一次函数与平面直角坐标系测试卷

合集下载

专题07 平面直角坐标系与一次函数-2022年中考数学真题分项汇编(全国通用)(第2期)(原卷版)

专题07 平面直角坐标系与一次函数-2022年中考数学真题分项汇编(全国通用)(第2期)(原卷版)

专题07 平面直角坐标系与一次函数一.选择题1.(2022·四川雅安)在平面直角坐标系中,点(a +2,2)关于原点的对称点为(4,﹣b ),则ab 的值为( ) A .﹣4 B .4 C .12 D .﹣122.(2022·广东)水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( )A .2是变量B .π是变量C .r 是变量D .C 是常量3.(2022·山东威海)如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN ∥PQ ,则点N 的坐标可能是( )A .(2,3)B .(3,3)C .(4,2)D .(5,1)4.(2022·黑龙江绥化)小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A .2.7分钟B .2.8分钟C .3分钟D .3.2分钟5.(2022·黑龙江大庆)平面直角坐标系中,点M 在y 轴的非负半轴上运动,点N 在x 轴上运动,满足8OM ON +=.点Q 为线段MN 的中点,则点Q 运动路径的长为( )A .4πB .C .8πD .6.(2022·湖南长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是( )A .(5,1)-B .(5,1)-C .(1,5)D .(5,1)--7.(2022·黑龙江齐齐哈尔)如图①所示(图中各角均为直角),动点Р从点A 出发,以每秒1个单位长度的速度沿A →B →C →D →E 路线匀速运动,△AFP 的面积y 随点Р运动的时间x (秒)之间的函数关系图象如图②所示,下列说法正确的是( )A .AF =5B .AB =4C .DE =3D .EF =88.(2022·广西梧州)如图,在平面直角坐标系中,直线2y x b =+与直线36y x =-+相交于点A ,则关于x ,y 的二元一次方程组236y x b y x =+⎧⎨=-+⎩的解是( )A .20x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .19x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩9.(2022·贵州毕节)现代物流的高速发展,为乡村振兴提供了良好条件,某物流公司的汽车行驶30km 后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h 到达目的地.汽车行驶的时间x (单位:h )与行驶的路程y (单位:km )之间的关系如图所示,请结合图象,判断以下说法正确的是( )A .汽车在高速路上行驶了2.5hB .汽车在高速路上行驶的路程是180kmC .汽车在高速路上行驶的平均速度是72km/hD .汽车在乡村道路上行驶的平均速度是40km/h10.(2022·湖北武汉)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形的面积为1S ,小正方形与大正方形重叠部分的面积为2S ,若12S S S =-,则S 随t 变化的函数图象大致为( )A .B .C .D .11.(2022·内蒙古包头)在一次函数()50y ax b a =-+≠中,y 的值随x 值的增大而增大,且0ab >,则点(,)A a b 在( )A .第四象限B .第三象限C .第二象限D .第一象限12.(2022·湖北宜昌)如图是小强散步过程中所走的路程s (单位:m )与步行时间t (单位:min )的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为( )A .50m/minB .40m/minC .200m/min 7D .20m/min13.(2022·广东)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .()1,1-14.(2022·湖南永州)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动、师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校、设师生队伍离学校的距离为y 米,离校的时间为x 分钟,则下列图象能大致反映y 与x 关系的是( )A .B .C .D .15.(2022·广西玉林)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x 表示兔子和乌龟从起点出发所走的时间,12,y y 分别表示兔子与乌龟所走的路程).下列说法错误..的是( )A .兔子和乌龟比赛路程是500米B .中途,兔子比乌龟多休息了35分钟C .兔子比乌龟多走了50米D .比赛结果,兔子比乌龟早5分钟到达终点16.(2022·山东烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s (米)与时间t (秒)的关系图像如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为( )A .12B .16C .20D .2417.(2022·山东聊城)如图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点()2,0C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为( )A .53,22E ⎛⎫- ⎪⎝⎭,()0,2F B .()2,2E -,()0,2F C .53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭ D .()2,2E -,20,3F ⎛⎫ ⎪⎝⎭18.(2022·湖北随州)已知张强家、体育场、文具店在同一直线上.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离.则下列结论不正确的是( )A .张强从家到体育场用了15minB .体育场离文具店1.5kmC .张强在文具店停留了20minD .张强从文具店回家用了35min19.(2022·贵州铜仁)如图,在矩形ABCD 中,(3,2),(3,2),(3,1)--A B C ,则D 的坐标为( )A .(2,1)--B .(4,)1-C .(3,2)--D .(3,1)--20.(2022·北京)下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ;③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x ,其中,变量y 与变量x 之间的函数关系可以利用如图所示的图象表示的是( )A .①②B .①③C .②③D .①②③21.(2022·贵州遵义)遵义市某天的气温1y (单位:△)随时间t (单位:h )的变化如图所示,设2y 表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则2y与t的函数图象大致是()A.B.C.D.22.(2022·四川雅安)一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是()A.B.C.D.23.(2022·湖北鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b(k、b为常数,且k<0)的图象与直线y=13x都经过点A(3,1),当kx+b<13x时,x的取值范围是()A .x >3B .x <3C .x <1D .x >124.(2022·四川广安)在平面直角坐标系中,将函数y =3x +2的图象向下平移3个单位长度,所得的函数的解析式是( )A .y =3x +5B .y =3x ﹣5C .y =3x +1D .y =3x ﹣125.(2022·湖北恩施)图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A 的压强P (单位:cmHg )与其离水面的深度h (单位:m )的函数解析式为0P kh P =+,其图象如图2所示,其中0P 为青海湖水面大气压强,k 为常数且0k ≠.根据图中信息分析........(结果保留一位小数),下列结论正确的是( )A .青海湖水深16.4m 处的压强为188.6cmHgB .青海湖水面大气压强为76.0cmHgC .函数解析式0P kh P =+中自变量h 的取值范围是0h ≥D .P 与h 的函数解析式为59.81076P h =⨯+26.(2022·贵州遵义)若一次函数()31y k x =+-的函数值y 随x 的增大而减小,则k 值可能是( ) A .2 B .32 C .12- D .4-27.(2022·黑龙江哈尔滨)一辆汽车油箱中剩余的油量(L)y 与已行驶的路程(km)x 的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L 时,那么该汽车已行驶的路程为( )A.150km B.165km C.125km D.350km28.(2022·重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时29.(2022·湖北武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.P 所在象限是()30.(2022·四川乐山)点(1,2)A.第一象限B.第二象限C.第三象限D.第四象限31.(2022·浙江温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟,下列选项中的图像,能近似刻画s与t之间关系的是()A .B .C .D .32.(2022·四川泸州)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,且tan ∠ABE =43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A .3y x =B .31542y x =-+ C .211y x =-+ D .212y x =-+ 二.填空题33.(2022·黑龙江大庆)在函数y =x 的取值范围是_________.34.(2022·广西梧州)在平面直角坐标系中,请写出直线2y x =上的一个点的坐标________. 35.(2022·贵州毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点1(1,1)A ;把点1A 向上平移2个单位,再向左平移2个单位,得到点2(1,3)A -;把点2A 向下平移3个单位,再向左平移3个单位,得到点3(4,0)A -;把点3A 向下平移4个单位,再向右平移4个单位,得到点4(0,4)A -;…;按此做法进行下去,则点10A 的坐标为_________.36.(2022·江苏泰州)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为__________.37.(2022·江苏泰州)一次函数2y ax =+的图像经过点(1,0).当y >0时,x 的取值范围是__________. 38.(2022·内蒙古赤峰)已知王强家、体育场、学校在同一直线上,下面的图像反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x 表示时间,y 表示王强离家的距离.则下列结论正确的是_________.(填写所有正确结论的序号)①体育场离王强家2.5km ②王强在体育场锻炼了30min③王强吃早餐用了20min ④王强骑自行车的平均速度是0.2km/min39.(2022·上海)已知f (x )=3x ,则f (1)=_____.40.(2022·湖北鄂州)中国象棋文化历史久远.某校开展了以“纵横之间有智意 攻防转换有乐趣”为主题的中国象棋文化节,如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是_____.41.(2022·黑龙江大庆)写出一个过点(0,1)D 且y 随x 增大而减小的一次函数关系式_______.42.(2022·江苏无锡)请写出一个函数的表达式,使其图像分别与x 轴的负半轴、y 轴的正半轴相交:________. 43.(2022·湖南永州)已知一次函数1y x =+的图象经过点()m,2,则m =______.44.(2022·山东烟台)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 _____.45.(2022·江苏苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为______.46.(2022·黑龙江齐齐哈尔)如图,直线:l y x =+x 轴相交于点A ,与y 轴相交于点B ,过点B 作1BC l ⊥交x 轴于点1C ,过点1C 作11B C x ⊥轴交l 于点1B ,过点1B 作12B C l ⊥交x 轴于点2C ,过点2C 作22B C x ⊥轴交l 于点2B …,按照如此规律操作下去,则点2022B 的纵坐标是______.47.(2022·四川广安)若点P (m +1,m )在第四象限,则点Q (﹣3,m +2)在第________象限. 48.(2022·吉林)如图,在平面直角坐标系中,点A 的坐标为(2,0)-,点B 在y 轴正半轴上,以点B 为圆心,BA 长为半径作弧,交x 轴正半轴于点C ,则点C 的坐标为__________.49.(2022·辽宁锦州)点()()1122,,,A x y B x y 在一次函数(2)1y a x =-+的图像上,当12x x >时,12y y <,则a 的取值范围是____________.50.(2022·湖南郴州)科技小组为了验证某电路的电压U (V )、电流I (A )、电阻()R Ω三者之间的关系:U I R=,测得数据如下:那么,当电阻55R =Ω时,电流I =________A .三.解答题51.(2022·湖北鄂州)在“看图说故事”话动中,某学习小组设计了一个问题情境:小明从家跑步去体育场,在那里锻炼了一阵后又走到文具店买圆规,然后散步走回家.小明离家的距离y (km )与他所用的时间x (min )的关系如图所示:(1)小明家离体育场的距离为 km ,小明跑步的平均速度为 km/min ;(2)当15≤x ≤45时,请直接写出y 关于x 的函数表达式;(3)当小明离家2km 时,求他离开家所用的时间.52.(2022·黑龙江齐齐哈尔)在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A 地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图像解答下列问题:(1)A、B两地之间的距离是米,乙的步行速度是米/分;(2)图中a= ,b= ,c= ;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)53.(2022·黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是_______km/h,乙车出发时速度是_______km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.54.(2022·内蒙古包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y (单位:千克)与x 之间的函数关系式为12010,203201016,x x y x x ≤≤⎧=⎨-+<≤⎩()()草莓价格m (单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当412x ≤≤时,草莓价格m 与x 之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?56.(2022·广东)物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足函数关系15y kx =+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量.57.(2022·河北)如图,平面直角坐标系中,线段AB 的端点为()8,19A -,()6,5B .(1)求AB 所在直线的解析式;(2)某同学设计了一个动画:在函数()0,0y mx n m y =+≠≥中,分别输入m 和n 的值,使得到射线CD ,其中(),0C c .当c =2时,会从C 处弹出一个光点P ,并沿CD 飞行;当2c ≠时,只发出射线而无光点弹出.①若有光点P 弹出,试推算m ,n 应满足的数量关系;②当有光点P 弹出,并击中线段AB 上的整点(横、纵坐标都是整数)时,线段AB 就会发光,求此时整数m 的个数.58.(2022·吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (△)与加热时间(s)x 之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 △;(2)求乙壶中水温y 关于加热时间x 的函数解析式;(3)当甲壶中水温刚达到80△时,乙壶中水温是 △.59.(2022·黑龙江牡丹江)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了___小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?60.(2022·贵州铜仁)在平面直角坐标系内有三点A(−1,4)、B(−3,2)、C(0,6).(1)求过其中两点的直线的函数表达式(选一种情形作答);(2)判断A、B、C三点是否在同一直线上,并说明理由.61.(2022·黑龙江牡丹江)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.62.(2022·上海)一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos△ABC的值.。

