基于可压缩格子Boltzmann方法的高可扩展并行算法研究
偏微分方程求解的一种新颖方法——格子Boltzmann模型

7 6 邻 节 点
大 学 数 学
第2 7卷
) 撞 , 一 个 节 点 上 从 相 邻 节 点 运 动 来 的 粒 子 发 生 碰 撞 , 据 质 量 、 量 和 能 量 守 恒 规 则 改 碰 在 根 动
其 中 r 松弛 时间 尺度 , 制达 到平衡 的速 度 ( 是 控 可根据 需 要 进行 设 置 ) 由于稳 定 性 的原 因 , 过 实 际测 , 经 算 r必须 大于 1e /.
事 实 上 不 同 的 网 格 剖 分 有 着 不 同 的平 衡 分 布 函数 , B 建 立 模 型 的 核 心 问 题 就 是 根 据 不 同 的 网 格 L M
[ 键 词 ] 格 子 B l ma n方 法 ; 衡 态 分 布 函 数 ; Q 关 ot n z 平 D2 9模 型 ; a i — tk s 程 ; 流一 扩 散 方 程 N ve So e 方 r 对 [ 图 分 类 号 ] O2 1 8 中 4 .2 [ 献标识码]A 文 [ 章 编 号 ] 17 —4 4 2 1 ) 30 7 —8 文 6 21 5 (0 1 0 —0 50
在 低 Mah 马赫 ) 的假 设下 ( l c)其 中粒子平 衡态 分布 函数 为 c( 数 I , U《
~ P
[ + 一 ] +
且
C =c 4 /  ̄,
。 /, 一4 9
1 U 一 3 一(2 一 4 1 9, ∞ 一 6 7 8 1 3 , — / 5 一∞ 一∞ — / 6
第2 7卷 第 3期
格子boltzmann方法的原理与应用

格子Boltzmann方法的原理与应用1. 原理介绍格子Boltzmann方法(Lattice Boltzmann Method)是一种基于格子空间的流体模拟方法。
它是通过离散化输运方程,以微分方程的形式描述气体或流体的宏观运动行为,通过在格子点上的分布函数进行更新来模拟流体的动态行为。
格子Boltzmann方法的基本原理可以总结为以下几点:1.分布函数:格子Boltzmann方法中,将流场看作是由离散的分布函数表示的,分布函数描述了在各个速度方向上的分布情况。
通过更新分布函数,模拟流体的宏观行为。
2.离散化模型:为了将连续的流场问题转化为离散的问题,格子Boltzmann方法将流场划分为一个个的格子点,每个格子点上都有一个对应的分布函数。
通过对分布函数进行离散化,实现流场的模拟。
3.背离平衡态:格子Boltzmann方法假设流体运动迅速趋于平衡态,即分布函数以指定的速度在各个方向上收敛到平衡分布。
通过在更新分布函数时引入碰撞过程,模拟流体的运动过程。
4.离散速度模型:分布函数描述了流体在各个速度方向上的分布情况,而格子Boltzmann方法中使用的离散速度模型决定了分布函数的更新方式。
常见的离散速度模型有D2Q9、D3Q15等。
2. 应用领域格子Boltzmann方法作为一种计算流体力学方法,已经在各个领域得到了广泛的应用。
以下是一些常见的应用领域:2.1 流体力学模拟格子Boltzmann方法具有良好的可并行性和模拟精度,适用于复杂流体流动的模拟。
它可以用于模拟包括自由表面流动、多相流动、多物理场耦合等在内的各种复杂流体力学问题。
2.2 细胞生物力学研究格子Boltzmann方法在细胞力学研究中也有广泛应用。
通过模拟流体在细胞表面的流动,可以研究细胞运动、变形和介观流的形成机制。
格子Boltzmann方法在细胞生物力学领域的应用已成为一个重要的研究方向。
2.3 多相流模拟格子Boltzmann方法在多相流动模拟中的应用也非常广泛。
格子boltzmann方法

格子boltzmann方法格子玻尔兹曼方法是一种常用的数值计算方法,它主要用于模拟稀薄气体等流体力学问题。
下面我将从方法原理、模拟过程和应用领域三个方面详细介绍格子玻尔兹曼方法。
首先,格子玻尔兹曼方法基于玻尔兹曼方程和格子Boltzmann方程,通过将连续的物理系统离散化为网格系统进行模拟。
网格系统中的每个格子代表一个微观粒子的状态,而碰撞、传输和外部力的作用通过计算和更新这些格子的状态来实现。
该方法主要包含两个步骤:碰撞和传输。
在碰撞过程中,格子中的粒子通过相互作用和碰撞来改变其速度和方向,从而模拟了分子之间的碰撞过程。
在传输过程中,碰撞后的粒子根据流体的速度场进行移动,从而模拟了背景流场对粒子运动的影响。
其次,在格子玻尔兹曼方法中,模拟的过程可以简化为两个部分:演化和碰撞。
在每个时间步长内,系统首先根据粒子速度和位置的信息计算出相应格点上的分布函数,然后通过碰撞步骤更新这些分布函数以模拟粒子之间的碰撞效应。
通过迭代演化和碰撞步骤,系统的宏观行为可以得到。
格子玻尔兹曼方法中最常用的碰撞操作是BGK碰撞算子,它根据粒子的速度和位置信息计算出新的分布函数,并用该新分布函数代替原来的分布函数。
