【三维设计】2013高考数学总复习 课时跟踪检测58 变量间的相关关系 统计案例

合集下载

【三维设计】2013高考数学总复习 课时跟踪检测11 对数与对数函数

【三维设计】2013高考数学总复习 课时跟踪检测11 对数与对数函数

课时跟踪检测(十一) 对数与对数函数1.函数y =1-lg x +2的定义域为( )A .(0,8]B .(2,8]C .(-2,8]D .[8,+∞)2.(2012·安徽高考)(log 29)·(log 34)=( ) A.14 B.12 C .2D .43.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log 12xD .2x -24.(2011·天津高考)已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >cB .a >c >bC .b >a >cD .c >a >b5.(2013·安徽名校模拟)函数y =log 2|x |x的大致图象是( )6.已知函数f (x )=log 12|x -1|,则下列结论正确的是( )A .f ⎝ ⎛⎭⎪⎫-12<f (0)<f (3)B .f (0)<f ⎝ ⎛⎭⎪⎫-12<f (3)C .f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0)D .f (3)<f (0)<f ⎝ ⎛⎭⎪⎫-127.(2012·长安一中质检)对任意的非零实数a ,b ,若a ⊗b =⎩⎪⎨⎪⎧b -1a ,a <b ,a +1b ,a ≥b ,则lg 10 000⊗⎝ ⎛⎭⎪⎫12-2=________.8.函数y =log 12(x 2-6x +17)的值域是________.9.函数f (x )=log a x (a >1)在区间[a,2a ]上的最大值与最小值之差为12,则a 等于________.10.计算下列各式.(1)lg 25+lg 2·lg 50+(lg 2)2; (2)lg 32-lg 9+1·lg 27+lg 8-lg 1 000lg 0.3·lg 1.2.11.说明函数y =log 2|x +1|的图象,可由函数y =log 2x 的图象经过怎样的变换而得到.并由图象指出函数的单调区间.12.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1),且log 2f (x )<f (1).1.(2012·山西四校联考)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 28-x ,x ≤0,f x -1-f x -2,x >0,则f (3)的值为( )A .1B .2C .-2D .-32.已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x .设a =f ⎝ ⎛⎭⎪⎫65,b =f ⎝ ⎛⎭⎪⎫32,c =f ⎝ ⎛⎭⎪⎫52,则( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b3.若函数f (x )=log a (x 2-ax +3)(a >0且a ≠1),满足对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 1)-f (x 2)>0,求实数a 的取值范围.[答 题 栏]A 级答 案课时跟踪检测(十一)A 级1.C 2.D 3.A 4.B5.选C 由于log 2|-x |-x =-log 2|x |x ,所以函数y =log 2|x |x 是奇函数,其图象关于原点对称.当x >0时,对函数求导可知函数图象先增后减,结合选项可知选C.6.选C 依题意得f (3)=log 122=-1<0,log 122<f ⎝ ⎛⎭⎪⎫-12=log 1232<log 121,即-1<f ⎝ ⎛⎭⎪⎫-12<0,又f (0)=log 121=0,因此有f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0).7.解析:∵lg 10 000=lg 104=4,⎝ ⎛⎭⎪⎫12-2=4,∴lg 10 000⊗⎝ ⎛⎭⎪⎫12-2=4+14=54.答案:548.解析:令t =x 2-6x +17=(x -3)2+8≥8,y =log 12t 为减函数,所以有log 12t ≤log128=-3.答案:(-∞,-3] 9.解析:∵a >1,∴f (x )=log a x 在[a,2a ]上为增函数.∴log a 2a -log a a =12,解得a =4.答案:410.解:(1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式= lg 32-2lg 3+1·⎝ ⎛⎭⎪⎫32lg 3+3lg 2-32lg 3-1·lg 3+2lg 2-1=1-lg 3·32lg 3+2lg 2-1lg 3-1·lg 3+2lg 2-1 =-32.11.解:作出函数y =log 2x 的图象,再作其关于y 轴对称的图形得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的递减区间为(-∞,-1),递增区间为(-1,+∞).12.解:(1)∵f (x )=x 2-x +b , ∴f (log 2a )=(log 2a )2-log 2a +b . 由已知得(log 2a )2-log 2a +b =b , ∴log 2a (log 2a -1)=0. ∵a ≠1,∴log 2a =1,即a =2. 又log 2f (a )=2,∴f (a )=4. ∴a 2-a +b =4.∴b =4-a 2+a =2. 故f (x )=x 2-x +2.从而f (log 2x )=(log 2x )2-log 2x +2 =⎝⎛⎭⎪⎫log 2x -122+74. ∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意⎩⎪⎨⎪⎧log 2x 2-log 2x +2>2,log 2x 2-x +2<2⇒⎩⎪⎨⎪⎧x >2或0<x <1,-1<x <2⇒0<x <1.B 级1.选D 依题意得f (3)=f (2)-f (1)=[f (1)-f (0)]-f (1)=-f (0)=-log 28=-3.2.选D 已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x ,则a =f ⎝ ⎛⎭⎪⎫65=f ⎝ ⎛⎭⎪⎫-45=-f ⎝ ⎛⎭⎪⎫45=-lg 45>0, b =f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-lg 12>0, c =f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12=lg 12<0. 又因为lg 45>lg 12,所以0<-lg 45<-lg 12.所以c <a <b .3.解:因为对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 1)-f (x 2)>0,所以函数f (x )在⎝⎛⎦⎥⎤-∞,a 2上单调递减.令t =x 2-ax +3,则二次函数t =x 2-ax +3的对称轴为x =a2,其在⎝ ⎛⎦⎥⎤-∞,a 2上单调递减.由复合函数的单调性,可知y =log a x 为单调增函数,故a >1.由对数函数的定义域,可知在区间⎝⎛⎦⎥⎤-∞,a 2上,t >0恒成立,即x 2-ax +3>0在区间⎝⎛⎦⎥⎤-∞,a 2上恒成立.而函数t =x 2-ax +3在区间⎝ ⎛⎦⎥⎤-∞,a 2上的最小值为⎝ ⎛⎭⎪⎫a 22-a ×a 2+3=3-a 24.故3-a 24>0,解得|a |<2 3.综上可得a 的取值范围是(1,23).。