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试题(有答案解析)(4)

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试题(有答案解析)(4)

一、选择题1.一次函数()0y kx b k =+≠在平面直角坐标系内的图像如图所示,则k 和b 的取值范围是( )A .0k >,0b >B .0k <,0b <C .0k <,0b >D .0k >,0b < 2.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( )A .B .C .D . 3.如图①,点P 为矩形ABCD 边上一个动点,运动路线是A →B →C →D →A ,设点P 运动的路径长为x ,S △ABP =y ,图②是y 随x 变化的函数图象,则矩形对角线AC 的长是( )A .25B .6C .12D .24 4.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 5.如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE 6.在平面直角坐标系中,解析式为31y x =+的直线a ,解析式为3y x =的直线b ,如图所示,直线a 交y 轴于点A ,以OA 为边作一个等边三角形OAB ∆,过点B 作y 轴的平行线交直线a 于点1A ,以1A B 为第二个等边三角形11A BB ∆,…顺次这样做下去,第2020个等边三角形的边长是( )A .20192B .20202C .4038D .40407.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限8.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D . 9.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .10.下列函数中y 随x 的增大而增大,且图象与x 轴交点在y 轴左侧的是( ) A .21y x =- B .21y x =+ C .21y x =-+ D .21y x =-- 11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④ 12.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( )A .2B .0C .-1D .-2二、填空题13.已知平面直角坐标系中A .B 两点坐标如图,若PQ 是一条在x 轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q 的坐标___.14.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________.15.函数y =2x x-中,自变量x 的取值范围是_____. 16.将直线y =2x 向下平移3个单位长度得到的直线解析式为_____.17.将直线y =x 沿y 轴正方向平移2个单位后过点(1,a ﹣2),则a =_____. 18.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s 与t 之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).19.某网约车的收费标准为:起步价为15元,里程费为2.5元/千米,若该网约车行驶距离为x 千米,总费用y 与x 之间的函数关系式为_____________(总费用=起步价+里程费 ) 20.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.三、解答题21.如图,等腰Rt AOB △在平面直角坐标系xOy 上,90,4B OA ∠=︒=.点C 从原点O 出发,以每秒1个单位的速度沿x 轴的正方向运动,过点C 作直线l OA ⊥,直线l 与射线OB 相交于点N .(1)点B 的坐标为____________;(2)点C 的运动时间是t 秒.①当24t 时,AOB 在直线l 右侧部分的图形的面积为S ,求S (用含t 的式子表示);②当0t >时,点M 在直线l 上且ABM 是以AB 为底的等腰三角形,若32CN CM =,求t 的值.22.纺织厂生产某种产品,每件出厂价定为80元,每件的成本是60元,由于在生产过程中平均每生产一件此种产品,就会有0.5立方米的污水排出,为了保护环境,工厂需要对污水净化处理后才能排出.已知处理1立方米污水的费用为2元,另外每月排污设备物资损耗为8000元.设该厂每月生产此产品x 件(0x >且x 是整数),每月获得纯利润y 元.(纯利润=总收人-总支出)(1)求出y 与x 之间的函数表达式;(2)如果该厂本月获得的纯利润是106000元,请求出该厂在本月生产此产品的件数. 23.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y (元)与销售量x (千克)之间的关系如图所示.(1)求降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?24.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B 港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A 港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A 港的距离y 与行驶时间x 之间的函数关系式;(4)甲船拖拽的小艇与A 港的距离和经历的时间之间的函数图像如图2所示,求点C 的坐标.25.如图,在平面直角坐标系中,已知点A 的坐标为(12,0)-,点B 的坐标为(3,0),点C 在y 轴的正半轴上,连接,AC BC ,有90ACB ︒∠=.(1)求点C 的坐标;(2)求ACB ∠的平分线所在直线l 的表达式;(3)若P 为直线l 上的点,连接,PB PC ,若12PBC ACB S S ∆=,求点P 的坐标.26.如图,已知直线2y kx =+与直线3y x =交于点(1,)A m ,与y 轴交于点B .(1)求k 和m 的值;(2)求AOB 的周长;(3)设直线y n =与直线2y kx =+,3y x =及y 轴有三个不同的交点,且其中两点关于第三点对称,求出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据一次函数的图象和性质判断即可.【详解】解:∵一次函数y=kx+b (k≠0)在平面直角坐标系内的图象过第一、二、三象限, ∴k >0,b >0,故选:A .【点睛】本题主要考查了一次函数的图象与系数之间的关系,关键是掌握数形结合思想. 2.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.又∵1>0,∴一次函数y=x﹣k的图象经过第一、三、四象限.故选:B.【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.3.A解析:A【分析】根据题意易得AB+BC=6,当点P运动到C点时三角形ABP的面积为4,故而可求出AB、BC 的长,进而求出AC.【详解】解:由图像及题意可得:AB+BC=6,当点P运动到C点时三角形ABP的面积为4,即1=42ABPS AB BC⋅=,∴AB=2,BC=4,在Rt ABC中,AC==;故选A.【点睛】本题主要考查函数与几何,关键是根据图像得到动点的运动路程,然后利用勾股定理求解线段的长即可.4.D解析:D【分析】设直线AB的解析式为y=kx+b,根据平移时k的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB 的解析式为:y=-2x+6,故选:D .【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变. 5.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y 随x 的变化的趋势,从而可以判断哪个选项是正确的.【详解】A 、由图1可知,若线段BE 是y ,则y 随x 的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A 的距离是BA ,在点C 时的距离是BC ,BA <BC ,故选项A 错误;B 、由图1可知,若线段EF 是y ,则y 随x 的增大越来越小,故选项B 错误;C 、由图1可知,若线段CE 是y ,则y 随x 的增大越来越小,故选项C 错误;D 、由图1可知,若线段DE 是y ,则y 随x 的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A 的距离是DA ,在点C 时的距离是DC ,DA >DC ,故选项D 正确;故选D .【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.6.A解析:A【分析】延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,根据等边三角形的性质得OA=OD ,A 1B=BB 1,A 2B 1=B 2B 1,直线OB 的解析式为3y x =,得出∠BOD=30°,由直线a :1y =+得出第一个等边三角形边长为1,由30°角的性质得BD=12,由勾股定理得代入求得A 1的纵坐标,即可求得第二个等边三角形的边长,…,按照此规律得到第三个、第四个等边三角形的边长,从而求得第2020个等边三角形的边长.【详解】解:延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,如图,∵△OAB、△BA1B1、△B1A2B2均为等边三角形,∴OA=OD,A1B=BB1,A2B1=B2B1,∵直线OB的解析式为3,∴∠BOD=30°,由直线a:3可知OA=1,∴OB=1,∴BD=12,∴22112⎛⎫- ⎪⎝⎭=32,把33得y=52,∴A1D=52,∴A1B=2,∴BB1=A1B=2,∴OB1=3,∴B1E=32,∴22332⎛⎫- ⎪⎝⎭33,把333得y=112,∴A2E=112,∴A2B1=4,同理得到A3B2=23,…,按照此规律得到第2020个等边三角形的边长为22019,故选A .【点睛】本题考查了图形类规律探究、一次函数图象上点的坐标特征、等边三角形的性质,含30°角的直角三角形的性质,以及勾股定理等知识,找出第n 个等边三角形的边长为2n-1是解题的关键.7.A解析:A【详解】解:设正比例函数解析式(0)y kx k =≠,∵正比例函数过(2,3)-,∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称,∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的.故选A .8.D解析:D【分析】求出小汽车在AB 、BC 上运动时,MQ 的表达式即可求解.【详解】解:设小汽车所在的点为点Q ,①当点Q 在AB 上运动时,AQ=t ,则MQ 2=MA 2+AQ 2=1+t 2,即MQ 2为开口向上的抛物线,则MQ 为曲线,②当点Q 在BC 上运动时,同理可得:MQ 2=22+(1-t+2)2=4+(3-t )2,MQ 为曲线;故选:D .【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.10.B解析:B【分析】根据一次函数的性质和各个选项中的函数解析式,可以判断哪个选项中的函数y随x的增大而增大,且图象与x轴交点在y轴左侧,本题得以解决.【详解】解:函数y=2x-1,y随x的增大而增大,与x轴的交点是(0.5,0),在y轴右侧,故选项A不符题意;函数y=2x+1,y随x的增大而增大,与x轴的交点是(-0.5,0),在y轴左侧,故选项B 符题意;函数y=-2x+1,y随x的增大而减小,与x轴的交点是(0.5,0),在y轴右侧,故选项C 不符题意;函数y=-2x-1,y随x的增大而减小,与x轴的交点是(-0.5,0),在y轴左侧,故选项D 不符题意;故选:B.【点睛】本题考查了一次函数的性质,解题的关键是明确题意,利用一次函数的性质解答.11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.二、填空题13.(0);【分析】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此时的值最小求出直线的解析式即可解决问题【详解】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此解析:(197,0); 【分析】 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题.【详解】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =, ∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫⎪⎝⎭. 【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型. 14.