的正方形$ABCD$内的一个固定点,$E$和$F$分别是$AD$和$BC$的中点,$Q$是$AE$的中点。

如果将线段$PQ$绕着点$P$旋转,使它保持与线段$EF$垂直,那么旋转的轨迹是什么形状?为什么?
代数题:
2. 设多项式$f(x) = 3x^5 + ax^3 + bx + 4$,其中$a, b \in \mathbf{Z}$。

i. 如果$f(x) = f(3)$,那么$\frac{b}{a} = \frac{5}{9}$是否成立?为什么?ii. 如果$\frac{b}{a} = \frac{5}{9}$,那么是否一定有$f(x) = f(3)$?为什么?
以上仅为2003年IMO试题的一部分,完整的试题包括更多的问题和更深
入的数学内容。

如需了解更多,可以查阅IMO官方网站或相关资料。

2003年IMO中国国家集训队选拔考试试题

2003年IMO中国国家集训队选拔考试试题

图6 BC =(2+3)x ,AC =3BC =3(2+3)x.应用勾股定理,得3x 2+3(3+2)2x 2=1,求出x 2.9.48%.设甲进价为a 元,则售出价为114a 元;乙进价为b 元,则售出价为116b 元.再设甲售出x 件,则乙售出32x 件.列方程014ax +016b ×32xax +32bx=015.解得a =32b.因此,当售出甲、乙两件数都等于y 件时,总利润为014ay +016by ay +by =014a +016ba +b =48%.10.505.AB =10,BC =100.记OA =OD =r.当D 与C 重合时,如图6,半径r 为最大,就是标出的最大刻度,此时,OH =r -10,AH =BC =100,所以,1002+(r -10)2=r 2.解得r =505.(华中师范大学数学系 陈传理 提供)2003年I MO 中国国家集训队选拔考试试题(2003-03-31 8:00~12:30) 一、在锐角△ABC 中,AD 是∠A 的内角平分线,点D 在边BC 上,过点D 分别作DE ⊥AC 、DF ⊥AB ,垂足分别为E 、F ,连结B E 、CF ,它们相交于点H ,△AFH 的外接圆交B E 于点G.求证:以线段BG 、GE 、B F 组成的三角形是直角三角形.(熊 斌 命题)二、设A Α{0,1,2,…,29},满足:对任何整数k 及A 中任意数a 、b (a 、b 可以相同),a +b +30k 均不是两个相邻整数之积.试定出所有元素个数最多的A.(陈永高 命题)三、设A <{(a 1,a 2,…,a n )|a i ∈R,i =1,2,…,n},A 是有限集.对任意的α=(a 1,a 2,…,a n )∈A ,β=(b 1,b 2,…,b n )∈A ,定义:γ(α,β)=(|a 1-b 1|,|a 2-b 2|,…,|a n -b n |),D (A )={γ(α,β)|α∈A ,β∈A}.试证:|D (A )|≥|A |.(冷岗松 命题)(2003-04-01 8:00~12:30)四、求所有正整数集上到实数集的函数f ,使得(1)对任意n ≥1,f (n +1)≥f (n );(2)对任意m 、n ,(m ,n )=1,有f (mn )=f (m )f (n ).(潘承彪 命题)五、设A ={1,2,…,2002},M ={1001,2003,3005}.对A 的任一非空子集B ,当B 中任意两数之和不属于M 时,称B 为M -自由集.如果A =A 1∪A 2,A 1∩A 2= ,且A 1、A 2均为M -自由集,那么,称有序对(A 1,A 2)为A 的一个M -划分.试求A 的所有M -划分的个数.(李胜宏 命题)六、设实数列{x n }满足:x 0=0,x 2=32x 1,x 3是正整数,且x n +1=134x n +34x n -1+12x n -2,n ≥2.问:这类数列中最少有多少个整数项?(黄玉民 命题)922003年第3期。