高考数学总复习课时跟踪检测58变量间的相关关系统计案例

高考数学总复习课时跟踪检测58变量间的相关关系统计案例

1.(2012 ·佛山模 ) 已知某加工部件的个数x 与所花y(h)之的性回^个部件大需要的()方程 y=0.01 x+0.5,加工600A. 6.5 h B. 5.5 h C. 3.5 h D. 0.3 h2.(2013 ·衡阳考 ) 已知x与y之的一数据:x0123y m3 5.57^)已求得对于 y 与 x 的性回方程 y=2.1 x+0.85, m的(A. 1B. 0. 85C. 0.7D. 0.53.有甲、乙两个班行数学考,依据大于等于85 分秀, 85 分以下非秀成,获得以下所示的列表:秀非秀甲班10b乙班c301052已知在所有105 人中随机抽取 1 人,成秀的概率7,以下法正确的选项是 ()A.列表中 c 的30, b 的35B.列表中 c 的15, b 的50C.依据列表中的数据,若按95%的靠谱性要求,能“成与班有关系”D.依据列表中的数据,若按95%的靠谱性要求,不可以“成与班有关系”4.已知x、y的取以下表:x0134y 2.2 4.3 4.8 6.7从所得的散点剖析,^^^y 与 x 性有关,且 y=0.95 x+ a, a=()A. 2.5B. 2.6C. 2.7D. 2.85.(2012 ·湖南高考 ) 某大学的女生体重y(位:kg)与身高 x(位:cm)拥有性有关关系,依据一本数据( x i,y i )( i=1,2 ,⋯,n) ,用最小二乘法成立的回方程^ y=0.85 x- 85.71 ,以下中不正确的选项是 ().A.y与x拥有正的性有关关系B.回直本点的中心( x,y )C.若大学某女生身高增添 1 cm,其体重增添0.85 kgD.若大学某女生身高170 cm,可判定其体重必58.79 kg6.(2013 ·合肥 ) 由数据 ( x1,y1) , ( x2,y2) ,⋯, ( x10,y10 ) 求得性回方程^ ^ y= b+^,“(0,0)足性回方程^=^+^”是“0= x + x +⋯+ x,0 =x a x y y b x a x1210y10y1+y2+⋯+ y1010”的()A.充足不用要条件B.必需不充足条件C.充要条件 D .既不充足也不用要条件7.(2012 ·唐山模 ) 考古学家通鼻祖化石本:其股骨度x(cm)与肱骨^50 cm,肱骨度 y(cm)的性回方程 y=1.197 x-3.660,由此估,当股骨度度的估 ________ cm.8.在一打鼾与患心病的中,共了 1 671 人,算2的= 27.63 ,K k依据一数据剖析,我有原因打鼾与患心病是________的. ( 有关,没关 ) 9.(2012 ·宁夏模 ) 某位了认识用量y 度与气温 x℃之的关系,随机了某 4 天的用量与当日气温,并制作了照表:气温( ℃)181310- 1用量 ( 度)24343864^由表中数据得性回方程 y= bx+ a 中 b=-2,当气温-4℃ ,用量的度数 ________.10.已知x,y的一数据以下表:x13678y12345(1)从 x, y 中各取一个数,求x+ y≥10的概率;111(2)于表中数据,甲、乙两同学出的合直分y=3x+1与 y=2x+2,利用“最小平方法( 也称最小二乘法 ) ”判断哪条直合程度更好.11.(2012 · 北三省考 ) 某学生其属30 人的食行了一次,并用茎叶表示30 人的食指数.( 明:中食指数低于70 的人,食以蔬菜主;食指数高于 70 的人,食以肉主.)(1)依据茎叶图,帮助这位学生说明其家属30 人的饮食习惯;(2)依据以上数据达成以下 2×2的列联表:主食蔬菜主食肉类共计50 岁以下50岁以上共计(3)可否有 99%的掌握以为其家属的饮食习惯与年纪有关,并写出简要剖析.12.某电脑企业有 6 名产品销售员,其工作年限与年销售金额的数据以下表:销售员编号12345工作年限 x/年35679销售金额 y/万元23345(1)以工作年限为自变量 x,销售金额为因变量 y,作出散点图;(2)求年销售金额 y 对于工作年限 x 的线性回归方程;(3) 若第 6 名销售员的工作年限为11 年,试预计他的年销售金额.1.某研究机构对高三学生的记忆力x 和判断力 y 进行统计剖析,所得数据以下表:x681012y2356则 y 对 x 的线性回归直线方程为()^B.^A. y= 2.3 x- 0.7y=2.3 x+0.7^D.^C. y= 0.7 x- 2.3y=0.7 x+2.32.(2012 ·东北三校联考 ) 某校为了研究学生的性别和对待某一活动的态度( 支持和不支持两种态度 ) 的关系,运用2×2列联表进行独立性查验,经计算K2=7.069,则有 ________的掌握以为“学生性别与能否支持该活动有关系”.附:P( K2≥ k0)0.1000.0500.0250.0100.001k02.7063.841 5.024 6.63510.8283.某网站就“公众能否支持加大修筑城市地下排水设备的资本投入”进行投票.依据北京暴雨前后两个时间采集有效投票,暴雨后的投票采集了 50 份,暴雨前的投票也采集了50 份,所得统计结果以下表:支持不支持总计北京暴雨后x y50北京暴雨前203050总计A B1002已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为5.(1)求列联表中的数据 x,y, A, B的值;(2)绘制条形统计图,经过图形判断本次暴雨能否影响到公众对加大修筑城市地下排水设备的投入的态度?(3)能够有多大掌握以为北京暴雨对公众能否同意加大对修筑城市地下排水设备的投入有关?附: K2=-bc2a+ bn adb+ dc+ d a+ cP( K2≤ k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828 [答题栏]1._________2._________3._________A 级4._________ 5._________ 6._________B 级 1.______ 2.______7.__________ 8. __________ 9. __________答案课时追踪检测 ( 六十八 )A 级1. A 2.D 3.C 4.B5.选 D因为回归直线的斜率为正当,故y 与 x 拥有正的线性有关关系,选项 A 中的结论正确;回归直线过样本点的中心,选项B中的结论正确;依据回归直线斜率的意义易知选项 C 中的结论正确;因为回归剖析得出的是预计值,应选项D中的结论不正确.6.选 B00为这 10组数据的均匀值,又因为回归直线^ ^^x ,y y=bx+ a必过样本中心点( x ,y ),所以( x,y )必定知足线性回归方程,但坐标知足线性回归方程的点不必定是( x,y ) .007.分析:依据回归方程^,则肱骨长度y=1.197 x-3.660,将 x=50代入,得 y=56.19的预计值为56.19 cm.答案: 56.198.分析:由观察值k=27.63与临界值比较,我们有99%的掌握说打鼾与患心脏病有关.答案:有关9.分析:x =10, y =40,回归方程过点(x,y),∴40=- 2×10+a.^∴ a=60.∴ y=-2x+60.^令 x=-4,∴ y=(-2)×(-4)+60=68.答案: 6810.解: (1) 从x,y中各取一个数构成数对( x,y) ,共有 25对,此中知足x+ y≥10的有 (6,4) , (6,5),(7,3),(7,4), (7,5), (8,2), (8,3) , (8,4), (8,5),共 9对.故所求概率=9.P25142(2) 用y=3x+ 1作为拟合直线时,所得y 值与 y 的实质值的差的平方和为1- 1 S =3221021127+(2 -2) +(3-3) +3-4 +3-5=3.112用 y=2x+2作为拟合直线时,所得y值与 y 的实质值的差的平方和为S2=(1-1)+ (22722921-3+(4 -4)- 5-2) +2+2=2.1 1∵S2<S1,∴直线 y=2x+2的拟合程度更好.11.解: (1)30 位家属中50 岁以上的人多以食蔬菜为主,50 岁以下的人多以食肉为主.(2)主食蔬菜主食肉类共计50岁以下481250 岁以上16218共计20103030 8-1282(3) K2=12×18×20×1030×120×120=12×18×20×10= 10> 6.635 ,有 99%的掌握以为家属的饮食习惯与年纪有关.12.解: (1) 依题意,画出散点图以下图,(2) 从散点图能够看出,这些点大概在一条直线邻近,设所求的线性回归方程为^ ^ y= bx^+a.5-x i- xy i- y^x = 110^^ -则 b=52=20=0.5, a= y - b x =0.4,x i- x x= 1∴年销售金额 y 对于工作年限x 的线性回归方程为^y=0.5 x+0.4.(3)由 (2) 可知,当x= 11 时,^y=0.5 x+0.4=0.5×11+0.4=5.9(万元).∴能够预计第 6 名销售员的年销售金额为 5.9 万元.B 级41.选 C∵ x i y i=6×2+8×3+10×5+12×6=158,i = 16+8+ 10+ 122+ 3+5+ 6x =4= 9,y=4= 4.^158-4×9×4=0.7 ,∴ b=36+ 64+ 100+ 144-4×81^×9=- 2.3.a=4-0.7^故线性回归直线方程为y=0.7 x-2.3.2.分析:因为7.069与附表中的 6.635 最靠近 ( 且大于 6.635) ,所以获得的统计学结论是:有99%的掌握以为“学生性别与能否支持该活动有关系”.答案: 99%3.解: (1) 设“从所有投票中抽取一个,取到不支持投入的投票”为事件A,y+302由已知得 P( A)=100=5,所以 y=10, B=40, x=40,A=60.(2)由 (1) 知北京暴雨后支持为40=4,50 54 1不支持率为 1-5=5,20 2北京暴雨前支持率为=,50 52 3不支持率为 1-5=5.条形统计图以下图,由图能够看出暴雨影响到公众对加大修筑城市地下排水设备的投入的态度.100 30×40-20×1021000 00050(3) K2===≈16.78 > 10.828.50×50×40×6050×20×603故起码有99.9%的掌握以为北京暴雨对公众能否同意加大对修筑城市地下排水设备的投入有关.。

(福建专用)2013年高考数学总复习 第十章第3课时 变量间的相关关系、统计案例随堂检测(含解析)

(福建专用)2013年高考数学总复习 第十章第3课时 变量间的相关关系、统计案例随堂检测(含解析)

(福建专用)2013年高考数学总复习 第十章第3课时 变量间的相关关系、统计案例随堂检测(含解析)1.(2012·福州调研)以下四个命题中,其中正确的是( )①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样 ②两个随机变量相关性越强,则相关系数的绝对值越接近于1③在回归直线方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大A .①④B .②④C .①③D .②③解析:选D.①是系统抽样;对于④,随机变量K 2的观测值k 越小,说明两个变量有关系的把握程度越小.2.下表是某厂1~4月份用水量(单位:百吨)的一组数据: 月份x 1 2 3 4用水量y 4.5 4 3 2.5由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线是y ^=-0.7x+a ,则a 等于( )A .10.5B .5.15C .5.2D .5.25解析:选D.x =2.5,y =3.5,∵回归直线过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25,故选D.3.下面是一个2×2列联表y 1 y 2 总计 x 1a 21 73 x 22 25 27 总计 b 46则表中a 、b 处的值分别为________.解析:∵a +21=73,∴a =52.又∵a +2=b ,∴b =54.答案:52、544.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下表的统计资料:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若由资料可知y 对(1)线性回归直线方程;(2)估计使用年限为10年时,维修费用是多少?解:(1)i 1 2 3 4 5 合计x i 2 3 4 5 6 20y i 2.2 3.8 5.5 6.5 7.0 25x i y i 4.4 11.4 22.0 32.5 42.0 112.3x 2i 4 9 16 25 36 90 x =4;y =5;b ^=∑i =15-nx - y-∑i =15x 2i -n x 2=112.3-5×4×590-5×42=1.23, 于是a ^=y -b ^x =5-1.23×4=0.08.所以线性回归直线方程为:y ^=1.23x +0.08.(2)当x =10时,y ^=1.23×10+0.08=12.38(万元),即估计使用10年时,维修费用是12.38万元.。