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.15.x≥2【分析】根据被开方数大于等于0分母不等于0列式进行计算即可得解【详解】解:根据题意得x ﹣2≥0且x≠0解得x≥2且x≠0所以自变量x 的取值范围是x≥2故答案为x ≥2【点睛】本题考查的知识点为:解析:x ≥2.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.故答案为x ≥2.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 16.【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y 2x 向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b 而言:上下移动解析:23y x =-.【分析】根据直线的平移规律“上加下减,左加右减”求解即可.【详解】解:直线y =2x 向下平移3个单位长度得到的直线解析式为23y x =-.【点睛】本题考查了直线的平移变换. 直线平移变换的规律是:对直线y=kx+b 而言:上下移动,上加下减;左右移动,左加右减.例如,直线y=kx+b 如上移3个单位,得y=kx+b +3;如下移3个单位,得y=kx+b -3;如左移3个单位,得y=k (x +3)+b ;如右移3个单位,得y=k (x -3)+b .掌握其中变与不变的规律是解决直线平移变换问题的基本方法.17.5【分析】根据平移规律可得直线y =x 沿y 轴正方向平移2个单位后得y =x+2然后把(1a ﹣2)代入即可求出a 的值【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x+2根据题意将(1a ﹣2)代入解析:5【分析】根据平移规律可得,直线y =x 沿y 轴正方向平移2个单位后得y =x +2,然后把(1,a ﹣2)代入即可求出a 的值.【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x +2,根据题意,将(1,a ﹣2)代入,得:1+2=a ﹣2,解得:a =5,故答案为:5.【点睛】此题主要考查了坐标与图形变化-平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.18.①②④【分析】根据函数图象可知小明40分钟爬山2800米40~60分钟休息60~100分钟爬山(3800-2800)米爬山的总路程为3800米根据路程速度时间之间的关系进行解答即可【详解】解:①小明解析:①②④【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800-2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.【详解】解:①小明中途休息的时间是:60-40=20分钟,故本选项正确;②小明休息前爬山的速度为28007040=(米/分钟),故本选项正确;③小明在上述过程中所走路程为3800米,故本选项错误;’④因为小明休息后爬山的速度是380028002510060-=-(米/分钟),所以小明休息前爬山的平均速度大于小明休息前后爬山的平均速度,故本选项正确;故答案为①②④.【点睛】本题考查的知识点是函数图象,解题关键是从图象中获取必要的信息.19.【分析】根据乘车费用=起步价+里程费得出【详解】解:依题意有:故答案为:【点睛】根据题意找到所求量的等量关系是解决问题的关键本题乘车费用=起步价+里程费解析:15 2.5xy=+【分析】根据乘车费用=起步价+里程费得出.【详解】解:依题意有:15 2.5xy=+.故答案为:15 2.5xy=+.【点睛】根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+里程费.20.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm其中一边长为xcm∴另一边长为:(12-x)cm∵长方形面积为∴y与x的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.三、解答题21.(1)(2,2);(2)①21(4)2S t =-;②t =6或65t =. 【分析】(1)过B 点作BD ⊥OA 于点D ,根据等腰直角三角形的性质即可求得OD 与BD 的长度,从而可求得B 点的坐标;(2)①证明△ACM 为等腰直角三角形,再由三角形的面积公式求得结果;②过AB 的中点D ,作线段AB 的垂直平分线DE ,求出直线OB 与DE 的解析式,再用t 表示C 、M 、N 的坐标,进而用t 表示CN 与CM ,根据已知条件32CN CM =,列出t 的方程进行解答便可.【详解】解:(1)过B 点作BD ⊥OA 于点D ,如图1,∵∠OBA =90°,OB =AB ,OA =4.∴122BD OD AD OA ====, ∴B (2,2),故答案为(2,2);(2)①当2≤t ≤4时,如图2,则AC =OA -OC =4-t ,∵∠OBA =90°,OB =AB ,∴∠OAB =45°,∵直线l ⊥OA ,∴∠ACM =90°,∴∠AMC =45°=∠CAM ,∴AC =CM =4-t , ∴21(4)2ACM S S t ∆==-; ②过AB 的中点D ,作线段AB 的垂直平分线DE ,如图3,∵△ABM 是以AB 为底的等腰三角形,∴MA =MB ,∴点M 在直线DE 上,∵点M 在直线l 上,∴点M 为直线l 与直线DE 的交点,设直线OB 的解析式为y =kx (k ≠0),由(1)知,B (2,2),∴2=2k ,∴k =1,∴直线OB 的解析式为:y =x ,∵∠ABO =∠ADM =90°,∴DE ∥OB ,∴设直线DE 的解析式为y =x +n ,∵A (4,0),B (2,2),D 为AB 的中点,∴D (3,1),把D (3,1)代入y =x +n 中,得1=3+n ,∴n =-2,∴直线DE 的解析式为:y =x -2,∵OC =t ,∴C (t ,0),N (t ,t ),M (t ,t -2), ∵32CN CM =,t >0 ∴3|2|2t t =-, ∴3(2)2t t =-,或3(2)2t t =-, 解得,t =6,或65t =. 【点睛】 本题主要考查了点的坐标,待定系数法,求函数的解析式,等腰直角三角形的性质,三角形的面积公式,难度不大,第(3)题关键是求出AB 的垂直平分线的解析式和正确列出t 的方程.22.(1)y =19x−8000(x >0且x 是整数);(2)这个月该厂生产产品6000件.【分析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量−产品的成本价×产品的数量−生产过程中的污水处理费−排污设备的损耗.可根据此等量关系来列出总利润与产品数量之间的函数关系式.(2)根据(1)中得出的式子,将y 的值代入其中,求出x 即可.【详解】解:(1)依题意得:y =80x−60x−2×0.5x−8000,化简得:y =19x−8000.∴函数关系式为y =19x−8000(x >0且x 是整数);(2)当y =106000时,代入得:106000=19x−8000,解得:x =6000.答:这个月该厂生产产品6000件.【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.23.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.24.(1)6/km h ;(2)3km ;(3)19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2 【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h .(2)甲船在逆流中行驶的路程为6(2.52)3()km ⨯-=.(3)设甲船顺流的速度为/akm h , 由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km .∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.25.(1)C (0,6);(2)36y x =+;(3)(3,3)P --或(3,15)P【分析】(1)设点C 的坐标为(0,)(0)c c >,根据勾股定理分别用c 表示出,,AC BC AB ,列出关于c 的方程即可求解;(2)设l 与x 轴交于点D ,过点D 作DE BC ⊥于点E ,设BD m =,在等腰直角三角形CDE 中,CE DE =,通过1122BCD S BD CO BC DE =⋅=⋅△将,CE DE 用m 的代数式表示出来,在Rt DBE 中,根据勾股定理将BE 表示出来,最后根据CE BE BC +=列方程求解;(3)分两种情况:点P 在CD 的延长线上或DC 的延长线上,①取AB 的中点F ,连接CF ,过点F 作1//FP BC 交CD 于点1P ,点1P 就是所要求作的点,利用待定系数法求出点1P 的坐标;②在线段DC 的延长线上取点2P ,使得点21P C PC =,2P 即是所求作的点,写出2P 的坐标,据此答案为1P ,2P 的坐标即为所求.【详解】解:(1)设点C 的坐标为(0,)(0)c c >(12,0),(3,0)A B -12,3,15OA OB AB ∴===在Rt AOC 中,222AC AO CO =+在Rt BOC 中,222BC BO CO =+在Rt ABC △中,222AB AC BC =+22222AO CO BO CO AB ∴+++=,即2222212315,6c c c +++=∴=∴点C 的坐标是(0,6)(2)如图,设直线l 交x 轴于点D ,过点D 作DE BC ⊥于点E ,设DB 的长为m 12,3,6,OA OB OC ===15,65,35AB AC BC ∴===1122BCD S BD CO BC DE =⋅=⋅ 25635,5m DE DE ∴=∴= 又在Rt DBE 中,222BD DE BE =+,即222255,55m m BE BE m ⎛⎫=+∴= ⎪ ⎪⎝⎭由题意,在Rt DEC △中,45DCE ︒∠=,于是25CE DE ==由CE BE BC +=,即2553555m m +=5m = 又由||||OA OB >,知点D 在线段OA 上,||3OB =||2OD ∴=,故点(2,0)D -设直线l 的解析式为y kx b =+,把(0,6)C 和(2,0)D -代入得620b k b =⎧⎨-+=⎩ 解得:36k b =⎧⎨=⎩故直线l 的表达式为36y x =+(3)①取AB 的中点( 4.5,0)F -,过点F 作BC 的平行线交直线l 于点1P ,连接CF易知112P BC FBC ACB S S S ==∴点1P 为符合题意的点()()3,0,0,6B C∴ 直线BC 的表达式为26y x =-+直线1P F 可由直线BC 向左平移152个单位得到 ∴直线1P F 的表达式为15262y x ⎛⎫=-++ ⎪⎝⎭,即29y x =-+ 由2936y x y x =-+⎧⎨=+⎩解得33x y =-⎧⎨=-⎩ ∴点1(3,3)P --②在直线l 上取点2P ,使21P C PC =此时有1212P BC P BC ACB S S S ==∴点2P 符合题意由21P C PC =,可得点2P 的坐标为(3,15) ∴点(3,3)P --或(3,15)P 可使12PBC ACB S S =【点睛】本题考查了坐标系内点的坐标问题,用待定系数法求一次函数的解析式,一次函数的平移,勾股定理及三角形面积问题等知识,用待定系数法,勾股定理是解此题的关键. 26.(1)1k =,3m =;(2)AOB 的周长是2210++3)n 的值是125或6或32. 【分析】(1)把A(1,m)代入3y x =求得m 的值,再把m 的值代入2y kx =+求得k 的值即可; (2)先求得点B 的坐标,过点A 作AC y ⊥轴于点C ,利用勾股定理分别求得OB 、OA 、AB 的长,即可求解;(3)设直线y n =与直线2y x =+,3y x =及y 轴分别交于点1P ,2P ,3P ,分三种情况讨论即可求解.【详解】(1)∵直线2y kx =+与直线3y x =交于点A(1,m),∴3m =,2m kx =+,∴1k =;(2)∵直线2y x =+与y 轴交于点B ,∴B (0,2),∴OB=2,过点A 作AC y ⊥轴于点C .(1,3)A ,1AC ∴=,3OC =,321BC ∴=-=,在Rt ABC △中,222AB AC BC ∴=+= 在Rt AOC 中,22221310OA AC OC =+=+=.AOB ∴的周长是2210++(3)设直线y n =与直线2y x =+,3y x =及y 轴分别交于点1P ,2P ,3P ,则有1(2,)n P n -,2,3nP n ⎫⎛ ⎪⎝⎭,3(0,)P n . ①当1P 在2P ,3P 中间时,则有2131P P P P =,(2)23n n n ∴--=-.解得125n =. ②当2P 在1P ,3P 中间时,则有1232PP P P =,(2)33n n n ∴--=.解得6n =.③当3P 在1P ,2P 中间时,则有1323PP P P =,0(2)3n n ∴--=.解得32n =. n ∴的值是125或6或32. 【点睛】 本题考查了两条直线相交的问题,解题的关键是利用图象求解,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系,学会用分类讨论的思想思考并解决问题.。