而在传输过程中,粒子通过碰撞后得到的新速度和方向进行移动。
最后,格子玻尔兹曼方法在流体力学领域具有广泛的应用,特别是在稀薄气体流动、微纳尺度流动和多相流等问题中。
由于其适用于模拟分子尺度和介观尺度流动问题,因此在利用普通的Navier-Stokes方程难以模拟的问题中表现出了良好的效果。
此外,格子玻尔兹曼方法还可以用于模拟流动中的热传导问题、气体分子在多孔介质中的传输问题以及颗粒与流体相互作用等多种复杂流动现象。
近年来,随着计算机性能的不断提高,格子玻尔兹曼方法也得到了快速发展,在模拟大规模真实流体问题方面取得了不错的结果。
总结来说,格子玻尔兹曼方法通过将连续的物理系统离散化为网格系统,模拟粒子碰撞和传输过程,实现了对流体力学问题的数值模拟。
GPU通用计算在格子Boltzmann方法中的应用的开题报告

GPU通用计算在格子Boltzmann方法中的应用的开题报告1. 研究背景格子Boltzmann方法是一种基于微观粒子运动的直接数值模拟方法,广泛应用于流体力学、多相流、热传递和化学反应等领域的研究中。
随着计算机硬件和软件技术的不断发展,GPU通用计算已成为高性能计算的重要领域。
将GPU通用计算与格子Boltzmann方法相结合,可以提高计算效率和运算速度,促进该方法在实际问题中的应用。
2. 研究内容本论文将探讨GPU通用计算在格子Boltzmann方法中的应用。
主要研究内容包括:(1) GPU通用计算及其在格子Boltzmann方法中的应用原理;(2) 基于GPU的格子Boltzmann方法实现;(3) 数值算例验证及性能分析。
3. 研究意义将GPU通用计算与格子Boltzmann方法相结合,可以提高计算效率和运算速度,同时降低计算成本。
研究该方法的实现和应用,对于推进和加速该方法在流体力学、多相流、热传递和化学反应等领域的研究具有重要意义。
4. 研究方法本论文将采用文献综述法和数值模拟法相结合的方法进行研究。
具体来说,将通过对GPU通用计算和格子Boltzmann方法的文献研究,掌握其基本理论和应用原理;通过编写基于CUDA编程的格子Boltzmann方法实现程序,实现GPU加速的格子Boltzmann方法;通过数值算例验证和性能分析,评估GPU加速的格子Boltzmann方法的性能和优越性。
5. 论文结构本论文将分为五个章节,具体安排如下:第一章:绪论。
主要介绍格子Boltzmann方法和GPU通用计算的相关概念和基本原理。
第二章:GPU通用计算在格子Boltzmann方法中的应用原理。
主要介绍GPU通用计算在格子Boltzmann方法中的应用原理,包括CUDA编程、GPU加速计算、并行计算等。
第三章:基于GPU的格子Boltzmann方法实现。
主要介绍基于CUDA编程的格子Boltzmann方法实现方法,包括数据结构、算法实现、并行计算等。
基于图形处理器的格子Boltzmann方法计算

基于图形处理器的格子Boltzmann方法计算
封卫兵;杨晓玲
【期刊名称】《上海大学学报(自然科学版)》
【年(卷),期】2009(015)001
【摘要】由于图形处理器(GPU)最近几年迅速发展,基于GPU的计算作为一个新的研究方向已经引起越来越多人的关注.在综述国内外最新文献的基础上,从介绍GPU 的高性能开始,分析GPU本身的特性,介绍GPU的计算模型并分析其流水线结构,阐述如何对GPU进行编程,并初步实现基于GPU的格子Boltzmann方法(LBM)计算.【总页数】5页(P66-70)
【作者】封卫兵;杨晓玲
【作者单位】上海大学,计算机工程与科学学院,上海,200072;上海大学,计算机工程与科学学院,上海,200072
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.基于格子Boltzmann方法的气动声学计算 [J], 司海青;石岩;王兵;吴晓军
2.基于改进的浸没边界-格子Boltzmann方法的圆柱绕流仿真计算 [J], 王露;李天匀;朱翔;吴嘉蒙;张延昌
3.面向图形处理器重叠通信与计算的数据划分方法 [J], 吴志海
4.基于格子Boltzmann方法和大涡模拟的颈动脉分叉狭窄流动并行计算 [J], 张毅卓; 葛森; 王良军; 谢江; 曹洁; 张武
5.桌面计算机上利用格子Boltzmann方法的GPU计算 [J], 刘强;谢伟;邱辽原;解学参
因版权原因,仅展示原文概要,查看原文内容请购买。
格子boltzmann方法的理论及应用

格子boltzmann方法的理论及应用
格子波尔兹曼方法(Grid Boltzmann Method, GBM)是一种非离散化处理方法,其基本
思想是在空间上采用格点,并建立格点微分方程组来解决复杂流体或者其他相关物理问题. GBM以较少的计算量就可达到快速、精确求解流体动力学问题,而且将空间和时间分离,