2000年IMO中国国家集训队测验题

2000年IMO中国国家集训队测验题

2000年IMO中国国家集训队测验题第一次测验1.1设a是整数,n和r是大于1的整数,p是奇质数,并且(n,p -1)=1.试求以下同余方程的不同的解的数目:x1n+ x2n+…+ x r n ≡a (mod p ) .请注意上述方程的解(x1n, x2n,…, x r n)和(x1 ',' x2 ',' … , x r'' )当且仅当x j≡x j'(mod' p ),j =1,2,…, r时,才认为两个解是相同的.1.2考察不定方程x2-y2=n.约定将这方程的不同的正整数解的数目记为f ( n ) ,试对所有的正整数n,求f ( n ) .1.3设a和b是正整数,p是奇质数,p>a>b>1.试求最大的整数c,使得对所有满足上述条件的a,b和p都有pc (ap) -(a) , bp b这里,我们记( n )=n(n-1)…(n -k+1)k k!第二次测验2.1 AB 和 CD 是圆 O 的不相交的两条弦, M 是 AB 中点, N 是 CD 中点,从圆心 O 作 MN 的垂线,垂足是 E ,在 MN 上取另一点 F ,过 F 作 MN 的垂线与 AB 延长相交于 G .求证:直线 CD 也经过 G 点的充分且必要条件是 MF = NE .2.2 在三角形 ABC 中, AB = AC ,设 C 至 AB 的垂足是 D , M 是 CD 的中点, A 至直线 BM 的垂足是 E , A 至直线 CE 的垂足是 F ,求证: AF ≢ AB /3,并说明等号成立的条件.2.3 A 是任意的有限正整数集,试证:存在一个有限正整数集B,使得A∈B,且∏ x = ∑ x2x ∈Bx∈B第三次测验3.1对于由实数组成的非空集合 A和 B,约定将可以表示为a+b, a∈A,b∈B,的所有数组成的集合记为 A*B,即规定 A*B={x |x=a+b,a∈A ,b∈B }.(附带说明,如果 A =耳么氪 B =耳,寀寞隅 A*B=耳.)跤隅淏淕杅k和l,对于满足条件|A|=k,| B |=l的所有实数集合 A和 B ,求| A * B |的最小值,并求达到这个最小值的所有 A和 B .3.2设 A是由实数组成的非空集合,h是正整数,约定将可以表示为a1 +a2+…+a h,a1 ,a2,…,a h∈A ,(这些数可以有相同的) 的所有数组成的集合记为S h( A ),即规定S h( A )={x|x=a1 + a2+…+a h,a1 ,a2,…,a h∈A }.给定正整数h和k,对于满足条件|A|=k的实数集合 A,试求|S h ( A )|的最小值,并求达到这个最小值的所有的 A .3.3设 A是由整数组成的非空集合,h是正整数,约定将可以表示为a1 +a2+…+a h,a1 ,a2,…,a h∈A ,(这些数互不相同) 的所有数组成的集合记为T h( A ),即规定T h( A )={x|x=a1 +a2+…+a h,互不相同的a1 ,a2,…,a h∈A }.给定正整数h和k,2≢h≢k-2,k≣5,对于满足条件|A|=k的整数集合 A ,试求|T h( A )|的最小值.第四次测验4.1设n岆湮衾1腔淕杅,暮缶k=cos(2k羽 /n)+i sin(2k羽/n),k=0,1,…,n-1,试求下式的最简表示:(缶j- 缶∏) 2 .k1≤ j<k≢n -14.2设数轴的区间[0,1]里有六个质点,依照从0到1的次序将这六个质点标记为P1 ,P2,…,P6 .初始时,质点的位置都在区间内部;相邻质点P1与P2 ,P2与P3,P3与P4,P4与P5,P5与P6的距离分别是汐 ,汕 ,污 ,汛 ,丸 ;并且各质点都以相同的不变速度沿数轴朝指向0点的方向运动.在以后的运动中,如果某个质点碰到区间端点0或1,那么该质点立即折返,以同样大小的不变速度值反向运动.如果某两个质点相向运动发生对撞,那么这两个质点立即各自折返,都以同样大小的不变速度值反向运动.约定以f i,j(n)表示第i个质点与第j个质点第n次对撞的位置坐标,试求所有可能的f i,j(n).4.3给定正整数r,s,t满足不等式1<r<s<t.设正实数的n数组x1,x2,…,x n满足条件x j/x j+1≢1+(t-s)/(j+s),j =1,2,…,n-1.对所有这样的n数组,试求nk ( k +1)…( k + t-∑1) x kk= 1n( k + r )( k + r +1) …∑( k + t - 1) x kk= 1的最小值.第五次测验5.1已知不定方程x4 +y4 =z2和不定方程x4 -y4 =z2都没有使得xyz≠0的整数解.据此求出不定方程8y4 +1=z2的所有整数解(简明扼要写出求解过程).完成上述准备之后,着手解决主要问题:求以下不定方程组的所有整数解1+ x =8 y 2{1+ x 2 =2 z 25.2求同时满足以下条件的一切正整数组(a,b,c,d):(a) 22汐‖a,?笢汐岆淏淕杅,(捞22汐整除a,但22汐+1不整除a,汐≡1);(b) 4|b +1 , 2| d;(c)c d的b进制表示恰由a个数字1组成,即c d=(11…1)b.共a 位15.3给定大于1的正整数b和奇质数p.已知p‖b(即p整除b,但p2不整除b </FONT< FONT>。