2023年中考数学考点专项复习提升测试卷——平面直角坐标系与一次函数

2023年中考数学考点专项复习提升测试卷——平面直角坐标系与一次函数

考点专项复习提升测试卷——平面直角坐标系与一次函数(时间:60分钟分数:100分)姓名:班级:学号:分数:一、选择题(本题共8小题,共40分)1.(2022·内蒙古包头)在一次函数()50y ax b a =-+≠中,y 的值随x 值的增大而增大,且0ab >,则点(,)A a b 在()A.第四象限B.第三象限C.第二象限D.第一象限2.(2022·天津)如图,△OAB 的顶点O (0,0),顶点A ,B 分别在第一、四象限,且AB ⊥x 轴,若AB =6,OA =OB =5,则点A 的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)3.如图,()8,0A ,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为()A.()0,5B.()5,0C.()6,0D.()0,64.(2022·黑龙江大庆)平面直角坐标系中,点M 在y 轴的非负半轴上运动,点N 在x 轴上运动,满足8OM ON +=.点Q 为线段MN 的中点,则点Q 运动路径的长为()A.4πB.C.8πD.5.一次函数y=-2x-1的图象大致是()A.B.C.D.6.如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为()A.12y x =B.y x =C.32y x =D.2y x=7.(2021·广东广州)在平面直角坐标系xOy 中,矩形OABC 的点A 在函数()10y x x =>的图象上,点C 在函数()40y x x=-<的图象上,若点B 的横坐标为72-,则点A 的坐标为()A.1,22⎛⎫ ⎪⎝⎭B.222⎝C.12,2⎛⎫ ⎪⎝⎭D.22,2⎭8.如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为()A.1x ≤B.1≥x C.1x <D.1x >二、填空题(本题共5小题,每空3分,共15分)9.(2021·四川成都)在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3,P k 在第______象限.10.(2021·江苏扬州市·中考真题)如图,一次函数2y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为.11.(2020•南京)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,所得到的图象对应的函数表达式是.12.在平面直角坐标系中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d,则点P (3,-3)到直线2533y x =-+的距离为__________.13.过点(-1,7)的一条直线与x 轴,y 轴分别相交于点A,B,且与直线3y x 12=-+平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是.三、解答题(本题共3小题,共45分)14.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?15.(2021·湖北宜昌)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,如果一次购买4kg 以上的苹果,超过4kg 的部分按标价6折售卖.x (单位:kg )表示购买苹果的重量,y (单位:元)表示付款金额.(1)文文购买3kg苹果需付款___________元,购买5kg苹果需付款____________元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?16.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?参考答案:1.B2.D3.D4.B5.D6.D7.A8.A9.一+11.y =1x +212.8131313.(1,4),(3,1)14.(1)设y 与t 的函数解析式为y =kt +b ,=1002+=380,解得,=140=100,即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.∴甲进水口进水的速度是乙进水口进水速度的34,∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(341)×34=60(m 3/h ),480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .15.(1)由题意:31030⨯=(元);()41054100.646⨯+-⨯⨯=(元);故答案为:30元,46元;(2)当04x ≤≤时,10y x =,当4x ≥时,设y kx b =+,将()4,40,()5,46代入解析式解得6k =,16b =,∴616y x =+,(3)当10x =时,6101676y =⨯+=甲,101080%80y =⨯⨯=乙,∵7680<,∴甲超市比乙超市划算.16.解:(1)设每千克花生的售价为(x -40)元,每千克的茶叶售价为x 元,由题意得:()504010x x -=,解得:50x =,∴花生每千克的售价为50-40=10元;答:每千克花生的售价为10元,每千克的茶叶售价为50元(2)设茶叶销售了m 千克,则花生销售了(60-m )千克,所获得利润为w 元,由题意得:()660361260602m m m m ⎧-+≤⎨-≤⎩,解得:2030m ≤≤,∴()()()10660503610240w m m m =--+-=+,∵10>0,∴w 随m 的增大而增大,∴当m =30时,w 有最大值,最大值为1030240540w =⨯+=;答:当花生销售30千克,茶叶也销售30千克时可获得最大利润,最大利润为540元.。