高三数学(文)湘教版一轮复习课时跟踪检测61 变量间的相关关系、统计案例

高三数学(文)湘教版一轮复习课时跟踪检测61 变量间的相关关系、统计案例

课时跟踪检测(六十一)变量间的相关关系、统计案例第Ⅰ组:全员必做题1.(2014·枣庄模拟)下面是2×2列联表:则表中a,b的值分别为( )A.94,72 B.52,50 C.52,74 D.74,522.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程错误!=3-5x,变量x增加1个单位时,错误!平均增加5个单位;③线性回归方程错误!=错误!x+错误!必过样本点的中心(错误!,错误!);④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系.其中错误的个数是( )A.0 B.1 C.2 D.3本题可以参考独立性检验临界值表变化的回归直线方程为错误!=60+90x,下列判断正确的是( )A.劳动产值为1 000元时,工资为50元B.劳动产值提高1 000元时,工资提高150元C.劳动产值提高1 000元时,工资提高90元D.劳动产值为1 000元时,工资为90元4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=错误!,算得K 2=错误!≈7。

8。

附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”5.某产品的广告费用x与销售额y的统计数据如下表:错误!错误!错误!错误!为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元6.高三某学生高考成绩y(分)与高三期间有效复习时间x(天)正相关,且回归方程是错误!=3x+50,若期望他高考达到500分,那么他的有效复习时间应不低于________天.7.高三某班学生每周用于物理学习的时间x(单位:小时)与物理成绩y(单位:分)之间有如下关系:y轴上的截距为________.(答案保留到0.1)8.某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:关系,则发芽数y 关于温差x 的线性回归方程为________.(参考公式:回归直线方程错误!=错误!x +错误!,其中错误!=错误!,错误!=错误!-错误!错误!)9.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩.(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.10.(2013·郑州模拟)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解'训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:(1)试分别估计两个班级的优秀率;(2)由以上统计数据填写下面2×2列联表,并问是否有95%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.第Ⅱ组:重点选做题1.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n 不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=错误!x+1上,则这组样本数据的样本相关系数为( )A.-1 B.0C 。

2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]

2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]