关于2003年中国数学奥林匹克第5题

关于2003年中国数学奥林匹克第5题
面朝上放成 一行 . 游 戏 者 季 玛 不 知 道 卡 片 上
写 了一些 什么 样 的数 , 只是被 要求 自左 至右 依 次翻开一些 卡 片 , 并且 把他 所 翻 开 的最后 张卡片上 所写 的数 作 为他 的得 分 . 为 了能 提高 自己的得分 , 他决 定首先翻开 4张卡 片 , 如 果 第 4张 卡 片 上 的 数 大 于 前 3张 卡 片 上 的 数, 那 么他就不再继 续往下 翻 ; 否则他就继 续 翻下 一 张 , 看 看 是 否 大 于 前 面 所 有 卡 片 上 的 数; 如果一 直翻到第 9 张卡 片 , 仍然没有 大 于 前 面所有卡 片上的数 , 那 么他 就翻 开第 1 0 张 卡片 …… . 这种 陈述 同样反映 了我们 命题 的思想 .

2 问题 的 解 答
看起来 , 本 题无 非 是计 算 满足 一 定条 件 的排 列数 , 但 是实际操作起来却 未必容 易 . 为方便 计 , 将 能 力 排 名 第 k的人 记 为 a , 将 前 3个 接 受 面 试 的 人 中 能 力 最 强 的 人 的排名名次 记为 . 抓住 一 直分析下 去 , 就 可 以找到本 题 的一 种较 为简 洁 的解 法 ( 见 本 刊2 0 0 3 年第 2 期第 2 8页— —编者注 ) . 在此题 的解答 中计算 是 相 当精 细 的 , 且 所得 的结果 为7 0 % <0 . 7 0 8 3<7 1 %. 所以, 关 于 录 用到 能 力 最 强 的三 人 之 一 的可 能性 估 计 必须 经过精确 的计算 才可 得到 . 此 题 考核 的 是考 生的算功 . 从阅卷结果看 , 能够清 晰地一 点不错 地算 出结 果 的考生 虽然 也 有 , 但 是不 多. 由此 反映 出一部分 考生 的算功不 足 . 本题 的解答 是 一 种 以算 为纲 , 以计 算 的 结 果 来 说 明一 切 的解 法 . 这 种 解 法 融 两 个 小 题 的解答 于一 体 , 显得简洁 ; 但 是也有 不足之 处, 因为 只要计算 过程 出现 问题 , 那 么不仅第 d , 题要 扣分 , 而且第 一 小题 的证 明也失 去