人教版九年级下册数学自主复习9平面直角坐标系与一次函数练习(1)

人教版九年级下册数学自主复习9平面直角坐标系与一次函数练习(1)

9.平面直角坐标系与一次函数(七下第七章、八下第十九章)知识回顾1.各象限内点的坐标特征,象限内点(m ,n)的坐标特征为: 第一象限(+,+),即m>0,n>0; 第二象限(-,+),即m<0,n>0; 第三象限(-,-),即m<0,n<0; 第四象限(+,-),即m>0,n<0. 反之亦成立. 2.在一般的函数关系中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含算术平方根:被开方数≥0;(4)函数关系式含0指数:底数≠0.3.直线y =kx +b 由直线y =kx 平移|b|个单位长度得到,当b>0时,向上平移;当b<0时,向下平移.4.一次函数的性质:一次函数y =kx +b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.5.直线y =kx +b(k ≠0)中,k ,b 决定着直线的位置. ①k>0,b>0⇔直线经过第一、二、三象限; ②k>0,b<0⇔直线经过第一、三、四象限; ③k<0,b>0⇔直线经过第一、二、四象限; ④k<0,b<0⇔直线经过第二、三、四象限.6.用待定系数法确定一次函数〖解 析〗式的一般步骤是:(1)根据已知条件设含有待定系数的函数关系式;(2)将x ,y 的对应值或图象上的点的坐标代入〖解 析〗式中,得到以待定系数为未知数的方程(组);(3)解方程(组)求出未知的待定系数的值;(4)将求出的待定系数代回所设函数关系式中.7.对于一次函数y =kx +b ,它与x 轴的交点为(-bk ,0).当k>0时,不等式kx +b>0的解集为x>-b k ,不等式kx +b<0的解集为x<-b k ;当k<0时,不等式kx +b>0的解集为x<-bk ,不等式kx +b<0的解集为x>-bk.达标练习1.在平面直角坐标系中,点A(2,-3)所在象限为(D) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.(恩施中考)函数y =1x -2+x -2的自变量x 的取值范围是(B)A .x ≥2B .x >2C .x ≠2D .x ≤23.(成都中考)一次函数y =2x +1的图象不经过 (D) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.(遂宁中考)直线y =2x -4与y 轴的交点坐标是(D)A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)5.一次函数y =kx +b(k ≠0)的图象如图所示,当y>0时,x 的取值范围是(C)A .x <0B .x >0C .x <2D .x >26.一次函数y =x -1的图象向上平移2个单位长度后,不经过(D) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.如图,矩形ABCD 中,AB =1,BC =2,点P 从点B 出发,沿B →C →D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是(C)8.已知一次函数y =kx +b 的图象经过A(1,-1),B(-1,3)两点,则k <0.(填“>”或“<”) 9.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是20升.10.(凉山中考)已知函数y =2x2a +b+a +2b 是正比例函数,则a =23,b =-13.11.如图,直线y =kx +b 经过A(3,1)和B(6,0)两点,则不等式0<kx +b <13x 的解集为3<x <6.12.(绍兴中考)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数关系如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间? (2)小敏几点几分返回到家?解:(1)小敏去超市途中的速度是3 000÷10=300(米/分). 在超市逗留的时间为40-10=30(分). (2)3 000÷3 000-2 00045-40=15(分),40+15=55(分).∴小敏8点55分返回到家.13.为响应国家节能减排的号召,鼓励市民节约用电,我市从2014年7月1日起,居民用电实行“一户一表”的阶梯电价,分三个档次收费,第一档是用电量不超过180千瓦时时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如折线图所示,请根据图象回答下列问题:(1)当用电量为180千瓦时时,电费是108元;(2)第二档的用电量范围是大于180千瓦时小于或等于450千瓦时; (3)“基本电价”是0.6元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?解:∵328.5>283.5,∴他家本月用电量超过450千瓦时.设直线BC 的〖解 析〗式为y =kx +b ,则⎩⎪⎨⎪⎧283.5=450k +b ,364.5=540k +b.解得⎩⎪⎨⎪⎧k =0.9,b =-121.5. ∴直线BC 的〖解 析〗式为y =0.9x -121.5. 当y =328.5时,328.5=0.9x -121.5. 解得x =500.∴小明家这个月用电500千瓦时.14.(甘孜中考)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)(1)如果甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱,请你计算出经销商能盈利多少元;(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少. 解:(1)经销商能盈利:5×11+5×17+5×9+5×13=5×50=250(元).(2)设甲店配A 种水果x 箱,则甲店配B 种水果(10-x)箱,乙店配A 种水果(10-x)箱,乙店配B 种水果x 箱.∵9×(10-x)+13x ≥100,∴x ≥212.经销商盈利为w =11x +17(10-x)+9(10-x)+13x =-2x +260. ∵-2<0,∴w 随x 增大而减小.∴当x =3时,w 值最大,w 最大=-2×3+260=254.∴甲店配A 种水果3箱,B 种水果7箱,乙店配A 种水果7箱,B 种水果3箱,盈利最大,最大盈利为254元.。

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.一次函数y=x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(0,3)C.(3,0)D.(﹣3,0)2.如图,直线y=−x+4与坐标轴交于A、B两点,点C为坐标平面内一点BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是()A.2√2+12B.2√2−12C.1D.2√23.如图在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x,y轴分别交于A、B,且l1∥ l2,OA=2,则线段OB的长为()A.3B.4C.2√2D.2√34.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x−4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.14B.12C.34D.15.已知一次函数的图象与y=2x+3平行,且过点(4,2),则该一次函数与坐标轴围成图形的面积为()A.6B.9C.12D.186.如图,已知直线y=−13x+√10与与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.对于一次函数y=−x−2,下列说法错误的是()A.图象不经过第一象限B.图象与y轴的交点坐标为(0,−2)C.图象可由直线y=−x向下平移2个单位长度得到D.若点(−1,y1),(4,y2)在一次函数y=−x−2的图象上,则y1<y28.若一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=3B.x=0C.x=﹣2D.x=﹣39.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 √3与x轴、y轴分别交于A,B,∥OAB=30°,点P在x轴上,∥P与l相切,当P在线段OA上运动时,使得∥P成为整圆的点P个数是()A.6B.8C.10D.1210.一次函数y=ax+b交x轴于点(-5,0),则关于x的方程ax+b=0的解是() A.x=5B.x=-5C.x=0D.无法求解11.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,-2)12.下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.在直角坐标系xOy中,若直线y=x+4a-12与y轴的交点在x轴上方,则a的取值范围.14.函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.15.如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB 上的点,且∥OPC=45°,PC=PO,则点P的坐标为.16.如果一次函数y=kx+4与两坐标轴围成的三角形面积为4,则k=.17.如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴交于点A,与y轴交于点B,将∥AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.18.如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为.三、综合题(共6题;共54分)19.如图,直线y=2x+1与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求直线BP的函数关系式.20.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B′折痕为CE.直线CE的关系式是y=−12x+8,与x轴相交于点F,且AE=3.(1)OC=,OF=;(2)求点B′的坐标;(3)求矩形ABCO的面积.21.已知一次函数y=kx+b的图象经过点(0,1)和(1,-2)。

2019年、2020年山东省中考试题分类数学(6)——坐标系与一次函数(含答案)

2019年、2020年山东省中考试题分类数学(6)——坐标系与一次函数(含答案)