教案 58变量间的有关关系学目: 1.会作两个有关量的数据的散点,会利用散点量的有关关系 .2.认识最小二乘法的思想,能依据出的性回方程系数公式成立性回方程.自主梳理1.两个量的性有关(1)正有关在散点中,点分布在从__________到 ________的地区,于两个量的种有关关系,我将它称正有关.(2)有关在散点中,点分布在从________到 ________的地区,两个量的种有关关系称有关.(3)性有关关系、回直假如散点中点的分布从整体上看大概在一条直邻近,我就称两个量之拥有性有关关系,条直叫做回直.2.回方程(1)最小二乘法求回直使得本数据的点到它的________________________ 的方法叫做最小二乘法.(2)回方程^^^方程 y = b x+ a 是两个拥有性有关关系的量的一数据(x1,y1 ),(x2,y2),⋯, (x n,^^y n)的回方程,此中 a , b 是待定参数.自我1.以下有关性回的法,不正确的选项是()A.有关关系的两个量不必定是因果关系B.散点能直地反应数据的有关程度C.回直最能代表性有关的两个量之的关系D.任一数据都有回直方程2.(2009 海·南,宁夏 )量 x, y 有数据 (x i, y i)(i =1,2,⋯, 10),得散点 (1) ;量 u,v 有数据 (u i,v i)(i = 1,2,⋯, 10),得散点 (2).由两个散点能够判断()A.量 x 与 y 正有关, u 与 v 正有关B.量 x 与 y 正有关, u 与 v 有关C.量 x 与 y 有关, u 与 v 正有关D.量 x 与 y 有关, u 与 v 有关3.(2011 ·川模 )下表是某厂1~4 月份用水量 (位:百吨 )的一数据:月份 x1234用水量 y 4.543 2.5^由散点图可知,用水量y 与月份 x 之间有较好的线性有关关系,其回归直线方程是y =^^- 0.7x +a ,则 a 等于 ()A. 10.5B. 5.15C. 5.2 D .5.254.(2010 广·东 )某市居民2005 ~ 2009 年家庭年均匀收入x(单位:万元 )与年均匀支出Y( 单位:万元 ) 的统计资料以下表所示:年份20052006200720082009收入 x11.512.11313.315支出 Y 6.88.89.81012依据统计资料,居民家庭年均匀收入的中位数是_________________________________ ,家庭年均匀收入与年均匀支出有______ 线性有关关系.5.(2011 金·陵中学模拟 )已知三点 (3,10), (7,20), (11,24) 的横坐标 x 与纵坐标 y 拥有线性关系,则其回归方程是________________.研究点一利用散点图判断两个变量的有关性例 1 有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,获取一个卖出热饮杯数与当日气温的对照表:温度- 504712151923273136(℃ )热饮15615013212813011610489937654杯数(1)画出散点图;(2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?变式迁徙1某班5个学生的数学和物理成绩如表:学生A B C D E学科数学8075706560物理7066686462画出散点图,并判断它们能否有有关关系?研究点二求回归直线方程例 2 假定对于某设施的使用年限x 和所支出的维修花费y(万元 ) 有以下统计资料:使用年限 x23456维修花费 y 2.2 3.8 5.5 6.57.0^^^若由资料知 y 对 x 呈线性有关关系.试求回归方程y = b x+a .变式迁徙2已知变量x 与变量 y 有以下对应数据:x1234y 1323 22且 y 对 x 呈线性有关关系,求y 对 x 的回归直线方程.研究点三利用回归方程对整体进行预计例 3 下表供给了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨 )与相应的生产能耗 y(吨标准煤 )的几组比较数据.x3456y 2.534 4.5(1)请画出上表数据的散点图;^^^(2)请依据上表供给的数据,用最小二乘法求出y 对于 x 的回归方程 y= b x+a ;(3)已知该厂技改前 100 吨甲产品的生产能耗为90 吨标准煤.试依据(2)求出的回归方程,展望生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?(参照数值: 3×2.5+ 4× 3+ 5× 4+6× 4.5= 66.5)变式迁徙 3 (2011 ·盐城期末 )某单位为了认识用电量y 度与气温 x℃之间的关系,随机统计了某 4 天的用电量与当日气温,并制作了比较表:气温 (℃)181310- 1用电量 (度 )24343864^^^^由表中数据得回归方程y = b x+a 中 b =- 2,展望当气温为- 4℃时,用电量的度数约为 ________.1.有关关系与函数关系不一样.函数关系中的两个变量间是一种确立性关系.而有关关系是一种非确立性关系,即有关关系是非随机变量与随机变量之间的关系.函数关系是一种因果关系,而有关关系不必定是因果关系,也可能是陪伴关系.2.回归直线方程:设x 与 y 是拥有有关关系的两个变量,且相应于n 个观察值的n 个点大概分布在某一条直线的邻近,就能够以为y 对 x 的回归函数的种类为直线型:^^^y= b x+ a .此中我们称这个方程为y 对 x 的回归直线方程.此中x =1ni,y=1 ni,( x,y )称为∑∑n i =1xn i= 1y样本点的中心.n n^ 3.求回归直线方程的步骤:(1) 计算出 x 、 y 、∑x i2、∑x i y i的值; (2) 计算回归系数 a 、i =1i= 1^^^^b; (3) 写出回归直线方程 y = b x+ a .(满分: 75 分)一、选择题 (每题 5 分,共 25 分 )1.以下命题:①线性回归方法就是由样本点去找寻一条切近这些样本点的直线的数学方法;②利用样本点的散点图能够直观判断两个变量的关系能否能够用线性关系表示;^^^^③经过回归直线y 此中正确的命题是A.①②=b x+ a 及回归系数 b ,能够预计和展望变量的取值和变化趋向.()B.①③C.②③D.①②③^2.设有一个回归直线方程为y = 2- 1.5x,则变量x 增添一个单位时() A. y 均匀增添 1.5 个单位B. y 均匀增添 2 个单位C. y 均匀减少 1.5 个单位D. y 均匀减少 2 个单位3.(2011 ·西 ) (x 1, y1), (x2, y2),⋯, (x n, y n) 是量 x 和 y 的 n 个本点,直l 是由些本点通最小二乘法获取的性回直(如 ),以下中正确的选项是 ()A. x 和 y 的有关系数直l 的斜率B. x 和 y 的有关系数在 0 到 1 之C.当 n 偶数,分布在l 两的本点的个数必定同样D.直 l 点 ( x , y )4.(2011 山· ) 某品的广告用x 与售 y 的数据以下表:广告用 x(万元 )4235售 y(万元 )49263954^^^^依据上表可得性回方程y =b x+ a 中的 b9.4,据此模型广告用 6 万元售 ()A. 63.6 万元B. 65.5 万元C. 67.7 万元D. 72.0 万元5.(2011 青· 模 )了观察两个量x 和 y 之的性有关性,甲、乙两位同学各自独立做了 10 次和 15 次,而且利用性回方法,求得回直分l1、 l2,已知两人所得的数据中,量 x 和 y 的数据的均匀都相等,且分是s、t ,那么以下法中正确的是 ()A.直 l1和 l2必定有公共点 (s, t)B.直 l1和 l2订交,但交点不必定是(s,t)C.必有 l1∥ l 2D. l1与 l 2必然重合二、填空 (每小 4 分,共 12分 )6.以下关系中,是有关关系的________. (填序号 )①学生的学度与学成之的关系;②教的教水平与学生的学成之的关系;③学生的身高与学生的学成之的关系;④家庭的条件与学生的学成之的关系.(12.5,8.25),回直的回7.已知回直的斜率的估是 0.73,本点的中心方程是______________ .8.(2011 ·名月考茂 )在研究硝酸的可溶性程度,它在不一样温度的水中的溶解度,得果以下表:温度 (x)010205070溶解度 (y)66.776.085.0112.3128.0由此获取回直的斜率________.三、解答 (共 38 分 )9.(12 分 )(2011 威·海模 )某了定工定,需要确立加工部件所花的,此做了四次,获取的数据以下:部件的个数 x(个 )2345加工的 y(小 ) 2.534 4.5(1)在定的坐系中画出表中数据的散点;^^^(2)求出 y 对于 x 的回归方程 y= b x+a ,并在座标系中画出回归直线;(3)试展望加工10 个部件需要多少时间?n^∑ x i y i- n x y ^^(注: b =i= 1, a = y - b x )n∑ x i2- n x 2i =110. (12 分 )(2010 许·昌模拟 )某种产品的宣传费支出 x 与销售额 y(单位:万元 ) 之间有以下对应数据:x24568y3040605070(1)画出散点图;(2)求回归直线方程;(3)试展望宣传费支出为10 万元时,销售额多大?11. (14 分) 某公司上半年产品产量与单位成本资料以下:月份产量 (千件 )单位成本(元)127323723471437354696568(1)求出回归方程;(2)指出产量每增添 1 000 件时,单位成本均匀改动多少?