大大减少计算量和存储量,可以说是比传统有限元技术和有限差分技术更加有效的一种方法.
格子波尔兹曼方法的具体原理是:格子波尔兹曼方法是将空间上的解释解划分成一系
列的蒙特卡洛格子点,这样可以以非离散化处理。
针对与流体物理仿真相关的变量,以格
点位置为基底,可以使用波尔兹曼分布Y(v)来描述,将原本复杂的多体相互作用模型转化为简单的蒙特卡洛定值模型,由此通过空间离散的方式可以求解波尔兹曼方程;具体的应
用也很广泛,可以应用在流体动力学中,可用来模拟很多液体问题,比如湍流传播和燃烧
等方面;在地形风化中可以用来模拟流域洪水演变和地形演化、土壤流失问题;在水质污
染领域,可以用来模拟河流污染物质运行规律;在非牛顿流体中,可用来模拟非牛顿流体
动力学问题;在金属粒子、微粒或者多组分液体中,可用来模拟粒子间相互作用,甚至可
以应用在非弹性波中进行数值模拟.
格子波尔兹曼方法因其独特的优越性深受广泛重视,在国内外都有大量的研究,结合
其他的数值方法,用于模拟复杂的流体物理系统,改善计算效率,提高建模的准确性。
GBM具有更快的计算速度和精度优势,在现代的科学技术领域有着广泛的应用,如流体动
力学,地形风化,水质污染等问题。
该方法不仅可用作模拟计算复杂流体运动,而且可以
用于半定常及强力学分析中。
格子Boltzmann方法原理及其应用

格子Boltzmann方法原理及其应用摘要在上世纪八十年代后期提出的格子Boltzamnn方法克服了格子气方法的缺点,其本身也在不断的发展之中.格子Boltzamnn方法在流体运动计算方面展现了非凡的风采,成功地模拟了包括均相不可压缩湍流和多孔介质中的多相流动在内的流体动力学问题.但和成熟的流体动力学计算方法相比,特别在工程实际应用上,该方法还有许多值得研究的地方.本文主要介绍工程实际应用时,具体模型的选择问题.首先从理论上对应用最为广泛的几种基本模型进行了详尽的分析和比较.选择了Poiseuille流动,然后从计算精度、数值稳定性和收敛速度这几个方面进行了细致的比较.从理论和实验两个角度验证了D2G9模型的优越性,为工程实际应用上模型的具体选择提供了一定的参考依据.通过研究二阶精确的格子Boltzamnn模型,提出了非牛顿流体.非牛顿流动性是使用幂法则模型实现的.它可以估算出模型的精确程度,同时不会限制这个模型.二阶精度由剪切变稀和剪切增稠液体的幂法则模型参数范围给出.这些结果与Gabbanelli等人的结果相比,精确度更高,并且得到了更快的计算效率.结果表明了格子Boltzamnn方法适用于非牛顿流体模拟.对于实际流动模拟,本文应用二维9速度模型模拟了四种情况的方柱绕流问题.在第一种情况中,单个方柱位于流场中央,给出了流线图,等涡线图,模拟了卡门涡街现象,并计算了升、阻力系数,Strouhal数等参数;在第二种情况中,计算细长矩板截面柱绕流问题,得到了Strouhal数随着矩形长宽不同的比值下的变化情况;在第三种情况中,两个方柱并列位于流场中央,考察了方柱间距对于流场的影响;在第四种情况中,计算了水平来流为剪切流的方柱绕流问题,比较了速度梯度取不同值下流场的变化情况.所有有关力的求解均采用动量转换法.所得结果,包括流线、等涡线、升/阻力系数曲线等均与已有文献的实验或数值结果基本一致,显示LBM方法及其力的求解方法——动量转换法是有效的,能够精确的模拟各流场.其次,我们还引入一种两相耦合机制对D2G9模型进行了修正,从而使之可以正确处理气固两相流中输运相和颗粒相之间的相互作用.随后,我们模拟了后台阶流动,并和传统CFD方法的模拟结果以及修正其他模型的模拟结果进行了验证,得到了令人满意的结论.从一定程度上验证了两相耦合机制的可行性.通过软件模拟获得了水包油、过渡流型和油包水三种流型的典型模拟图.经分析发现:由软件模拟的流型特点和由探针获得的流型特点具有较好的一致性.在本文最后,我们介绍了以经典算例一方腔流为例,对格子Boltzamnn方法的核心代码进行了优化的方法,主要讲述对时间和空间上的优化,优化的程序使计算效率提高数倍.在并行的框架下,核心演化的代码换为优化后的程序,计算效率有大幅度的提高.关键词:格子方法;格子Boltzamnn 方法;格子气自动机;格子Boltzamnn模型.AbstractIn the latter of 80’s,the Lattice Boltzamnn Method(LBM)was introduced mainlyto cope with major drawbacks of its ancestor,the Lattice Gas Automata(LGA).Eversince,it has undergone a number of refinements and extensions which have taken it tothe point where it can