2003年中国数学奥林匹克

2003年中国数学奥林匹克

●竞赛之窗●2003年中国数学奥林匹克第一天(2003201215)一、设点I、H分别为锐角△ABC的内心和垂心,点B1、C1分别为边AC、AB的中点.已知射线B1I交边AB于点B2(B2≠B),射线C1I交AC的延长线于点C2,B2C2与BC相交于K,A1为△BHC的外心.试证:A、I、A1三点共线的充分必要条件是△B K B2和△CKC2的面积相等.二、求出同时满足如下条件的集合S的元素个数的最大值:(1)S中的每个元素都是不超过100的正整数;(2)对于S中任意两个不同的元素a、b,都存在S中的元素c,使得a与c的最大公约数等于1,并且b与c的最大公约数也等于1;(3)对于S中任意两个不同的元素a、b,都存在S中异于a、b的元素d,使得a与d的最大公约数大于1,并且b与d的最大公约数也大于1.三、给定正整数n,求最小的正数λ,使得对于任何θi ∈0,π2(i=1,2,…,n),只要tanθ1・tanθ2・…・tanθn=2n2,就有cosθ1+cosθ2+…+cosθn不大于λ.第二天(2003201216)四、求所有满足a≥2,m≥2的三元正整数组(a,m,n),使得a n+203是a m+1的倍数.五、某公司需要录用一名秘书,共有10人报名,公司经理决定按照求职报名的顺序逐个面试,前3个人面试后一定不录用.自第4个人开始将他与前面面试过的人相比较,如果他的能力超过了前面所有已面试过的人,就录用他,否则就不录用,继续面试下一个.如果前9个人都不录用,那么就录用最后一个面试的人.假定这10个人的能力各不相同,可以按能力由强到弱排为第1,第2,……,第10.显然该公司到底录用哪一个人,与这10个人报名的顺序有关.大家知道,这样的排列共有10!种.我们以Ak表示能力第k的人能够被录用的不同报名顺序的数目,以A k10!表示他被录用的可能性.证明:在该公司经理的方针之下,有(1)A1>A2>…>A8=A9=A10;(2)该公司有超过70%的可能性录取到能力最强的3个人之一,而只有不超过10%的可能性录用到能力最弱的3个人之一.六、设a、b、c、d为正实数,满足ab+cd=1,点P i(x i,y i)(i=1,2,3,4)是以原点为圆心的单位圆周上的四个点.求证:(ay1+by2+cy3+dy4)2+(ax4+bx3+cx2+dx1)2≤2a2+b2ab+c2+d2cd.参考答案图1 一、首先,证明A、I、A1三点共线Ζ∠BAC=60°.如图1,设O为△ABC的外心,连BO,CO.则∠BHC=180°-∠BAC,∠BA1C=2(180°-∠BHC)=2∠BAC.因此,∠BAC=60°Ζ∠BAC+∠BA1C=180°ΖA1在△ABC的外接圆⊙O上ΖAI与AA1重合ΖA、I、A1三点共线.其次,再证S△B K B2=S△CK C2Ζ∠BAC=60°.作IP⊥AB于点P,IQ⊥AC于点Q.则S△AB1B2=12IP・AB2+12IQ・AB1.①设IP=r(r为△ABC的内切圆半径),则IQ=r.又令BC=a,C A=b,AB=c,则r=2S△ABCa+b+c.注意到S△AB1B2=12AB1・AB2・sin A.②由①、②及AB1=b2,2AB1・sin A=h c=2S△ABCc,有AB2・2S△ABCc-2・2S△ABCa+b+c=b・2S△ABCa+b+c.则AB2=bca+b-c.同理,AC2=bca+c-b.由S△B K B2=S△CK C2,有S△ABC=S△AB2C2.于是,bc=bca+b-c ・bca+c-b,即 a2=b2+c2-bcΖ由余弦定理,∠BAC=60°.二、72.将不超过100的每个正整数n表示成n=2α1・3α2・5α3・7α4・11α5・q.其中q是不能被2、3、5、7、11整除的正整数,α1、α2、α3、α4、α5为非负整数.我们选取满足条件α1、α2、α3、α4、α5中恰有1个或2个非零的那些正整数组成集合S,即S中包括50个偶数2,4,…,98,100,但除去2×3×5,22×3×5, 2×32×5,2×3×7,22×3×7,2×5×7,2×3×11这7个数;3的奇数倍3×1,3×3,…,3×33共17个数;最小素因子为5的数5×1,5×5,5×7,5×11,5×13, 5×17,5×19共7个数;最小素因子为7的数7×1, 7×7,7×11,7×13共4个数;以及素数11.从而,S中总共有(50-7)+17+7+4+1=72个数.下面证明如此构造的S满足题述条件.条件(1)显然满足.对于条件(2),注意在[a,b]的素因子中至多出现2,3,5,7,11中的4个数,记某个未出现的系数为p,显然p∈S,并且(p,a)≤(p,[a,b])=1,(p,b)≤(p,[a,b])=1.于是,取c=p即可.对于条件(3),当(a,b)=1时,取a的最小素因子p和b的最小素因子q,易见p≠q,并且p、q∈{2, 3,5,7,11}.