(3)假定产量为 6 000 件时,单位成本为多少元?教案 58变量间的有关关系自主梳理1.(1)左下角右上角(2)左上角右下角 2.(1)距离的平方和最小n n∑ x i- x y i- y∑ x i y i- n x yi=1i=1(2)n n∑ x i- x 2∑ x i2- n x 2i= 1i= 1^y - b x自我检测1.D 2.C 3.D^7234.13正 5.y =4x+4讲堂活动区例 1 解题导引判断变量间能否线性有关,一种常用的简易可行的方法就是作散点图.散点图是由大批数据点分布组成的,是定义在拥有有关关系的两个变量基础之上的,对于性质不明确的两组数据可先作散点图,直观地剖析它们有没关系及关系的亲密程度.解 (1) 以 x 轴表示温度,以 y 轴表示热饮杯数,可作散点图,以下图.(2)从图中能够看出,各点分布在从左上角到右下角的地区里,所以,气温与热饮销售杯数之间是负有关关系,即气温越高,卖出去的热饮杯数越少.从散点图能够看出,这些点大概分布在一条直线邻近.变式迁徙1解以x轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图以以下图所示:由散点图可见,二者之间拥有有关关系.例 2 解题导引依据题目给出的数据,利用公式求回归系数,而后获取回归方程.解制表以下:i12345共计x i2345620y i 2.2 3.8 5.5 6.57.025x i y i 4.411.422.032.542.0112.3x i 2491625369055x = 4; y =5; ∑ x2i = 90;∑ x i y i =112.3i =1i =1^112.3- 5× 4×5于是有 b=2= 12.3= 1.23;^^90- 5× 410a = y -b x=5- 1.23×4= 0.08.^∴回归直线方程为 y = 1.23x + 0.08.变式迁徙 2解x = 1+ 2+ 3+4 54= 2,1+3+2+ 322= 7,y =4n4 ∑x i 2=12+ 22+ 32+ 42= 30,i =1n3+3× 2+ 4× 3= 43,∑x i y i =1× 1+ 2×i =1 n 22243- 4×5× 7^∑ x i y i -n x y∴b i =1= 22 4=n25 = 0.8,2 230- 4×∑= x i - n x4i 1^^5=- 0.25,a = y -b x =7- 0.8×42^∴ y = 0.8x -0.25.例 3 解题导引 利用描点法获取散点图,按求回归方程的步骤和公式,写出回归方程,最后对整体进行预计.利用回归方程能够进行展望,回归方程将部分观察值所反应的规律进行延长,是我们对有线性有关关系的两个变量进行剖析和控制,依照自变量的取值预计和预告因变量值的基础和依照,有宽泛的应用.解 (1) 散点图:(2) x = 3+4+ 5+ 6 =4.5, y = 2.5+ 3+ 4+ 4.5=3.5,4 4 4∑x i y i =3× 2.5+ 4× 3+ 5× 4+6× 4.5= 66.5.i =14 ∑x 2i =32+ 42+ 52+ 62= 86,i =14^∑i =1x i y i -4 x y ∴b = 4∑i =1x 2i - 4 x 266.5- 4× 4.5× 3.5=86- 4× 4.52=0.7,^^a = y -b x =3.5- 0.7× 4.5= 0.35.^∴所求的回归方程为 y = 0.7x + 0.35. (3)此刻生产 100 吨甲产品用煤^y = 0.7× 100+ 0.35=70.35,∴降低 90- 70.35= 19.65(吨标准煤 ). 变式迁徙 3 68 分析x = 10, y = 40,回归方程过点( x , y ),^^∴40=- 2× 10+ a .∴a = 60. ^∴ y =- 2x + 60.^令 x =- 4,y = (- 2)× (- 4)+ 60=68. 课后练习区1.D [依据线性回归的含义、方法、作用剖析这三个命题都是正确的. ]2.C[设(x 1, y 1), (x 2 ,y 2)在直线上,若 x 2=x 1+ 1,则 y 2- y 1= (2- 1.5x 2)- (2- 1.5x 1)= 1.5(x 1-x 2 )=- 1.5, y 均匀减少 1.5个单位. ]3.D [由于有关系数是表示两个变量能否拥有线性有关关系的一个值,它的绝对值越接近 1,两个变量的线性有关程度越强,所以 A 、B 错误. C 中 n 为偶数时,分布在 l 双侧的样本点的个数能够不同样,所以 C 错误.依据线性回归方程必定经过样本中心点可知D 正确.所以选 D .]4+ 2+ 3+5= 7, y = 49+ 26+ 39+ 544.B [∵x =44 = 42,2^^^7^ ^又y = b x +a 必过 ( x, y ) ,∴ 42= 2× 9.4+ a , ∴a = 9.1.^∴线性回归方程为 y = 9.4x + 9.1.^∴当x = 6 时, y = 9.4×6+ 9.1=65.5(万元 ). ]^^^^^5.A[回归直线方程为 y= b x +a.而 a = y - b x ,^^^^即a = t -b s , t = b s + a .∴(s ,t) 在回归直线上. ∴直线 l 1 和 l 2 必定有公共点 (s , t). ] 6.①② 分析①中学生的学习态度与学习成绩之间不是因果关系,但拥有有关性,是有关关系.②教师的执教水平与学生的学习成绩之间的关系是有关关系.③④都不具备有关关系.^7.y = 0.73x - 0.875^ ^分析 a = y - bx =8.25- 0.73× 12.5=- 0.875.8.0.880 9分析x = 30, y = 93.6,5 5∑x i 2=7 900, ∑x i y i = 17 035,i =1i = 1∴回归直线的斜率为5^∑ i i - 5 xy17 035- 5× 30× 93.6 i =1x yb =5= ≈0.880 9.∑x i 2- 5 x27 900- 4 500i = 19.解(1)散点图以下图.(4 分 )4 (2)由表中数据得 ∑x i y i = 52.5,i =14x = 3.5, y = 3.5, ∑x 2i =54,i =1 ^ ^^∴b = 0.7.∴a = y - b x = 1.05.^∴ y = 0.7x +1.05.回归直线如图中所示. (10 分 ) (3)将 x = 10 代入回归直线方程, 得 y = 0.7×10+ 1.05=8.05( 小时 ),∴展望加工 10 个部件需要 8.05 小时. (12 分 )10. 解 (1)依据表中所列数据可得散点图以下图:(4 分)25250(2)计算得: x = 5=5, y = 5 = 50,55∑ i2=145, ∑ i y i =1 380.i = 1xi =1x5- 5 xy^∑1 380- 5×5× 50i = 1x i y i,于是可得 b=522 = 5×5 2=6.5-5 x 145-∑ x i^^i =1a = y -b x =50- 6.5×5= 17.5,^所以,所求回归直线方程是 y = 6.5x + 17.5.(10 分 )^(3)由上边求得的回归直线方程可知,当宣传费支出为10 万元时, y = 6.5× 10+ 17.5=82.5(万元 ),即这类产品的销售大概为82.5 万元. (12 分 )6611. 解(1)n = 6, ∑x i = 21, ∑y i = 426, x = 3.5, y = 71,i =1i = 166∑x i 2=79, ∑x i y i = 1 481,i = 16i =1^∑ i i - 6 xy1 481- 6×3.5× 71i =1x yb =6i 2- 6 x 2 = 79- 6× 3.52≈-1.82.∑i = 1x(3 分)2016届《步步高》高考数学大一轮总复习(人教新课标文科)配套学案58变量间的相关关系]^^a= y - b x =71+ 1.82× 3.5= 77.37.(5 分 )^^^∴回归方程为 y = a +bx= 77.37-1.82x.(6 分 )^(2)由于单位成本均匀改动 b =- 1.82<0 ,且产量 x 的计量单位是千件,所以依据回归系数b 的意义有:产量每增添一个单位即 1 000 件时,单位成本均匀减少 1.82 元. (10 分)(3)当产量为 6 000 件时,即 x= 6,代入回归方程:^y = 77.37-1.82× 6=66.45(元 ).∴当产量为 6 000 件时,单位成本为66.45 元.(14 分)-11-。