2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数一.点的坐标(共1小题)1.(2020•滨州)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)二.规律型:点的坐标(共1小题)2.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)三.坐标确定位置(共1小题)3.(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A 型地砖,则正整数m,n须满足的条件是.四.坐标与图形性质(共1小题)4.(2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.五.函数自变量的取值范围(共1小题)5.(2020•菏泽)函数y=√x−2x−5的自变量x的取值范围是()A.x≠5B.x>2且x≠5C.x≥2D.x≥2且x≠5六.函数值(共1小题)6.(2020•烟台)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.七.函数的图象(共1小题)7.(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.八.动点问题的函数图象(共2小题)8.(2020•东营)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12B.8C.10D.13 9.(2020•淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.48九.函数的表示方法(共1小题)10.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…一十.一次函数的性质(共1小题)11.(2019•临沂)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>−bk时,y>0一十一.一次函数图象与系数的关系(共1小题)12.(2020•东营)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).一十二.一次函数图象上点的坐标特征(共3小题)13.(2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4B.y=x+4C.y=x+8D.y=﹣x+814.(2020•临沂)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.15.(2019•泰安)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n 个正方形对角线长的和是.一十三.一次函数与一元一次方程(共1小题)16.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y =ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15一十四.一次函数与一元一次不等式(共2小题)17.(2019•烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.18.(2019•滨州)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为.一十五.两条直线相交或平行问题(共2小题)19.(2019•东营)如图,在平面直角坐标系中,函数y=√33x和y=−√3x的图象分别为直线l1,l2,过l1上的点A1(1,√33)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.20.(2020•滨州)如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△P AB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.一十六.一次函数的应用(共11小题)21.(2019•东营)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢22.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30 23.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.24.(2020•东营)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本 12 4 售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.25.(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A ,B 两种型号的口罩9000只,共获利润5000元,其中A ,B 两种型号口罩所获利润之比为2:3.已知每只B 型口罩的销售利润是A 型口罩的1.2倍. (1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B 型口罩的进货量不超过A 型口罩的1.5倍,设购进A 型口罩m 只,这10000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?26.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?27.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.28.(2020•德州)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?29.(2019•临沂)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x 表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.30.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.31.(2019•德州)下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为;若选择方式B最省钱,则月通话时间x的取值范围为;若选择方式C最省钱,则月通话时间x的取值范围为;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数参考答案与试题解析一.点的坐标(共1小题)1.【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.二.规律型:点的坐标(共1小题)2.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.三.坐标确定位置(共1小题)3.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数.故答案为m、n同为奇数或m、n同为偶数.四.坐标与图形性质(共1小题)4.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA=√22+12=√5,∵OB=1,∴AB=√5−1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为√5−1,故答案为:√5−1.五.函数自变量的取值范围(共1小题)5.【解答】解:由题意得x﹣2≥0且x﹣5≠0,解得x≥2且x≠5.故选:D.六.函数值(共1小题)6.【解答】解:∵﹣3<﹣1,把x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.七.函数的图象(共1小题)7.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,综上所述,A选项符合题意.故选:A.八.动点问题的函数图象(共2小题)8.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP ⊥AB ,根据图2点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP =√132−122=5.所以AB =2AP =10.故选:C .9.【解答】解:由图2知,AB =BC =10,当BP ⊥AC 时,y 的值最小,即△ABC 中,AC 边上的高为8(即此时BP =8),当y =8时,PC =√BC 2−BP 2=√102−82=6,△ABC 的面积=12×AC ×BP =12×8×12=48, 故选:D .九.函数的表示方法(共1小题)10.【解答】解:根据表中y 与x 的数据设函数关系式为:y =ax 2+bx +c ,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴{a +b +c =4a −b +c =0c =3,解得{a =−1b =2c =3,∴函数表达式为y =﹣x 2+2x +3.当x =3时,代入y =﹣x 2+2x +3=0,∴(3,0)也适合所求得的函数关系式.故答案为:y =﹣x 2+2x +3.一十.一次函数的性质(共1小题)11.【解答】解:∵y =kx +b (k <0,b >0),∴图象经过第一、二、四象限,A 正确;∵k <0,∴y 随x 的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=−b k,当x>−bk时,y<0;D不正确;故选:D.一十一.一次函数图象与系数的关系(共1小题)12.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,{−1=k+b3=−k+b,解得:k=﹣2,b=1,∴k<0,解法二:由A(1,﹣1)、B(﹣1,3)可知,随着x的减小,y反而增大,所以有k<0.故答案为:<.一十二.一次函数图象上点的坐标特征(共3小题)13.【解答】解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.14.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−12<2,∴m<n.故答案为m<n.15.【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:√2(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=√2(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:√2×(2n﹣1),故答案为:√2(2n﹣1),一十三.一次函数与一元一次方程(共1小题)16.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴方程x+5=ax+b的解为x=20.故选:A.一十四.一次函数与一元一次不等式(共2小题)17.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x +2≤ax +c 的解为x ≤1;故答案为x ≤1;18.【解答】解:∵正比例函数y =13x 也经过点A ,∴kx +b <13x 的解集为x >3,故答案为:x >3.一十五.两条直线相交或平行问题(共2小题)19.【解答】解:由题意可得,A 1(1,√33),A 2(1,−√3),A 3(﹣3,−√3),A 4(﹣3,3√3),A 5(9,3√3),A 6(9,﹣9√3),…,可得A 2n +1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A 2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.20.【解答】解:(1)由{y =−12x −1y =−2x +2解得{x =2y =−2, ∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x +2中,令y =0,则−12x ﹣1=0与﹣2x +2=0, 解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △P AB =12AB ⋅|y P |=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.一十六.一次函数的应用(共11小题)21.【解答】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误; 故选:C .22.【解答】解:设甲仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 1=k 1x +40,根据题意得60k 1+40=400,解得k 1=6,∴y 1=6x +40;设乙仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 2=k 2x +240,根据题意得60k 2+240=0,解得k 2=﹣4,∴y 2=﹣4x +240,联立{y =6x +40y =−4x +240,解得{x =20y =160, ∴此刻的时间为9:20.故选:B .23.【解答】解:设当x >120时,l 2对应的函数解析式为y =kx +b ,{120k +b =480160k +b =720,得{k =6b =−240, 即当x >120时,l 2对应的函数解析式为y =6x ﹣240,当x =150时,y =6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m 3),故小雨家去年用水量为150m 3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m 3,若今年用水量与去年相同,水费将比去年多210元, 故答案为:210.24.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x 万只和y 万只,由题意可得:{18x +6y =300x +y =20, 解得:{x =15y =5,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a 万只和(20﹣a )万只,利润为w 万元,由题意可得:12a +4(20﹣a )≤216,∴a ≤17,∵w =(18﹣12)a +(6﹣4)(20﹣a )=4a +40是一次函数,w 随a 的增大而增大, ∴a =17时,w 有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.25.【解答】解:设销售A 型口罩x 只,销售B 型口罩y 只,根据题意得:{x +y =90002000x ×1.2=3000y,解得{x =4000y =5000, 经检验,x =4000,y =5000是原方程组的解,∴每只A 型口罩的销售利润为:20004000=0.5(元),每只B 型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A 型口罩和B 型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W =0.5m +0.6(10000﹣m )=﹣0.1m +6000,10000﹣m ≤1.5m ,解得m ≥4000,∵﹣0.1<0,∴W 随m 的增大而减小,∵m 为正整数,∴当m =4000时,W 取最大值,则﹣0.1×4000+6000=5600,即药店购进A 型口罩4000只、B 型口罩6000只,才能使销售总利润最大,最大利润为5600元.26.【解答】解:(1)设y 与t 的函数解析式为y =kt +b ,{b =1002k +b =380, 解得,{k =140b =100, 即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍. ∴甲进水口进水的速度是乙进水口进水速度的34, ∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/h ), 480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .27.【解答】解:(1)设这一批树苗平均每棵的价格是x 元,根据题意列方程,得: 6300.9x −6001.2x =10,解这个方程,得x =20,经检验,x =20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A 种树苗每棵的价格为:20×0.9=18(元),B 种树苗每棵的价格为:20×1.2=24(元),设购进A 种树苗t 棵,这批树苗的费用为w 元,则:w =18t +24(5500﹣t )=﹣6t +132000,∵w 是t 的一次函数,k =﹣6<0,∴w 随t 的增大而减小,又∵t ≤3500,∴当t =3500棵时,w 最小,此时,B 种树苗有:5500﹣3500=2000(棵),w =﹣6×3500+132000=111000,答:购进A 种树苗3500棵,B 种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.28.【解答】解:(1)设超市B 型画笔单价为a 元,则A 型画笔单价为(a ﹣2)元. 根据题意得,60a−2=100a ,解得a =5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y={4.5x(1≤x≤20)4x+10(x>20)(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.29.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得{b=148k+b=18解得:k=12,b=14,y与x的关系式为:y=12x+14,经验证(2,15),(4,16),(6,17)都满足y=12x+14因此放水前y与x的关系式为:y=12x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:y=144x.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=12x+14 (0<x<8)和y=144x.(x>8)(3)当y=6时,6=144x,解得:x=24,因此预计24h水位达到6m.30.【解答】解:(1)由图可得,小王的速度为:30÷3=10km /h ,小李的速度为:(30﹣10×1)÷1=20km /h ,答:小王和小李的速度分别是10km /h 、20km /h ;(2)小李从乙地到甲地用的时间为:30÷20=1.5h ,当小李到达甲地时,两人之间的距离为:10×1.5=15km ,∴点C 的坐标为(1.5,15),设线段BC 所表示的y 与x 之间的函数解析式为y =kx +b ,{k +b =01.5k +b =15,得{k =30b =−30, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5).31.【解答】解:(1)∵0.1元/min =6元/h ,∴由题意可得,y 1={30(0≤x ≤25)6x −120(x >25), y 2={50(0≤x ≤50)6x −250(x >50), y 3=100(x ≥0);(2)作出函数图象如图:结合图象可得:若选择方式A 最省钱,则月通话时间x 的取值范围为:0≤x <853, 若选择方式B 最省钱,则月通话时间x 的取值范围为:853<x <1753, 若选择方式C 最省钱,则月通话时间x 的取值范围为:x >1753. 故答案为:0≤x <853,853<x <1753,x >1753. (3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长, ∴结合图象可得:小张选择的是方式A ,小王选择的是方式B ,将y =80分别代入y 2={50(0≤x ≤50)6x −250(x >50),可得 6x ﹣250=80,解得:x =55,∴小王该月的通话时间为55小时.。