于是,pq∈S,并且(pq,a)≥p>1,(pq,b)≥q>1.a、b互质保证了pq异于a、b.从而,取c=pq即可.当(a,b)=e>1时,取p为e的最小素因子,q 为满足q8[a,b]的最小素数,易见p≠q,并且p、q∈{2,3,5,7,11}.于是,pq∈S,并且(pq,a)≥(p,a)=p>1,(pq,b)≥(p,b)=p>1.q8[a,b]保证了pq异于a,b,从而,取d=pq即可.下面证明任意满足题述条件的集合S的元素数目不会超过72.显然,1∈S.对于任意两个大于10的质数p、q,因为与p、q均不互质的数最小是pq,已大于100,故据条件(3)知,10与100之间的21个质数11,13,…, 89,97中最多有一个出现在S中,记除1和这21个质数外的其余78个不超过100的自然数构成集合T,我们断言T中至少有7个数不在S中,从而S中最多有78-7+1=72个元素.(i)当有某个大于10的质数p属于S时,S中所有各数最小素因子只可能是2,3,5,7和p.运用条件(2)可得出以下结论:①若7p∈S,因2×3×5,22×3×5,2×32×5与7p包括了所有的最小素因子,故由条件(2)知,2×3×5,22×3×5,2×32×5∈S;若7p∈S,注意2×7p >100,而p∈S,故由条件(3)知7×1,7×7,7×11,7×13∈S.②若5p∈S,则2×3×7,22×3×7∈S;若5p∈S,则5×1,5×5∈S.③2×5×7与3p不同属于S.④2×3p与5×7不同属于S.⑤若5p,7p∈S,则5×7∈S.当p=11或13时,由①,②,③,④可分别得出至少有3,2,1,1个T中的数不属于S,合计7个;当p= 17或19时,由①,②,③可分别得出至少有4,2,1个T中的数不属于S,合计7个;当p>20时,由①,②,③分别有至少4,2,1个T中的数不属于S,合计也是7个.(ii)如果没有大于10的质数属于S,则S中的最小素因子只可能是2,3,5,7.于是,下面7对数中的每对都不能同时在S中出现:(3,2×5×7),(5,2×3×7),(7,2×3×5),(2×3, 5×7),(2×5,3×7),(2×7,3×5),(22×7,32×5)从而,T中至少有7个数不在S中.综上所述,本题的答案为72.三、当n=1时,cosθ1=(1+tan2θ1)-12=33,有λ=33.当n=2时,可以证明cosθ1+cosθ2≤233,①且当θ1=θ2=arctan2时等号成立.事实上,式①Ζcos2θ1+cos2θ2+2cosθ1・cosθ2≤43,即 11+tan 2θ1+11+tan 2θ2+21(1+tan 2θ1)(1+tan 2θ2)≤43.②由tan θ1・tan θ2=2可得,式②Ζ2+tan 2θ1+tan 2θ25+tan 2θ1+tan 2θ2+215+tan 2θ1+tan 2θ2≤43.③记x =tan 2θ1+tan 2θ2,则式③Ζ215+x ≤14+x3(5+x ),即 36(5+x )≤196+28x +x 2.④显然式④Ζx 2-8x +16=(x -4)2≥0.于是,λ=233.当n ≥3时,不妨设θ1≥θ2≥…≥θn ,则tan θ1・tan θ2・tan θ3≥2 2.由于cos θi =1-sin 2θi <1-12sin 2θi ,则cos θ2+cos θ3<2-12(sin 2θ2+sin 2θ3) <2-sin θ2・sin θ3.由tan 2θ1≥8tan 2θ2・tan 2θ3,有1cos 2θ1≥8+tan 2θ2・tan 2θ3tan 2θ2・tan 2θ3,即 cos θ1≤tan θ2・tan θ38+tan 2θ2・tan 2θ3=sin θ2・sin θ38cos 2θ2・cos 2θ3+sin 2θ2・sin 2θ3.于是,cos θ2+cos θ3+cos θ1<2-sin θ2・sin θ31-18cos 2θ2・cos 2θ3+sin 2θ2sin 2θ3.⑤易知 8cos 2θ2・cos 2θ3+sin 2θ2・sin 2θ3≥1Ζ8+tan 2θ2・tan 2θ3≥1cos 2θ2・cos 2θ3=(1+tan 2θ2)(1+tan 2θ3)Ζtan 2θ2+tan 2θ3≤7.⑥由此可得当式⑥成立时,有cos θ1+cos θ2+cos θ3<2.⑦若式⑥不成立,则tan 2θ2+tan 2θ3≥7,有tan 2θ1≥tan 2θ2≥72.所以cos θ1≤cos θ2≤11+72=23.于是cos θ1+cos θ2+cos θ3≤223+1<2,即 式⑦成立.由此可得cos θ1+cos θ2+cos θ3+…+cos θn <n -1.另一方面,取θ2=θ3=…=θn =α>0,α→0,θ1=arctan2n2(tan α)n -1,显然θ1→π2,从而cos θ1+cos θ2+cos θ3+…+cos θn →n -1.