【三维设计】2013高考数学总复习 课时跟踪检测52 圆锥曲线的综合问题(视情况选用)

【三维设计】2013高考数学总复习 课时跟踪检测52 圆锥曲线的综合问题(视情况选用)

课时跟踪检测(五十二) 圆锥曲线的综合问题(视情况选用)1.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ,·2PF ,的最小值为( )A .-2B .-8116C .1D .02.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条3.(2012·某某联考)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N (均在第一象限内),若FM ,=4MN ,,则双曲线的离心率为( )A.54B.53C.35D.454.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值X 围为________.6.(2013·某某月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.7.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.8.(2012·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C (m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC |=|BC |?并说明理由.9.(2012·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝ ⎛⎭⎪⎫16,0,某某数k 的取值X 围.1.(2012·某某模拟)已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM |,·|BM |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM |,+|BM |,的值,并写出曲线C 的方程; (2)求△APQ 的面积的最大值.2.(2012·某某模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e >12的椭圆E :x 2a 2+y2b 2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.[答 题 栏] A 级1._________2._________3._________4._________5. __________6. __________答 案课时跟踪检测(五十二)A 级1.A 2.B 3.B 4.D5.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值X 围为[2,2 2 ].答案:[2,2 2 ]6.解析:由⎩⎪⎨⎪⎧x -y =0,x 22+y 2=1,得3x 2=2,∴x =±63, ∴A ⎝⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫-63,-63, ∴|AB |=433.设点C (2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·sin(θ-φ)≤32, ∴S △ABC =12|AB |·d ≤12×433×32= 2.答案: 27.解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0. 则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b21+b 2.因为直线AB 的斜率为1, 所以|AB |=2|x 2-x 1|, 即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=41-b 21+b 22-41-2b 21+b2=8b 41+b22,解得b =22. 8.解:(1)∵⎩⎪⎨⎪⎧e =ca =22a +c =2+1,∴⎩⎨⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1. (2)由(1)得F (1,0),∴0≤m ≤1. 假设存在满足题意的直线l ,设l 的方程为y =k (x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k (x 1+x 2-2)=-2k2k 2+1.设AB 的中点为M ,则M ⎝ ⎛⎭⎪⎫2k22k 2+1,-k 2k 2+1.∵|AC |=|BC |,∴CM ⊥AB , 即k CM ·k AB =-1,∴k2k 2+1m -2k 22k 2+1·k =-1,即(1-2m )k 2=m . ∴当0≤m ≤12时,k =±m1-2m,即存在满足题意的直线l ; 当12≤m ≤1时,k 不存在,即不存在满足题意的直线l . 9.解:(1)设P (x 0,y 0),x 0≠±a ,则G ⎝ ⎛⎭⎪⎫x 03,y 03. 又设I (x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·⎪⎪⎪⎪⎪⎪y 03, ∴2c ·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2, ∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km )2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km 3+4k 2,则y 1+y 2=6m3+4k2, ∴线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.又线段AB 的垂直平分线l ′的方程为y =-1k ⎝ ⎛⎭⎪⎫x -16,点P 在直线l ′上, ∴3m 3+4k 2=-1k ⎝ ⎛⎭⎪⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k (4k 2+3),∴4k 2+3236k 2<4k 2+3,∴k 2>332,解得k >68或k <-68, ∴k 的取值X 围是-∞,-68∪⎝ ⎛⎭⎪⎫68,+∞. B 级1.解:(1)设M (x ,y ),在△MAB 中,|AB |,=2,∠AMB =2θ,根据余弦定理得|AM |,2+|BM |,2-2|AM |,·|BM |,cos 2θ=|AB |,2=4,即(|AM |,+|BM |,)2-2|AM |,·|BM |,·(1+cos 2θ)=4, 所以(|AM |,+|BM |,)2-4|AM |,| BM |,·cos 2θ=4. 因为|AM |,·|BM |,cos 2θ=3, 所以(|AM |,+|BM |,)2-4×3=4, 所以|AM |,+|BM |,=4.又|AM |,+|BM |,=4>2=|AB |,,因此点M 的轨迹是以A ,B 为焦点的椭圆(点M 在x 轴上也符合题意),设椭圆的方程为x 2a 2+y 2b2=1(a >b >0), 则a =2,c =1,所以b 2=a 2-c 2=3. 所以曲线C 的方程为x 24+y 23=1.(2)设直线PQ 的方程为x =my +1.由⎩⎪⎨⎪⎧x =my +1x 24+y23=1,消去x ,整理得(3m 2+4)y 2+6my -9=0.①显然方程①的判别式Δ=36m 2+36(3m 2+4)>0, 设P (x 1,y 1),Q (x 2,y 2),则△APQ 的面积S △APQ =12×2×|y 1-y 2|=|y 1-y 2|.由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=48×3m 2+33m 2+42.令t =3m 2+3, 则t ≥3,(y 1-y 2)2=48t +1t+2, 由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3,所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1. 2.解:(1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m )2+1=5, 即(3-m )2=4,解得m =1,或m =5. ∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k (x -4)+4,即kx -y -4k +4=0,若直线PF 1与圆C 相切,则 |k -0-4k +4|k 2+1= 5.∴4k 2-24k +11=0,解得k =112或k =12.当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=3+42+12+3-42+12=52+2=6 2.∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.设B (x 1,y 1),D (x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=4y 1+y 22-4y 1y 2=241013.。