successfully compute a number of non trivial flows,raging fromhomogeneous incompressible turbulence to multiphase flows in porous geometries.Yet,when compared with conventional computational fluids dynamics methods,such as finiteelement,finite difference,it is apparent that there is still a way to go before LBM canachieve full engineering status.In this paper,we mostly focus on the choice of the basic LB models in theengineering application fields.Firstly,we expatiate the basic LB models in theory.Then,we simulate the Poiseuille flow with those basic LB models.And wecompare the simulation results from the computation precision、the numerical stabilityand the convergence rate.Finally,we draw a conclusion that the D2G9 model is the bestchoice in the engineering application fields.Simulation of Flow past square cylinder with LB Method.For the simulation of actual flow,we use D2Q9 investigate fourcases of flow past square cylinders in this paper.For case 1,one singlesquare cylinder is located at the center of the channel,we describe thestreamline contour,vortices contours,simulate the Karman vortex,then compute the lift coefficient,drag coefficient,Strouhal numbersetc.For the case 2,simulate the flow past a cylinder of rectangularcross-section;compute the change of Strouhal numbers varying withthe side ratio.For case 3:two square cylinders arranged side by side inthe center of the channel,the flow features at different spacing ratiosare studied.For case 4:we compute the linear shear flow over a squarecylinder,compare the evolution of flow with different velocitygradient.The results of thesimulation including the streamlines,vorticity contours,lift and drag coefficients etc.are agreed with thoseof available literatures,and show that LB method and itsmomentum-exchange method can achieve accurate results and obtainthe reasonable flow in detail.we employ a two-way coupling mechanisms to modify theD2G9 model.With the modified D2G9 model,we can handle with the interactionsbetween carrier phase and dispersed phase in the model.Then,we simulate