综上可得λ=n -1.四、对于n 、m ,分三种情况讨论.(i )n <m 时,由a n +203≥a m +1,有202≥a m -a n ≥a n(a -1)≥a (a -1).所以,2≤a ≤14.则当a =2时,n 可取1,2,…,7;当a =3时,n 可取1,2,3,4;当a =4时,n 可取1,2,3;当5≤a ≤6时,n 可取1,2;当7≤a ≤14时,n =1.由a m +1|a n +203可知,有解(2,2,1),(2,3,2)和(5,2,1).(ii )n =m 时,a m +1|202.202仅有1,2,101,202共4个约数.而a ≥2,m ≥2,a m +1≥5,则a m=100或201.又m ≥2,故有解(10,2,2).(iii )n >m 时,由a m +1|203(a m +1),有a m +1|a n +203-(203a m+203)=a m (an -m-203).又(a m +1,a m )=1,所以,a m +1|a n -m-203.① 若a n -m<203,则令n -m =s ≥1,有a m+1|203-a s.所以,203-a s ≥a m+1,202≥a s+a m≥a m+a =a (am -1+1)≥a (a +1),2≤a ≤13.类似于(i )的讨论,可知(a ,m ,s )有解(2,2,3),(2,6,3),(2,4,4),(2,3,5),(2,2,7),(3,2,1),(4,2,2),(5,2,3),(8,2,1).于是,(a ,m ,n )有解(2,2,5),(2,6,9),(2,4,8),(2,3,8),(2,2,9),(3,2,3),(4,2,4),(5,2,5),(8,2,3).② a n -m =203时,则a =203,n -m =1,即 (203,m ,m +1),m ≥2均满足.③ a n -m>203时,令n -m =s ≥1,则a m+1|a s-203.又a s -203≥a m +1,则s >m .由a m +1|a s +203a m =(a s -m +203)a m =(a n -2m +203)a m ,(a m +1,a m )=1,所以a m +1|a n -2m +203.又s >m Ζn -m >m Ζn >2m Ζn -2m >0.此时的解只能由前面的解派生出来,即由(a ,m ,n )→(a ,m ,n +2m )→…→(a ,m ,n +2km ),且每一个派生出的解满足a m+1|a n+203.综上所述,所有解(a ,m ,n )为(2,2,4k +1),(2,3,6k +2),(2,4,8k +8),(2,6,12k +9),(3,2,4k +3),(4,2,4k +4),(5,2,4k +1),(8,2,4k +3),(10,2,4k +2),(203,m ,(2k +1)m +1),其中k 为任意非负整数,且m ≥2为整数.五、将前3个面试者中能力最强的排名名次记为a .显然a ≤8.将此时能力排名第k 的人被选上的排列集合记作A k (a ),相应的排列数目记作|A k (a )|.(1)易知,当a =1时,必然放过前面9个人,录用最后一个面试的人,此时除能力第1的人之外,其余各人机会均等,|A k (1)|=3×8!:=r 1,k =2,3,…,10,其中,“:=”表示“记为”.当2≤a ≤8时,对于a ≤k ≤10,能力排名第k 的人无录用机会.对于1≤k <a ,此时机会均等.事实上,此时能力排名第a 的人排在前三个,有3种选择位置的办法.而能力排名第1至第a -1的人都排在后7个位置上,并且谁位于他们之首就是谁被录用,有排法C a -17(a -2)!种;其余10-a 个人可以在剩下的位置上任意排列,有(10-a )!种排法.故有|A k (a )|=3C a -17(a -2)!(10-a )!:=r a ,k =1,…,a -1;0,k =a , (10)上述结果表明:|A 8|=|A 9|=|A 10|=r 1=3×8!>0;①|A k |=r 1+∑8a =k +1ra,k =2, (7)②|A 1|=∑8a =2r a.③由式①和②知|A 2|>|A 3|>…>|A 8|=|A 9|=|A 10|>0;而由式②和③知|A 1|-|A 2|=r 2-r 1=3×7×8!-3×8!>0.综合上述,问题(1)获证.(2)由式①知|A 8|+|A 9|+|A 10|10!=3×r 110!=3×3×8!10!=10%,所以,录用到能力最弱的三人之一的可能性等于10%.由式②和③可知|A 1|=∑8a =2ra=∑8a =23C a -17(a -2)!(10-a )!=3×7!∑8a =2(9-a )(10-a )a -1=3×7!∑7s =1(8-s )(9-s )s=3×7!×56+21+10+5+125+1+27=3×7!