【三维设计】2013届高考数学总复习(基础知识+高频考点+解题训练)第二章 对数与对数函数教学案(含

【三维设计】2013届高考数学总复习(基础知识+高频考点+解题训练)第二章 对数与对数函数教学案(含

第八节对数与对数函数[知识能否忆起]1.对数的概念 (1)对数的定义:如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.当a =10时叫常用对数.记作x =lg_N ,当a =e 时叫自然对数,记作x =ln_N .(2)对数的常用关系式(a ,b ,c ,d 均大于0且不等于1): ①log a 1=0. ②log a a =1.③对数恒等式:a log a N =N . ④换底公式:log a b =log c blog c a.推广log a b =1log b a ,log a b ·log b c ·log c d =log a d .(3)对数的运算法则:如果a >0,且a ≠1,M >0,N >0,那么: ①log a (M ·N )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log am M n =n mlog a M . 2.对数函数的概念(1)把y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)函数y =log a x (a >0,a ≠1)是指数函数y =a x的反函数,函数y =a x与y =log a x (a >0,a ≠1)的图象关于y =x 对称.3.对数函数的图象与性质y =log a x a >1 0<a <1图象性质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0当0<x <1时,y <0当x >1时,y <0当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数[小题能否全取]1.(教材习题改编)设A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y |y =⎝ ⎛⎭⎪⎫12x ,0<x <1,则A ∩B 为( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,1D .(0,2)解析:选C ∵A ={y |y >0},B =⎩⎨⎧⎭⎬⎫y |12<y <1,∴A ∩B =⎩⎨⎧⎭⎬⎫y |12<y <1.2.函数y =log a (3x -2)(a >0,a ≠1)的图象经过定点A ,则A 点坐标是( )A.⎝ ⎛⎭⎪⎫0,23 B.⎝ ⎛⎭⎪⎫23,0 C .(1,0)D .(0,1)解析:选C 当x =1时y =0. 3.函数y =lg |x |( )A .是偶函数,在区间(-∞,0)上单调递增B .是偶函数,在区间(-∞,0)上单调递减C .是奇函数,在区间(0,+∞)上单调递减D .是奇函数,在区间(0,+∞)上单调递增解析:选B y =lg |x |是偶函数,由图象知在(-∞,0)上单调递减,在(0,+∞)上单调递增.4.(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________.解析:由1-2log 6x ≥0,解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].答案:(0, 6 ]5.(2012·北京高考)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 解析:由f (ab )=1得ab =10,于是f (a 2)+f (b 2)=lg a 2+lg b 2=2(lg a +lg b )=2lg(ab )=2lg 10=2.答案:21.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n=n log a |M |(n ∈N *,且n 为偶数).2.对数值取正、负值的规律:当a >1且b >1,或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1,或0<a <1且b >1时,log a b <0. 3.对数函数的定义域及单调性:在对数式中,真数必须大于0,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.对数式的化简与求值典题导入[例1] 求解下列各题.(1)12lg 3249-43lg 8+lg 245=________; (2)若2a =5b=m ,且1a +1b=2,则m =________.[自主解答] (1)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12. (2)由2a=5b=m 得a =log 2m ,b =log 5m , ∴1a +1b =log m 2+log m 5=log m 10.∵1a +1b=2,∴log m 10=2,即m 2=10. 解得m =10(∵m >0). [答案] (1)12 (2)10由题悟法对数式的化简与求值的常用思路(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.以题试法1.化简:(1)lg 37+lg 70-lg 3-lg 23-lg 9+1;(2)⎝⎛⎭⎪⎫lg 4-lg 60lg 3+lg 53-45×2-11.解:(1)原式=lg 37×703-lg 23-2lg 3+1=lg 10-lg 3-12=1-|lg 3-1|=lg 3. (2)原式=⎝ ⎛⎭⎪⎫lg 4-lg 4+lg 15lg 153-210×2-11=⎝⎛⎭⎪⎫-lg 15lg 153-2-1=-32.对数函数的图象及应用典题导入[例2] (1)(2012·烟台调研)函数y =ln(1-x )的图象大致为( )(2)(2012·新课标全国卷)当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)[自主解答] (1)由1-x >0,知x <1,排除选项A 、B ;设t =1-x (x <1),因为t =1-x 为减函数,而y =ln t 为增函数,所以y =ln(1-x )为减函数,可排除D 选C.(2)法一:构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知,f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x>1,∴0<a <1,排除选项C ,D ;取a =12,x =12,则有412=2,log 1212=1,显然4x<log a x 不成立,排除选项A. [答案] (1)C (2)B若本例(2)变为:若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,实数a 的取值范围为________.解析:设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 图象的下方即可.当0<a <1时,显然不成立; 当a >1时,如图,要使x ∈(1,2)时f 1(x )=(x -1)2的图象在f 2(x )=log a x 的图象下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,又即log a 2≥1.所以1<a ≤2,即实数a 的取值范围是(1,2]. 答案:(1,2]由题悟法1.对一些可通过平移、对称变换能作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合求解.2.一些对数型方程、不等式问题的求解,常转化为相应函数图象问题,利用数形结合法求解.以题试法2.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则y =f (1-x )的大致图象是( )解析:选C 由题意可得f (1-x )=⎩⎪⎨⎪⎧31-x,x ≥0,log 131-x ,x <0,因此当x ≥0时,y =f (1-x )为减函数,且y >0;当x <0时,y =f (1-x )为增函数,且y <0.对数函数的性质及应用典题导入[例3] 已知函数f (x )=log 4(ax 2+2x +3). (1)若f (x )定义域为R ,求a 的取值范围; (2)若f (1)=1,求f (x )的单调区间;(3)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.[自主解答] (1)因为f (x )的定义域为R , 所以ax 2+2x +3>0对任意x ∈R 恒成立. 显然a =0时不合题意,从而必有⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,4-12a <0,解得a >13.即a 的取值范围是⎝ ⎛⎭⎪⎫13,+∞. (2)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,即函数定义域为(-1,3). 令g (x )=-x 2+2x +3.则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (3)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.由题悟法研究复合函数y =log a f (x )的单调性(最值)时,应先研究其定义域,分析复合的特点,结合函数u =f (x )及y =log a u 的单调性(最值)情况确定函数y =log a f (x )的单调性(最值)(其中a >0,且a ≠1).以题试法3.已知f (x )=log a (a x-1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.解:(1)由a x-1>0得a x >1,当a >1时,x >0; 当0<a <1时,x <0.∴当a >1时,f (x )的定义域为(0,+∞); 当0<a <1时,f (x )的定义域为(-∞,0). (2)当a >1时,设0<x 1<x 2,则1<ax 1<ax 2, 故0<ax 1-1<ax 2-1,∴log a (ax 1-1)<log a (ax 2-1). ∴f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数. 类似地,当0<a <1时,f (x )在(-∞,0)上为增函数.[典例] (2012·大纲全国卷)已知x =ln π,y = log 52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x[巧思妙解] 因为ln π>ln e =1,log 52<log 55=1,所以x >y .故排除A 、B ;又因为log 52<log 55=12,e -12=1e >12,所以z >y .故排除C.[答案] D——————[高手支招]———————————————————————————本题在比较三个数的大小时利用中间值,进行第一次比较时,中间值常选用的有0,1,由指数、对数式可知x >1,0<y <1,0<z <1,再进一步比较y 、z 的大小,其中对数log a N 的符号判定可简记为“同正异负”,即a 与N 同时大于1或同时大于0小于1,则log a N >0;反之,log a N <0.——————————————————————————————————————针对训练1.(2012·北京东城区综合练习)设a =log 123,b =⎝ ⎛⎭⎪⎫130.3,c =ln π,则( )A .a <b <cB .a <c <bC .c <a <bD .b <a <c解析:选A a =log 123<log 121=0,0<b =⎝ ⎛⎭⎪⎫130.3<⎝ ⎛⎭⎪⎫130=1,c =ln π>ln e=1,故a <b <c .2.设a =⎝ ⎛⎭⎪⎫320.1,b =ln sin 2 012π3,c =log 1312,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a解析:选B 因为函数y =⎝ ⎛⎭⎪⎫32x 为增函数,所以a =⎝ ⎛⎭⎪⎫320.1>⎝ ⎛⎭⎪⎫320=1;因为sin 2 012π3=sin ⎝ ⎛⎭⎪⎫670π+2π3=sin 2π3=32<1,函数y =ln x 为(0,+∞)上的增函数,所以ln sin 2 012π3=ln 32<ln 1=0;因为1>12>13,而函数y =log 13x 为(0,+∞)上的减函数,所以0=log 131<c =log 1312<log1313=1.所以b <0<c <1<a ,故选B.1.函数y =1-lg x +2的定义域为( )A .(0,8]B .(2,8]C .(-2,8]D .[8,+∞)解析:选C 由题意可知,1-lg(x +2)≥0,整理得lg(x +2)≤lg 10,则⎩⎪⎨⎪⎧x +2≤10,x +2>0,解得-2<x ≤8,故函数y =1-lg x +2的定义域为(-2,8].2.(2012·安徽高考)(log 29)·(log 34)=( ) A.14 B.12 C .2D .4解析:选D (log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.3.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2xB.12x C .log 12xD .2x -2解析:选A f (x )=log a x ,∵f (2)=1,∴log a 2=1.∴a =2. ∴f (x )=log 2x .4.(2011·天津高考)已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >cD .c >a >b解析:选B a =log 23.6=log 43.62=log 412.96,y =log 4x (x >0)是单调增函数,而3.2<3.6<12.96,∴a >c >b .5.(2013·安徽名校模拟)函数y =log 2|x |x的大致图象是( )解析:选C 由于log 2|-x |-x =-log 2|x |x ,所以函数y =log 2|x |x 是奇函数,其图象关于原点对称.当x >0时,对函数求导可知函数图象先增后减,结合选项可知选C.6.已知函数f (x )=log 12|x -1|,则下列结论正确的是( )A .f ⎝ ⎛⎭⎪⎫-12<f (0)<f (3)B .f (0)<f ⎝ ⎛⎭⎪⎫-12<f (3)C .f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0)D .f (3)<f (0)<f ⎝ ⎛⎭⎪⎫-12 解析:选C 依题意得f (3)=log 122=-1<0,log 122<f ⎝ ⎛⎭⎪⎫-12=log 1232<log 121,即-1<f ⎝ ⎛⎭⎪⎫-12<0,又f (0)=log 121=0,因此有f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0).7.(2012·长安一中质检)对任意的非零实数a ,b ,若a ⊗b =⎩⎪⎨⎪⎧b -1a,a <b ,a +1b ,a ≥b ,则lg 10 000⊗⎝ ⎛⎭⎪⎫12-2=________.解析:∵lg 10 000=lg 104=4,⎝ ⎛⎭⎪⎫12-2=4,∴lg 10 000⊗⎝ ⎛⎭⎪⎫12-2=4+14=54.答案:548.函数y =log 12(x 2-6x +17)的值域是________.解析:令t =x 2-6x +17=(x -3)2+8≥8,y =log 12t 为减函数,所以有log 12t ≤log 128=-3.答案:(-∞,-3]9.函数f (x )=log a x (a >1)在区间[a,2a ]上的最大值与最小值之差为12,则a 等于________.解析:∵a >1,∴f (x )=log a x 在[a,2a ]上为增函数. ∴log a 2a -log a a =12,解得a =4.答案:410.计算下列各式.(1)lg 25+lg 2·lg 50+(lg 2)2; (2)lg 32-lg 9+1·lg 27+lg 8-lg 1 000lg 0.3·lg 1.2.解:(1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=lg 32-2lg 3+1·⎝ ⎛⎭⎪⎫32lg 3+3lg 2-32lg 3-1·lg 3+2lg 2-1=1-lg 3·32lg 3+2lg 2-1lg 3-1·lg 3+2lg 2-1=-32.11.说明函数y =log 2|x +1|的图象,可由函数y =log 2x 的图象经过怎样的变换而得到.并由图象指出函数的单调区间.解:作出函数y =log 2x 的图象,再作其关于y 轴对称的图形得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的递减区间为(-∞,-1),递增区间为(-1,+∞).12.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1),且log 2f (x )<f (1). 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=(log 2a )2-log 2a +b .由已知得(log 2a )2-log 2a +b =b ,∴log 2a (log 2a -1)=0. ∵a ≠1,∴log 2a =1,即a =2. 又log 2f (a )=2,∴f (a )=4.∴a 2-a +b =4.∴b =4-a 2+a =2.故f (x )=x 2-x +2. 从而f (log 2x )=(log 2x )2-log 2x +2 =⎝⎛⎭⎪⎫log 2x -122+74. ∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意⎩⎪⎨⎪⎧log 2x 2-log 2x +2>2,log 2x 2-x +2<2⇒⎩⎪⎨⎪⎧x >2或0<x <1,-1<x <2⇒0<x <1.1.(2012·山西四校联考)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 28-x ,x ≤0,f x -1-f x -2,x >0,则f (3)的值为( ) A .1 B .2 C .-2D .-3解析:选D 依题意得f (3)=f (2)-f (1)=[f (1)-f (0)]-f (1)=-f (0)=-log 28=-3.2.已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x .设a =f ⎝ ⎛⎭⎪⎫65,b =f ⎝ ⎛⎭⎪⎫32,c =f ⎝ ⎛⎭⎪⎫52,则( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b解析:选D 已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x ,则a =f ⎝ ⎛⎭⎪⎫65=f ⎝ ⎛⎭⎪⎫-45=-f ⎝ ⎛⎭⎪⎫45=-lg 45>0,b =f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-lg 12>0,c =f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12=lg 12<0.又因为lg 45>lg 12,所以0<-lg 45<-lg 12.所以c <a <b .3.若函数f (x )=log a (x 2-ax +3)(a >0且a ≠1),满足对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 1)-f (x 2)>0,求实数a 的取值范围.解:因为对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 1)-f (x 2)>0,所以函数f (x )在⎝⎛⎦⎥⎤-∞,a 2上单调递减.令t =x 2-ax +3,则二次函数t =x 2-ax +3的对称轴为x =a2,其在⎝ ⎛⎦⎥⎤-∞,a 2上单调递减.由复合函数的单调性,可知y =log a x 为单调增函数,故a >1.由对数函数的定义域,可知在区间⎝⎛⎦⎥⎤-∞,a 2上,t >0恒成立,即x 2-ax +3>0在区间⎝ ⎛⎦⎥⎤-∞,a 2上恒成立.而函数t =x 2-ax +3在区间⎝ ⎛⎦⎥⎤-∞,a 2上的最小值为⎝ ⎛⎭⎪⎫a 22-a ×a 2+3=3-a 24.故3-a 24>0,解得|a |<2 3.综上可得a 的取值范围是(1,23).1.设函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,log 2-x ,x <0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C 当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1;当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以,m 的取值范围是(-1,0)∪(1,+∞).2.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则2a +b 的取值范围是( ) A .(22,+∞) B .[22,+∞) C .(3,+∞)D .[3,+∞)解析:选B 由于函数f (x )在区间(0,1]上单调递减,在区间[1,+∞)上单调递增,当0<a <b ,且f (a )=f (b )时,只能0<a <1,b >1,故f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b .由f (a )=f (b ),得-lg a =log b ,即lg(ab )=0,故ab =1.则2a +b ≥22ab =22,当且仅当2a =b ,即a =22,b =2时取等号. 3.化简:log 34273·log 5[412log 210-(33)23-7log 72]. 解:原式=log 33343·log 5[2log 210-(332)23-7log 72]=⎝ ⎛⎭⎪⎫34log 33-log 33·log 5(10-3-2)=⎝ ⎛⎭⎪⎫34-1·log 55=-14.4.(2012·上海徐汇二模)已知函数f (x )=3-2log 2x ,g (x )=log 2x . (1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,求实数k 的取值范围.解:(1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2]. 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (x )>k ·g (x )得(3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ; ②当t ∈(0,2]时,k <3-4t3-tt恒成立,即k <4t +9t-15恒成立,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3,即k ∈(-∞,-3).。