abackward-facing step model,and the results are compared qualitatively with the result ofthe traditional CFD method and the other modified LB models.Though the comparison,we can see that the two-way coupling mechanisms can handle with the gas-solid twophases flows successfully.Three kinds of flow pattern,which are oil-in-water flow,transitional flow andwater-in-oil flow,have been got by simulation.According to the result of simulation,theoil-water two-phase flow pattern transition boundary model has been got by.By the analysisof simulation,the characteristic of three kinds of flow pattern of vertical oil which has beengot by analysis of the signals is consistent with results by simulation.We take the classical problem-cavity flow as an example and optimize the kerne codes of the LBM. The optimization include two aspects :time and space .The efficiency of the optimized code increased much more .In the parallel frame,the efficiency also increased if the kernel code is taken the optimized code.Key word:1atrice method;1atrice bohzmann method;lattice gas automata;LBM目录第1章概述 11.1研究格子 Boltzamnn方法的意义 11.2 格子 Boltzamnn方法的发展历程 31.2.1孕育阶段 31.2.2 萌芽到成长阶段 31.3 格子 Boltzamnn方法应用概况及优缺点 51.3.1格子Boltzamnn方法应用概况 51.3.2格子Boltzamnn的优缺点 61.4本论文的研究目的 81.5 相关研究的综述与专注情况 8第2章格子Boltzamnn方法介绍 102.1 Boltzamnn方程的产生 102.2细胞自动机(CA) 112.3格子气自动机(LGA) 122.4格子Boltzamnn方法(LBM) 132.5 格子Boltzamnn的基本结构 162.6本章小结 17第3章格子Boltzamnn方法的基本模型比较 183.1 格子 Boltzamnn 方法基本模型概述 183.2 进行常压力梯度驱动的Poiseuille流动模拟比较几种基本模型 23 3.3本章小结 27第4章格子Boltzamnn方法的算法设计 284.1格子Boltzamnn方法的算法实现 284.2格子Boltzamnn方法的高效算法设计 304.2.1优化算法 304.2.2优化实验 324.3 本章小结 34第5章格子Boltzamnn方法的实际应用 355.1二阶精确格子Boltzamnn非牛顿流体的流动模拟 35 5.1.1理论背景 355.1.2方法和计算结果分析 385.1.3 本节小结 405.2 格子Boltzamnn方法的方柱绕流模拟 405.2.1 单个方柱位于流场中央的绕流问题 405.2.2 细长矩形截面住绕流问题 425.2.3 两个并列方柱的绕流问题 445.2.4来流为剪切流的绕流问题 495.3格子Boltzamnn方法模拟气固两相流 515.3.1对气固两相流的模拟模拟对象简介 515.3.2 计算结果分析 545.3.3本节小结 565.4 格子Boltzamnn方法模拟油水两相流软件设计 565.4.1 LBM油水两相流的关键因素选取 575.4.2 软件的设计 605.4.3 本节小结 635.5 简述格子Boltzamnn方法在其他领域中的应用 645.5.1 颗粒悬浮问题的模拟 645.5.2 热导和对流—扩散问题的模拟 645.5.3 偏微分方程的模拟 655.5.4 多相流和多元流的模拟 65结论及展望 67参考文献 68第1章概述1.1研究格子Boltzamnn方法的意义自从二十世纪四十年代出现了第一台电子计算机以来,人们开始进入了电子信息时代.