×952435>3×7!×9523=287×7!.|A 2|=r 1+∑8a =3ra=3×8!+3×7!×21+10+5+125+1+27=3×7!×472435>3×7!×4723=143×7!.|A 3|=r 1+∑8a =4ra=3×8!+3×7!×10+5+125+1+27=3×7!×262435>3×7!×2623=80×7!.所以,|A 1|+|A 2|+|A 3|10!>287+143+80720=510720=1724>70%,即录用到能力最强三人之一的可能性大于70%.六、令u =ay 1+by 2,v =cy 3+dy 4,u 1=ax 4+bx 3,v 1=cx 2+dx 1.则u 2≤(ay 1+by 2)2+(ax 1-bx 2)2=a 2+b 2+2ab (y 1y 2-x 1x 2),即 x 1x 2-y 1y 2≤a 2+b 2-u22ab.①v 21≤(cx 2+dx 1)2+(cy 2-dy 1)2=c 2+d 2+2cd (x 1x 2-y 1y 2),即 y 1y 2-x 1x 2≤c 2+d 2-v 212cd.②①+②得 u ≤a 2+b 2-u22ab +c 2+d 2-v 212cd ,即 u 2ab +v 21cd ≤a 2+b 2ab +c 2+d2cd.同理,v 2cd +u 21ab ≤c 2+d 2cd +a 2+b2ab.由柯西不等式,有(u +v )2+(u 1+v 1)2≤(ab +cd )u 2ab +v2cd+(ab +cd )u 21ab +v 21cd=u 2ab +v2cd +u 21ab +v 21cd≤2a 2+b 2ab +c 2+d2cd.(浙江大学数学系 李胜宏 提供)2002年上海市高中数学竞赛 说明:解答本试卷不得使用计算器一、填空题(每小题7分,共70分)1.一个正△ABC 内接于椭圆x29+y24=1,顶点A的坐标为(0,2),过顶点A 的高在y 轴上.则此正三角形的边长为.2.已知x 、y 为正数,且sin θx=cos θy,cos 2θx2+sin 2θy 2=103(x 2+y 2).则xy 的值为.3.袋里装有35个球,每个球上都记有从1到35的一个号码,设号码为n 的球重n23-5n +23克,这些球以同等的机会(不受其重量的影响)从袋里取出.若同时从袋内任意取出两球,则它们重量相等的概率为(用分数作答).4.已知正四棱台的上底、下底及侧面(四个等腰梯形)的面积之比为2∶5∶8.则侧面与底面所成角的大小为.5.若对|x |≤1的一切x ,t +1>(t 2-4)x 恒成立,则t 的取值范围是.6.设实数a 、b 、c 、d 满足a 2+b 2+c 2+d 2=5.则(a -b )2+(a -c )2+(a -d )2+(b -c )2+(b -d )2+(c -d )2的最大值是.7.函数f 定义在正整数集上,且满足f (1)=2002和f (1)+f (2)+…+f (n )=n 2f (n )(n >1).则f (2002)的值是.8.已知函数f (x )=12x(1-x +1-2x +2x 2),图1x ∈[2,4].则该函数的值域是.9.如图1,在△ABC 中,∠B =∠C ,点P 、Q 分别在AC 和AB 上,使得AP =PQ =QB =BC .则∠A 的大小是.10.棱长为1的正四面体,在平面上投影面积的最大值是.二、(本题16分)已知数列{a n }、{b n }都是等差数列,S n =a 1+a 2+…+a n ,T n =b 1+b 2+…+b n ,且对一切正整数n ,S n T n =3n +3131n +3.(1)求b 28a 28的值;(2)求使b na n为整数的所有正整数n .三、(本题16分)设F 是所有有序n 元组(A 1,A 2,…,A n )构成的集合,其中A i (1≤i ≤n )都是集合{1,2,3,…,2002}的子集,设|A |表示集合A 的元素的数目.对F 中的所有元素(A 1,A ,…,A n ),求|A 1∪A 2∪…∪A n |的总和,即∑(A 1,A 2,…,A n)∈F |A 1∪A 2∪…∪A n |.四、(本题18分)纸上写有1,2,…,n 这n 个正整数,第1步划去前面4个数1,2,3,4,在n 的后面写上划去的4个数的和10;第2步再划去前面的4个数5,6,7,8,在最后写上划去的4个数的和26;如此下去(即每步划去前面4个数,在最后面写上划去的4个数的和).(1)若最后只剩下一个数,则n 应满足的充要条件是什么?(2)取n =2002,到最后只剩下一个数为止,所有写出的数(包括原来的1,2,…,2002)的总和是多少?参考答案一、1.72331 2.3或133.1854.arccos 38 5.13-12,21+12 6.20 7.220038.14,5-14 9.20° 10.12。