【三维设计】2013届高考数学总复习(基础知识+高频考点+解题训练)第十章数列教学案新人教A版

【三维设计】2013届高考数学总复习(基础知识+高频考点+解题训练)第十章数列教学案新人教A版

第三讲 数__列等差数列、等比数列的基本运算[ 例 1] (1)(2012 ·佛山教课质量检测 ) 设 { a n } 是公差不为 0 的等差数列, a 1= 2 且 a 1,3, 6 成等比数列,则 { a n } 的前 5 项和5等于()a aSA . 10B . 15C . 20D . 30分析:选 B设等差数列 { a n } 的公差为 d ( d ≠0) ,2则由 a 1,a 3, a 6 成等比数列知 a 3=a 1· a 6, 即 ( a 1+ 2d ) 2= a 1( a 1+ 5d ) .1又 a 1= 2,因此 d =2,因此5=51+ -× 1= 15.Sa2 2(2)(2012 ·太原市模拟 ) 已知等差数列 { a } ,首项 a 1>0, a 2 011 + a 2 012 >0, a 2 011 · a 2 012 <0,n则使数列 { a } 的前 n 项和 S >0 建立的最大正整数n 是 ()nnA . 2 011B . 2 012C . 4 023D . 4 022分析:选 D 由于 { a n } 是等差数列,且 a 1>0, a 2 011+ a 2 012>0, a 2 011· a 2 012<0,因此 a 2 011>0,a 2 012 <0.4 022= 4 022 a 1+ a 4 022 = 2 011( a 2 011 + a 2 012)>0 ,因此 S2S 4 023 =4 023a + a = 4 023 a 2 012 <0,14 0232故使n >0 建立的最大正整数 n = 4 022.S[ 方法总结 ] 等差、等比数列的基本运算,多考察“知三求二”问题, 常以选择、 填空题形式考察,解题时一是要抓住首项a 和公差 d ( 公比 q ) ,二是注意方程思想与整体思想的 1应用 .数列乞降[例 2] (2012 ·安徽第一次联考 n1 n + 1n *) 在数列 { a } 中, a = 2, a =4a - 3n + 1, n ∈ N . (1) 证明:数列 { n - } 是等比数列,并求数列 { n } 的通项公式;a nan(2) b n = a n - n ,数列 { b n } 的前 n 和 S n ,16求 : S n + b n > 9 .解: (1) 明:由a n +1= 4a n - 3n + 1,得 a n +1- ( n +1) = 4( a n - n ) , n ∈ N * ,又 a 1- 1= 1.∴数列 { a n - n } 是首1,4 公比的等比数列.n - 1n - 1∴ a n - n =1×4 , a n = 4 + n .nn(2) 由 (1) 可知 b n =a n - n = 4n - 1.11 1 1∴ S n = 1+2× 4+3× 42+⋯+ ( n -1) × 4n - 2+n × 4n - 1.11 1 1 14S n =1× 4+2× 42+⋯+ ( n -1) × 4n - 1+ n × 4n ,相减得3 1 111n=1+ +2+⋯+n - 1- × n4S444n44 11=3 1-4- n × 4,n161nn - 1n1-n∴S = 94 -3×4 ,16 16 1nn∴ S n + b n = 9 - 9 × 4n -3×4n - 1+ 4n -1161 n - 12 - 4= 9+3×4·n3.4∵ n ≥1,∴ 2n - 3>0,16∴ S n + b n > .9[ 方法 ] 数列乞降主要在解答 中考 , 多考 分 化乞降、 位相减乞降及裂乞降, 解决此 要注意依据通 的 构特点灵巧地 乞降方法, 注意分 思想的 用 .数列的 合 用[ 例 3] 已知数列 {2 n -1·a n } 的前 n 和 S n = 9-6n .(1) 求数列 { a n } 的通 公式;n3- log 2 | a n |, 数列1nnm(2)b = n ·3 b n 的前 n 和 T,求使 T <6恒建立的 m 的最小整数 .解: (1) n = 1 , 2 · a 1= S 1= 3,当 n ≥2 , 2n -1· a n = S n -S n - 1=- 6,- 3即 a n = 2n - 2.3 , n = 1,a n =3- 2n - 2, n ≥2.(2) 当 n = 1 , b 1= 3- log 21= 3,1 1即T 1==; b 1 33= n ·(n + 1) ,n3- log 2n - 2当 n ≥2 , b = n ·3·211即 b n =n n +,n= 1 + 1 +⋯+ 1Tb 1b 2b n1 1 + 1 1= + +⋯+n n +3 2×3 3×4 1 1 1+⋯+ 1 1= + -3- n + 13 2n 515= 6-n + 1<6,m故使 T n <6恒建立的 m 的最小整数 5.[ 方法 ]等差数列与等比数列、 数列与函数、 数列与不等式、 数列与概率和数列的用等知 交 点的 合 是近几年高考的要点和 点,此 在客 和解答中都有所体 , 度不一, 求解此 的主要方法是利用 化与化 的思想,依据所学数列知 及 目特点,结构出解 所需的条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(五十八) 变量间的相关关系 统计案例1.(2012·佛山模拟)已知某车间加工零件的个数x 与所花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工600个零件大约需要的时间为( )A .6.5 hB .5.5 hC .3.5 hD .0.3 h 2.(2013·衡阳联考)已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程y =2.1x +0.85,则m 的值为( ) A .1 B .0.85 C .0.7 D .0.53.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为7,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” 4.已知x 、y 的取值如下表:从所得的散点图分析,y 与x 线性相关,且y =0.95x +a ,则a ^=( ) A .2.5 B .2.6 C .2.7 D .2.85.(2012·湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不.正确的是( ) A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg6.(2013·合肥检测)由数据(x 1,y 1),(x 2,y 2),…,(x 10,y 10)求得线性回归方程y ^=b^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.(2012·唐山模拟)考古学家通过始祖鸟化石标本发现:其股骨长度x (cm)与肱骨长度y (cm)的线性回归方程为y ^=1.197x -3.660,由此估计,当股骨长度为50 cm 时,肱骨长度的估计值为________ cm.8.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K 2的观测值k =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关)9.(2012·宁夏模拟)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y =bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.10.已知x ,y 的一组数据如下表:(1)从x ,y (2)对于表中数据,甲、乙两同学给出的拟合直线分别为y =13x +1与y =12x +12,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.11.(2012·东北三省联考)某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯; (2)根据以上数据完成下列2×2的列联表:(3)能否有99% 12.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如下表:(1)(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.1.某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,所得数据如下表:12则y 对x 的线性回归直线方程为( ) A.y ^=2.3x -0.7 B.y ^=2.3x +0.7 C.y ^=0.7x -2.3D.y ^=0.7x +2.32.(2012·东北三校联考)某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则有________的把握认为“学生性别与是否支持该活动有关系”.附:2.7063.某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照北京暴雨前后两个时间收集有效投票,暴雨后的投票收集了50份,暴雨前的投票也收集了50份,所得统计结果如下表:已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为25.(1)求列联表中的数据x ,y ,A ,B 的值;(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?(3)能够有多大把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关?附:K 2=n ad -bc 2a +bc +d a +c b +d答 案课时跟踪检测(六十八)A 级1.A 2.D 3.C 4.B5.选D 由于回归直线的斜率为正值,故y 与x 具有正的线性相关关系,选项A 中的结论正确;回归直线过样本点的中心,选项B 中的结论正确;根据回归直线斜率的意义易知选项C 中的结论正确;由于回归分析得出的是估计值,故选项D 中的结论不正确.6.选B x 0,y 0为这10组数据的平均值,又因为回归直线y ^=b ^x +a ^必过样本中心点(x ,y ),因此(x 0,y 0)一定满足线性回归方程,但坐标满足线性回归方程的点不一定是(x ,y ).7.解析:根据回归方程y ^=1.197x -3.660,将x =50代入,得y =56.19,则肱骨长度的估计值为56.19 cm.答案:56.198.解析:由观测值k =27.63与临界值比较,我们有99%的把握说打鼾与患心脏病有关. 答案:有关9.解析:x =10,y =40,回归方程过点(x ,y ), ∴40=-2×10+a . ∴a =60.∴y ^=-2x +60.令x =-4,∴y ^=(-2)×(-4)+60=68. 答案:6810.解:(1)从x ,y 中各取一个数组成数对(x ,y ),共有25对,其中满足x +y ≥10的有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5),共9对.故所求概率P =925.(2)用y =13x +1作为拟合直线时,所得y 值与y 的实际值的差的平方和为S 1=⎝ ⎛⎭⎪⎫43-12+(2-2)2+(3-3)2+⎝ ⎛⎭⎪⎫103-42+⎝ ⎛⎭⎪⎫113-52=73.用y =12x +12作为拟合直线时,所得y 值与y 的实际值的差的平方和为S 2=(1-1)2+(2-2)2+⎝ ⎛⎭⎪⎫72-32+(4-4)2+⎝ ⎛⎭⎪⎫92-52=12.∵S 2<S 1,∴直线y =12x +12的拟合程度更好.11.解:(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主. (2)(3)K 2=308-128212×18×20×10=30×120×12012×18×20×10=10>6.635,有99%的把握认为亲属的饮食习惯与年龄有关.12.解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为y ^=b ^x +a ^.则b ^=∑x =15x i -xy i -y -∑x =15x i -x2=1020=0.5,a ^=y -b ^x -=0.4, ∴年推销金额y 关于工作年限x 的线性回归方程为y ^=0.5x +0.4. (3)由(2)可知,当x =11时, y ^=0.5x +0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.B 级1.选C ∵∑i =14x i y i =6×2+8×3+10×5+12×6=158,x =6+8+10+124=9,y =2+3+5+64=4.∴b ^=158-4×9×436+64+100+144-4×81=0.7,a ^=4-0.7×9=-2.3.故线性回归直线方程为y ^=0.7x -2.3.2.解析:因为7.069与附表中的6.635最接近(且大于6.635),所以得到的统计学结论是:有99%的把握认为“学生性别与是否支持该活动有关系”.答案:99%3.解:(1)设“从所有投票中抽取一个,取到不支持投入的投票”为事件A , 由已知得P (A )=y +30100=25,所以y =10,B =40,x =40,A =60. (2)由(1)知北京暴雨后支持为4050=45,不支持率为1-45=15,北京暴雨前支持率为2050=25,不支持率为1-25=35.条形统计图如图所示,由图可以看出暴雨影响到民众对加大修建城市地下排水设施的投入的态度.(3)K 2=10030×40-20×10250×50×40×60=1000 00050×20×60=503≈16.78>10.828.故至少有99.9%的把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关.。

相关文档
最新文档