随着高存储、高速度计算机的出现,人们所能解决的问题也越来越广泛,同时所面临的问题也越来越复杂.在对流动现象的研究中,以往人们大部分依靠的是解析方法,但所解决的问题非常有限.而现实生活中所面临的流动问题往往十分复杂,如航空航天器的亚跨超音速飞行、舰船的航行等等,依靠解析的方法来解决这些复杂的流动现象是不可能的.到现今为止,人们对流体运动的研究主要靠实验方法和数值计算方法.实验方法具有直观、结果基本可靠的特点.但也存在较大的缺点:耗费大、周期长,并且结果受实验条件的影响也较大,尤其是如今的航空航天飞行,速度高、飞行条件复杂,用风洞来模拟困难是相当大的.而流体的运动可以由一组偏微分方程描述.在大多数情况下,这些方程(如N-S方程)都是高度非线性的,采用解析的求解方法是不实际也是不可行的.随着大型计算机的出现,使人们可以借助于计算机用数值计算方法来解决复杂的流动问题.因此,在二十世纪六十年代,用数值方法分析求解流动问题的学科——计算流体力学(CFD)逐渐发展起来.伴随着电子计算机的飞速发展以及各种新颖算法的不断出现,CFD已经形成了一门独立的学科,并且在航空航天、船舶、大型能源装置(如核电站)、新型交通工具、海洋工程、环境保护等众多工程技术部门和领域都得到了广泛的应用.随着计算技术的发展、巨型计算机的出现、计算方法的不断改进,计算流体力学在解决流动的理论和工程实际问题中愈加显示出它的巨大作用.目前,计算流体力学已经成为现代计算科学的最有力的推动力之一.在计算流体力学中,传统的数值模拟方法可以分为两大类:(1)从宏观角度出发,基于连续介质假设,采用数值计算方法,求解全位势方程或Euler方程或N-S方程;(2)从微观角度出发,采用分子动力学的方法,对流动进行数值模拟.其中,格子Boltzamnn方法就是典型的一种.格子Boltzamnn方法(Lattice Boltzamnn Method,LBM)1.1.2格子Boltzamnn法(lattice Boltzamnn method)起源于格子气自动机(Lattice Gas Automata,LGA).LGA方法是元胞自动机(Cellular Automata,CA)在流体力学中的具体应用,是空间、时间和速度空间都离散的一个虚拟微观模型,与以连续微分方程为基础的宏观计算流体力学方法有着本质的不同.LGA的微观特性使得它的边界条件非常容易实现,并且计算也很简单.因此,LGA方法非常适于处理边界复杂的问题.更为重要的是,LGA的计算具有局部性和并行性,非常容易在并行机上实现.LGA的出现不但为并行计算提供了许多新思想,而且对并行计算机制造技术产生了重要的影响.但是,LGA方法也有许多不足之处.例如,由于含有随机因素,LGA的计算结果往往包含很大的统计噪声,LGA的宏观方程也不是标准的流体运动宏观方程.格子Boltzamnn方法是为克服LGA方法的一些内在不足而发展起来的一种新方法.LBM不但克服了LGA的缺点,继承了LGA的主要优点,而且还有许多新的优点,如计算量小、计算效率高、编程简单等.LBM的产生与发展,不仅在计算流体力学领域中产生了深远的影响,它所使用的处理方法和观点对其他许多学科也是富有启发性的.格子Boltzamnn法是一种应用非连续介质思想研究宏观物理现象,并可平行运行,求解流体力学问题的新方法.它是由格子气自动机(lattice gas automata,简称LGA)方法发展而来的.该法把流体及其存在的时间、空间完全离散,把流体看成由许多只有质量没有体积的微小粒子组成,所有这些粒子同步地随着离散的时间步长,根据给定碰撞规则在网格点上相互碰撞,并沿网格线在节点之间运动.碰撞规则遵循质量、动量和能量守恒定律.流体运动的宏观特征是由微观流体格子相互碰撞并在整体上表现出来的统计规律.该法是直接从微观模型出发,经过Boole化处理后进行计算,可认为是N-S差分法逼近的一种无限稳定的格式.被广泛应用于复杂几何边界流体流动、多孔介质流、多相流及反应流等.格子气自动机的基本思想是,把计算区域分成许多均匀的正三角形(或正方形)的网格,而那些只有质量无体积的粒子只能在网格点上存在,并沿着网格线在网格间运动.当某一个粒子从某一网格点到邻近的网格点时,有可能和从其他网格点到达该点的粒子相碰撞.根据Pauli不相容原理,在同一时刻同一点上,沿着每一网格线运动方向最多只有一个粒子,流场中的粒子速度不是0(静止)就是1(设格子边长及时间间隔都为1).以三角形网格为例,每一个网格上在某一时刻,其周围的6个网格上粒子沿着网格线聚集到该点,加上该点可能还有一个静止粒子,这样,可能有7个粒子在该点发生碰撞,然后根据碰撞规则再散射出去,演化为新的运动粒子流向各节点的邻居,形成格子气自动机.1986年MeNamaxa和Zaneltti,提出把格子气自动机中的整数运算变成实数运算,建立了格子Boltzamnn 模型,克服了格子气自动机的数值噪声的缺点.