历届IMO试题(1-46届完整中文版)

历届IMO试题(1-46届完整中文版)

1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。

2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。

3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。

当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。

4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。

5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。

6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。

试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。

1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。

2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令α为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan α = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。

5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。

2003年IMO中国国家队选拔考试试题

2003年IMO中国国家队选拔考试试题

2003Day 11ABC is an acute-angled triangle.Let D be the point on BC such that AD is the bisector of ∠A .Let E,F be the feet of perpendiculars from D to AC,AB respectively.Suppose the lines BE and CF meet at H .The circumcircle of triangle AF H meets BE at G (apart from H ).Prove that the triangle constructed from BG ,GE and BF is right-angled.2Suppose A ⊆{0,1,...,29}.It satisfies that for any integer k and any two members a,b ∈A (a,b is allowed to be same),a +b +30k is always not the product of two consecutive integers.Please find A with largest possible cardinality.3Suppose A ⊂{(a 1,a 2,...,a n )|a i ∈R ,i =1,2...,n }.For any α=(a 1,a 2,...,a n )∈A and β=(b 1,b 2,...,b n )∈A ,we defineγ(α,β)=(|a 1−b 1|,|a 2−b 2|,...,|a n −b n |),D (A )={γ(α,β)|α,β∈A }.Please show that |D (A )|≥|A |./This file was downloaded from the AoPS −MathLinks Math Olympiad Resources Page Page 1http://www.mathlinks.ro/2003Day 21Find all functions f :Z +→R ,which satisfies f (n +1)≥f (n )for all n ≥1and f (mn )=f (m )f (n )for all (m,n )=1.2Suppose A ={1,2,...,2002}and M ={1001,2003,3005}.B is an non-empty subset ofA .B is called a M -free set if the sum of any two numbers in B does not belong to M .If A =A 1∪A 2,A 1∩A 2=∅and A 1,A 2are M -free sets,we call the ordered pair (A 1,A 2)a M -partition of A .Find the number of M -partitions of A .3x n is a real sequence satisfying x 0=0,x 2=3√2x 1,x 3is a positive integers and x n +1=13√4x n +3√4x n −1+12x n −2for n ≥2.How many integers at least belong to this sequence?/This file was downloaded from the AoPS −MathLinks Math Olympiad Resources Page Page 2http://www.mathlinks.ro/。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

京翰教育中心
2003年IMO 中国国家集训队选拔考试试题
(2003-03-31 8:00—12:30)
一、在锐角△ABC 中,AD 是∠A 的内角平分线,点D 在边BC 上,过点D 分别作DE ⊥AC 、DF ⊥AB ,垂足分别为E 、F ,连结BE 、CF ,它们相交于点H ,△AFH 的外接圆交BE 于点G .求证:以线段BG 、GE 、BF 组成的三角形是直角三角形. (熊 斌 命题)
二、设{}29,2,1,0 ⊆A ,满足:对任何整数k 及A 中任意数a 、b (a 、b 可以相同),k b a 30++均不是两个相邻整数之积.试定出所有元素个数最多的A..
(陈永高 命题)
三、设(){}n i R a a a a A i n ,,2,1,,,,21 =∈⊂,A 是有限集,对任意的()n a a a ,,,21 =α∈A ,()n b b b ,,,21 =β∈B 定义:
()()n n b a b a b a ---=,,,,2211 βαγ, ()(){}B A A D ∈∈=βαβαγ,,.
试证:()A D ≥A .
(冷岗松 命题)
(2003-04-01 8:00—12:30)
四、求所有正整数集上到实数集的函数f ,使得
(1)对任意n ≥1,f (n +1)≥f (n );
(2)对任意m ,n ,(m ,n )=1,有
f (mn )=f (m )f (n ).
(潘承彪 命题)
五、设{
}2002,2,1 =A ,{}3005,2003,1001=M ,对A 的任意非空子集B ,当B 中任意两数之和不属于M 时,称B 为M -自由集,如果A =A 1∪A 2,A 1∩A 2=φ,且A 1,A 2均为M -自由集,那么称有序对(A 1,A 2),为A 的一个M -划分,试求A 的所有M -划分的个数. (李胜宏 命题)
六、设实数列{}n x 满足:00=x ,1322x x =,3x 是正整数,且
213312
1441
--+++=n n n n x x x x ,n ≥2. 问:这类数列中最少有多少个整数项?
(黄玉民 命题)。

相关文档
最新文档