(常考题)人教版初中数学八年级数学下册第四单元《一次函数》测试题(包含答案解析)(4)

(常考题)人教版初中数学八年级数学下册第四单元《一次函数》测试题(包含答案解析)(4)

一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 3.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,1)C .(0,103)D .(0,2) 4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .7.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2B .3C .4D .5 8.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定 9.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D . 10.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 2 3 4 ······ 应交电费y (元) 0.55 1.1 1.65 2.2 ······下列说法:①x 与y 都是变量,且x 是自变量,y 是x 的函数;②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( )A .4个B .3个C .2个D .1个 11.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量 12.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-二、填空题13.如图,直线1:22l y x =-+交x 轴于点A ,交y 轴于点B ,直线21:12y l x =+交x 轴于点D ,交y 轴于点C ,直线1l 、2l 交于点M .(1)点M 坐标为________;(2)若点E 在y 轴上,且BME 是以BM 为一腰的等腰三角形,则E 点坐标为________.14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)15.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.16.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.17.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 18.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.19.已知一次函数12y kx k =-(k 是常数)和21y x =-+.(1)无论k 取何值,12y kx k =-(k 是常数)的图像都经过同一个点,则这个点的坐标是_______;(2)若无论x 取何值,12y y >,则k 的值是_______.20.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题21.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.已知点(2,﹣4)在正比例函数y =kx 的图象上.(1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.24.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.25.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.26.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,在Rt ACD △中,30CAD ∠=︒,2AC CD =,所以()22BC AC BC CD +=+,因为BC CD BE +≥,求出BE 的长可求出2BC AC +的最小值.【详解】解:∵一次函数=y x 分别交x 轴、y 轴于A 、B 两点,∴()3,0A ,(B ,3,OA OB ∴==∴AB ==, ∵在Rt AOB 中,12OB AB =, 30BAO ∴∠=︒,作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,30PAO ∴∠=︒ ,60BAE BAO PAO ∴∠=∠+∠=︒ ,∴在Rt ABE △中,30ABE ∠=︒,1122AE AB ∴==⨯=3BE ∴===又∵在Rt ACD △中,2AC CD =,∴ ()22BC AC BC CD +=+,BC CD BE +≥,∴2BC AC +=()226BC CD BE =+≥=,故选:B .【点睛】本题是一次函数的综合题,考查了一次函数与坐标轴的交点,垂线的性质,直角三角形的性质,轴对称等知识,利用垂线段最短是解本题的关键.2.B解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.3.B解析:B【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴,B 点坐标为(-2,0), D 是OB 的中点,∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3),设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1,当x =0时,y =1∴E (0,1).故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.4.C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.A解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 6.D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a 的取值范围,再根据一次函数的性质,即可得到答案.【详解】 解:42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∵方程的解是非负数, ∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.8.A解析:A【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.9.D解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.10.B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 11.B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长计算公式是c=2πr ,C 和r 是变量,2、π是常量,故选:B .【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.12.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题13.()()或()或()【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况分别求解即可【详解】解:(1)联立两个方程组得将①代入②得:解得:将代入①得:∴点坐标为()故答解析:(25,65) (0,25)或(0,2-或(0,2+ 【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况,分别求解即可【详解】解:(1)联立两个方程组得22112y x y x =-+⎧⎪⎨=+⎪⎩①② 将①代入②得:22=112x x -++ 解得:2=5x 将2=5x 代入①得:5=6y ∴点M 坐标为(25,65)故答案为:(25,65) (2)由22y x =-+得 当x=0时,y=2故B(0,2)以BM 为一腰时,有两种情况当BME 以M 为顶点时,设E 点坐标为(0,y ) 则66255y -=- 解得:25y = 故E 点坐标为(0,25) 当BME 以B 为顶点时,设E 点坐标为(0,y )∵5= 若E 在B 下方则y=25- 若E 在B 上方则y=2故E 点坐标为(0,25-)或(0,25+)故答案为:(0,25)或(0,25-)或(0,25+) 【点睛】 本题考查两直线相交问题及等腰三角形的性质,熟练掌握等要三角形的定义及性质是解本题的关键14.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 15.(22021-122020)【分析】首先利用待定系数法求得直线的解析式然后分别求得B1B2B3…的坐标可以得到规律:Bn (2n-12n-1)据此即可求解【详解】解:∵B1的坐标为(11)点B2的坐标解析:(22021-1,22020)【分析】首先利用待定系数法求得直线的解析式,然后分别求得B 1,B 2,B 3…的坐标,可以得到规律:B n (2n -1,2n-1),据此即可求解.【详解】解:∵B 1的坐标为(1,1),点B 2的坐标为(3,2),∴正方形A 1B 1C 1O 1边长为1,正方形A 2B 2C 2C 1边长为2,∴A 1的坐标是(0,1),A 2的坐标是:(1,2),代入y=kx+b 得:12b k b ⎧⎨+⎩==, 解得:11k b ⎧⎨⎩==, 则直线的解析式是:y=x+1.∵A 1B 1=1,点B 2的坐标为(3,2),∴点A 3的坐标为(3,4),∴A 3C 2=A 3B 3=B 3C 3=4,∴点B 3的坐标为(7,4),∴B 1的纵坐标是:1=20,B 1的横坐标是:1=21-1,∴B 2的纵坐标是:2=21,B 2的横坐标是:3=22-1,∴B 3的纵坐标是:4=22,B 3的横坐标是:7=23-1,∴B n 的纵坐标是:2n-1,横坐标是:2n -1,则B n (2n -1,2n-1).∴B 2021的坐标是:(22021-1,22020),故答案为:(22021-1,22020).【点睛】此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.16.【分析】根据正方形的性质得到点AC 关于直线OB 对称连接CD 交OB 于P连接PAPD则此时PD+AP的值最小求得直线CD的解析式为y=-x+2由于直线OB 的解析式为y=x解方程组得到P()即可【详解】解解析:44 , 33⎛⎫⎪⎝⎭【分析】根据正方形的性质得到点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,求得直线CD的解析式为y=-12x+2,由于直线OB的解析式为y=x,解方程组得到P(43,43)即可.【详解】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,∵OC=OA=AB=2,∴C(0,2),A(2,0),∵D为AB的中点,∴AD=12AB=1,∴D(2,1),设直线CD的解析式为:y=kx+b,∴212k bb+⎧⎨⎩==,∴122kb⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为:y=-12x+2,∵直线OB的解析式为y=x,∴122y xy x⎧-+⎪⎨⎪⎩==,解得:x=y=43, ∴P (43,43), 故答案为:(43,43). 【点睛】 本题考查了正方形的性质,轴对称-最短路线问题,待定系数法求一次函数的解析式,正确求出直线CD 的解析式是解题的关键.17.4【分析】首先求出直线y =x ﹣1向上平移m 个单位长度得到y =﹣1+m 结合y =x+3即可求得m 的值【详解】解:直线y =x ﹣1向上平移m 个单位长度得到直线y =x+3∴﹣1+m =3解得m =4故答案为4【点解析:4【分析】首先求出直线y =12x ﹣1向上平移m 个单位长度得到y =12x ﹣1+m ,结合y =12x+3,即可求得m 的值.【详解】解:直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3, ∴﹣1+m =3,解得m =4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b 向上平移a 个单位,则解析式为y=kx+b+a ,向下平移a 个单位,则解析式为y=kx+b-a .18.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩,∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2【点睛】本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.19.(20)-1【分析】(1)解析式变形为y =k (x ﹣2)即可得到无论k 取何值y1=kx ﹣2k (k 是常数)的图象都经过点(20);(2)由题意可知y1的图象始终在y2上方得到两函数不相交平行即可得出k =解析:(2,0) -1【分析】(1)解析式变形为y =k (x ﹣2),即可得到无论k 取何值,y 1=kx ﹣2k (k 是常数)的图象都经过点(2,0);(2)由题意可知,y 1的图象始终在y 2上方,得到两函数不相交,平行,即可得出k =﹣1.【详解】解:(1)∵y =kx ﹣2k =k (x ﹣2),∴当x =2时,y =0,∴这个点的坐标是(2,0),故答案为(2,0);(2)∵无论x 取何值,y 1>y 2,∴y 1的图象始终在y 2上方,∴两个函数平行,∴k =﹣1,故答案为﹣1.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,难度适中.20.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.三、解答题21.(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中, 得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴AB AM BM又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即可得到答案;(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y =kx 的图象上∴-4=2k解得:k =-2;(2)结合(1)的结论得:正比例函数的解析式为y =-2x∵点(-1,m )在函数y =-2x 的图象上∴当x =-1时,m =-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.24.(1)92922y x =-;(2)179 【分析】(1)设1(3)(0)y k x k +=-≠,利用待定系数法求k ,从而确定函数关系式; (2)将y=-6代入解析式求x 的值.【详解】解设1(3)(0)y k x k +=-≠(1)将58x y =⎧⎨=⎩代入,得 81(53)k +=- 即92=k ∴92922y x =- (2)当6y =-时929622x -=- 179x = 【点睛】本题考查待定系数法求函数解析式,掌握待定系数法计算步骤,正确计算是解题关键. 25.(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.26.(1)12003y x =+;(2)当15002400x <<时,选择方案二省钱;当 2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【分析】(1)根据题意即可得出y (元)与x (千克)之间的函数表达式;(2)设方式2购买时所需费用记作y 2元,求出y 2与x (千克)之间的函数表达式,结合(1)的结论解答即可;【详解】解:(1)根据题意得:12003y x =+.(2)方案一:112003y x =+,方案二:2 3.5y x =,当12y y >,12003 3.5,x x +>2400,x <当12,12003 3.5y y x x =+=,2400,x =当12,12003 3.5y y x x <+>2400,x >∴当15002400x <<时,选择方案二省钱;当2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【点睛】此题主要考查一次函数的应用;得到两种方案总付费的等量关系是解决本题的关键.。