后来陈十一和钱跃宏采用了单一时间松弛方法,满足了各项同性,GalIean不变性,并得到了独立于速度的压力项.使格子Boltzamnn模型保留了格子气自动机的优点,克服了其不足,并在理论分析和数值模拟方面都具有很大灵活性,而且程序编制简单,计算效率较高.从格子Boltzamnn方法诞生至今天已有20年,20年间,其在理论和应用研究等方面都取得了迅速发展,并逐渐成为在相关领域研究的国际热点之一,受到国内外众多学者关注.与之传统模拟方法不同,格子Boltzamnn方法基于分子动理论,具有清晰的物理背景.该方法在宏观上是离散方法,微观上是连续方法,因而被称为介观模拟方法.在许多传统模拟方法难以胜任的领域,入微尺度流动与换热、多孔介质、生物流动、磁流体、晶体生长等,格子Boltzamnn方法都可以进行有效的模拟,因此它被用于多种复杂现象的机理研究,推动了相关学科的发展.可以说,格子Boltzamnn方法不仅仅是一种数值模拟方法,而且是一项重要的科学研究手段.此外,格子Boltzamnn方法还具有天生的并行特性,以及边界条件处理简单、程序易于实施等优点.可以预计,随着计算机技术的进一步发展,以及计算方法的逐渐丰富,格子Boltzamnn方法将会取得更多成果,并为科技发展发挥更重要的作用.1.2 格子Boltzamnn方法的发展历程格子Boltzamnn方法自诞生至今年已取得了长足发展,被誉为现代流体力学的一场变革.1.2.1孕育阶段:对格子Boltzamnn方法发展使得了解,得先从格子自动机说起.格子气自动机使更广泛的元胞自动机在流体学中的应用.元胞自动机是一个时间和空间离散的数学模型.20世纪60年代,Broadwell等人首先提出了离散速度模型,用以研究流体中的激波结构.20世纪70年代,为了研究流体的运输性质,法国的Hardy、Pomeau和Pazzis提出了第一个完全离散模型,该模型命名HPP模型.这是历史上的第一个格子气自动机模型.1986年,法国的Frisch、Pomeau和美国的Hasslacher提出具有足够对称的二维正六变形格子气自动机模型,,命名为FHP模型.由于这些方法在还处在一些缺点:(1)有格子气自动机演化方程推导出来的动量方程不满足Gaililei不变形;(2)流体状态方程不仅仅依赖于密度和温度,还与宏观流速有关;(3)破装蒜子具有指数复杂性,对计算量和存储量也有较大要求.因而,我们将这一段格子气自动机的发展过程称作格子Boltzamnn方法的孕育期.1.2.2 萌芽到成长阶段:自1988年底一篇关于格子Boltzamnn方法的论文出现至今,格子Boltzamnn方法从萌芽逐渐成长壮大,并成为目前一大国际研究热点,受到越来越多学者的关注.1988年,McNamra和Zanetti提出把格子气自动机中的Bool运算变成时数运算,格子点上的粒子数不是用整数0或1来表征,而是用实数f来表示系综平均后的局部粒子分布函数,用Boltzamnn方程代替格子气自动机的演化方程,并将该模型用于流体的数值计算.这是最早的格子Boltzamnn模型,从此开启了格子Boltzamnn方法的历史大门.1989年,Higuera和Jimenez提出了一种简化模型:通过引入平衡分布函数,将碰撞算子线性化.该模型不需要碰撞模型,并忽略各自粒子间的碰撞细节,相比于多粒子碰撞模型,容易构造.同年,Higuera等进一步提出了强化碰撞算子方法,以增加模型的数值稳定性.这两模型统成为矩阵模型.经历了上述两类模型,格子Boltzamnn方法消除了统计噪声,克服了碰撞算子指数复杂性,但是由于依然使用Fermi-Dirac平衡态分布函数,格子气自动机的其他缺点仍然存在.1991年,Chen等提出了单松弛时间法,用同一个时间松弛系数来控制不同例子靠近各自平衡态的快慢,进一步简化了碰撞算子;Qian等人在1992年也提出了类似的方法,称之为格子BGK(LBGK)模型.LBGK模型与矩阵模型类似,但与前面两种模型不同的是,当粒子种类数增加时,碰撞算子本身发生生变化,不会变得复杂.至此,格子Boltzamnn方法完全克服了格子气自动机的一系列缺点,并逐渐成熟,成为国际研究的热点.早期的格子Boltzamnn模型只能用于等温不可压缩流动的模拟.但因为存在可压缩效应,会引起一定的误差.为了消除或强敌有可压缩效应引起的误差,许多学者致力于新的格子Boltzamnn模型的研究,并提出了多种等温不可压模型.而后,一些不可压缩热模型成功实现了对有效范围温度变化的热力学和传热学问题的模型.其中,最成功的要数双分布函数模型.他是在密度分布函数的基础上引入了温度分度函数、或内能分布函数、或总能分布函数,并用密度分布函数演化得到速度场,这类模型具有与等温不可压模型相同的数值稳定性,而且可以从根本上解决压缩功和耗热问题.