平面直角坐标系、一次函数

平面直角坐标系、一次函数

2平面直角坐标系1.(2011山东德州9,4分)点P(1,2)关于原点的对称点P′的坐标为___________.2. (2011吉林,5,2分)在平面直角坐标系中,点A(1,2)关于y轴对称的点为点B(a,2),则a=3. (2011江苏泰州,13,3分)点P(-3,2)关于x轴对称的点P`的坐标是.4. (2011贵州六盘水,14,4分)在平面直角坐标系中,点P(2,3)与点P'(2a+b,a+2b)关于原点对称,则a-b 的值为_________5. (2011辽宁大连,10,3分)在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.6. (2011贵州遵义,13,4分)将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为。

7. (2011江苏宿迁,14,3分)在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点O重合,则B平移后的坐标是.8 .(2011浙江台州)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”。

请写出一个“和谐点”的坐标9.(2011湖北黄石,16,3分)初三年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数。

若某生的位置数为10,则当m+n取最小值时,m·n的最大值为。

10. (2011山东威海,14,3分)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点的坐标(0,4),B点的坐标(-3,0),则C点的坐标是 .11. ( 2011重庆江津, 20,4分)如图,在平面直角坐标系中有一矩形ABCD,其中(0,0),B(8,0),C(0,4,) 若将△ABC 沿AC所在直线翻折,点B落在点E处,则E点的坐标是__________.第10题图12.(201119,5分)如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数量和位置的变化,一次函数综合测试卷
一、填空题(12*2=24)
1.一次函数12-=x y 一定不经过第 象限.
2
.在函数3
y x =
-x 的取值范围是__________.
3.直线y=2x-1与x 轴的交点坐标是A____________;与y 轴的交点坐标是B_____________.
4. 点P(3,a )与点Q (b,2)关于y 轴对称, 则a= , b= . .若点M (a,-2),N(3,b)且MN ∥y 轴,则a_______,b _______. .
5.已知A 、B 、C 三点的坐标分别是(0,0),(5,0),(5,3),且这三点是一个平行四边形的
顶点,请同学们写出第四个顶点D 的坐标 。

6.已知函数1231
x
y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______
时,函数没有意义.
7.点A(2,3)到x 轴的距离为 ;点B(-4,0)到y 轴的距离为 ;点C
到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 . 8.函数n m x
m y n +--=+1
2)2(,当m= ,n= 时为正比例函数;
当m ,n= 时为一次函数.
9.分别写出具备下列条件的一次函数表达式(写出一个即可): (1)y 随着x 的增大而减小: . (2)图象经过点(1,-3): . 10.直线y=kx+b 与直线y=
32x -平行,且与直线y=3
1
2+-x 交于y 轴上同一点,则该直线的解析式为________________________________.
11.观察下列各正方形图案,每条边上有n (n >2)个圆点,每个图案中圆点的总数是S .
按此规律推断出S 与n 的关系式为 .
12.三角形ABC 中BC 边上的中点为M ,在把三角形ABC 向左平移2个单位,再向上平移3个单位后,得到三角形A 1B 1C 1的B 1C 1边上中点M 1此时的坐标为(-1,0),则M 点坐标为 .
=4 S =12 n =2 S =4 n =3 S =8
二,选择题(11*3=33) 1.若a>0,b<-2,则点(a,b+2)在
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.已知点P 关于x 轴的对称点P 1的坐标是(2,3),那么点P 关于原点的对称点P 2的坐标是 ( ) A .(-3,-2)
B .(2,-3)
C .(-2,-3)
D .(-2,3)
3.下列函数关系式:①x y -=;②;112+=x y ③12
++=x x y ;④x
y 1
=。

其中一次函数的个数是( )
A . 1个
B .2个
C .3个
D .4个
4.要从x y 34=的图象得到直线324+=
x y ,就要将直线x y 34
=( ) A .向上平移 32个单位 B .向下平移 3
2
个单位
C .向上平移 2个单位
D .向下平移 2个单位
5.下面图象中,不可能是关于x 的一次函数()3--=m mx y 的图象的是( )
6.已知一次函数y =kx +b 的图象(如图),当x <0时,y 的取值范围是( ) A .y >0 B .y <0 C .-2<y <0 D .y <-2 7.已知一次函数y=
23x+m 和y=-2
1
x+n 的图像都经过点A(-2,0), 且与y 轴分别交于B,C 两点,那么△ABC 的面积是 ( )
A. 2
B. 3
C. 4
D. 6 8.下列函数中自变量取值范围选取错误..
的是 ( )
A .2
y x x =中取全体实数 B .1y=
中x ≠0x-1
C .1
y=
中x ≠-1x+1
D
.1y x =≥
9.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。

如果每升汽油2.6
元,求油箱内汽油的总价y (元)与x (升)之间的函数关系是 ( )
A . 2.6(020y x x =≤≤)
B . 2.626(030y x x =+<<)
C . 2.610(020y x x =+≤<)
D . 2.626(020y x x =+≤≤)
10.小明的父亲饭后出去散步,从家走20分钟到一个离家900米的报亭,看10分钟报纸后,用15分钟返回家里.下面四个图象中,表示小明父亲的离家距离与时间之间关系的是()
A. B. C. D.
11.若点(-4,y1),(2,y2)都在直线y=
1
x t
3
-+上,则y1与y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2D.无法确定
三、解答题
1. 如图,平行四边形ABCD的边长AB=4,BC=2,若把它放在直角坐标系内,使AB在x
轴上,点C在y轴上,点A的坐标是(-3,0),求:B、C、D的坐标.(6分)
2.在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。

下面是蟋蟀所叫次数与温度变化情况对照表:
(1)根据表中数据确定该一次函数的关系式;(4分)
(2)如果蟋蟀1分钟叫了63次,那么该地当时的温度大约为多少摄氏度?(3分)
x
3如图表示一个正比例函数与一个一次函数的图象,它们交于点A (4,3),一次函数的图
象与y 轴交于点B ,且OA=OB ,(1(2)求两函数与y 轴围成的三角形的面积。

(3分)
4.在平面直角坐标系内,A 、B 、C 三点的坐标分别是A(5,0)、B (0,3)、C (5,3),O 为坐标原点,点E 在线段BC 上,若△AEO 为等腰三角形, 求点E 的坐标.(画出图象,不需要写计算过程)(8分)
5.阅读下面的文字后,解答问题:
有这样一道题目:”已知,一次函数y=kx+b的图像经过A(0,a),B(-1,2),________,则△ABO的面积为2,试说明理由.题目中横线部分是一段被墨水污染了的无法辨认的文字. (1)根据现有信息,你能否求出题目中一次函数的解析式?若能,请写出适合条件的一次函数解析式?(4分)
(2)请根据你的理解,在横线上添加适当的条件,把原题补充完整.(2分)
6.某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止. 结合风速与时间的图像,回答下列问题:
(1)在y轴()内填入相应的数值;(2分)
(2)沙尘暴从发生到结束,共经过多少小时?(2分)
(3)求出当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式. (2分)(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?(2分)



时)。

相关文档
最新文档