边界处理方面,经历了20年的发展,格子Boltzamnn方法已逐渐发展出适合不同边界条件、不同模型的边界处理格式.网格划分方面,最初的格子Boltzamnn方法是基于正六边形或正四边形的均匀对称网格.由于均匀网格在计算效率、计算精度等方面的不足,从而促进了非均匀网格、多快以及多重网格、无网格等多技术出现.总的来说,这些网格技术延展了格子Boltzamnn方法的应用范围,使得格子Boltzamnn方法主机去年从理论的神殿走向更可能多的实际应用领域.1.3 格子boltzamnn方法应用概况及优缺点1.3.1格子boltzamnn方法应用概况与传统的宏观数值方法相比,具有介观特性的格子Boltzamnn方法其主要优点是物理图像清晰、便捷容易处理以及并行性能好等.因而自诞生之日起,格子Boltzamnn方法就得到了国内外学术界的广泛关注,并寄希望该方法能再注入为尺度流体、多相流、多孔介质内流动与换热、化学反应流等传统法就延受限的领域取得开拓性进展.事实上,在20年的发展过程中,格子Boltzamnn方法的确也已成一个十分活跃极具发展前景的模拟手段.并迅速在微/纳米尺度流、多孔介质流、多相多质流、非牛顿流体、粒子悬隔i浮流、湍流、化学反应流、燃烧问题、磁流体、晶体生长等许多领域得到应用.下面分别以多孔介质流、多相流和非牛顿流体三个方面为例,做较详细说明.由于格子Boltzamnn方法边界条件易于实施,在模拟具有复杂几何构型的问题具有较大的优势,因而这个方向的发展非常迅速.目前,采用格子Boltzamnn方法对多孔介质流进行模拟主要在空隙尺度和代表单元尺度上进行.在孔隙尺度上,可以直接使用格子Boltzamnn方法描述孔隙内的流体流动,多孔介质则当做固体壁面,流体与介质相互作用使用边界处理格式来描述.在多相流方面,由于真实的流动问题常常是多相的,因而对其开展研究具有重要的现实意义.由于格子Boltzamnn方法的介质特性,它可以方便地描述数流动中不同相之间的相互作用,因而在多相流领域具有较好的应用前景.按照设计方法的不用,现有模拟多相流的格子Boltzamnn模型可分为四大类:着色模型、伪势模型、自由模型和其他模型.格子Boltzamnn方法在非牛顿流体领域的应用刚刚起步,主要研究对象是非牛顿幂律流体.Aharonov等最早提出使用矩阵碰撞该算子来计算幂律流问题,即在每一个时步内,调整碰撞算自来该表局部的动力学黏性系数.Boek用该模型模拟了幂律流体在简化多孔介质中模型的流动,模拟结果与达西定律符合良好.最近,Gabbanelli又对上述模型进行了改进,引入分段幂律方程描述剪切率和表现黏度的关系.以上可看出,到目前为止,格子Boltzamnn方法的研究者主要局限在科学界.尽管如此,随着格子Boltzamnn 方法理论体系逐渐完善,以及计算机技术的进一步发展,格子Boltzamnn方法也会走向更加广泛的工业实际应用中.1.3.2格子Boltzamnn的优缺点流体力学的理论描述通常建立在纳维--斯托克斯方程的基础上,作为流体力学的基石,它已处在了一个多世纪.在通常尺度下,|人们对此方程的物理可靠性即准确性并不抱异议.理论上人们一般通过求纳维--斯托克斯方程及其各种简化形式的途径来处理复杂的流体力学问题,现行的计算流体力学研究也主要是围绕着纳维--斯托克斯方程的计算方法展开的.然而,基于其本质上的非线性以及边界条件处理的困难,除少数简单问题外,解析和数值求解纳维--斯托克斯方程都是极具挑战性的任务.除了求解的困难外,作为一种对流体物理的描述,与描述经典力学运动的牛顿运动方程,或与描述量子力学运动的薛定谔方程等原理方程不同,纳维--斯托克斯方程是从更根本的原理性方程出发,在合理地假定某些物理机制可以忽略后,经过统计平均得到的.本质上纳维--斯托克斯方程当然不可能描述那些被忽略了的物理机制带来的宏观现象,比如流体系统中的相变、非牛顿的本构关系以及在分子运动自由程尺度上的物理现象,在这些领域,纳维--斯托克斯方程明显的显示出了他的局限性.从20世纪80年代末开始,一种对于流体力学的全新的理论表相及有效的计算方法初步形成,这就是现在人们通常所谓的格子Boltzamnn方法.关于格子Boltzamnn方法的早期发展,上文已有较全面的综述,在此仅作简单介绍.从历史角度来讲,格子Boltzamnn方法最初是从所谓的格子气模型演化而来的,而后者是一种抽象简化的分子运动数学模型.格子Boltzamnn方法最初的引入有两个主要原因:一是为了降低模型导致的数值噪音;而是能够克服格子气模型里处在的非物理缺陷.可以证明,格子Boltzamnn系统的宏观表象基本满足纳维--斯托克斯方程.从而,人们可以模拟格子Boltzamnn系统地方法来间接地解纳维--斯托克斯方程.标准格子Boltzamnn方程一般用一下的数学表达式描述:式中——粒子分布函数;——碰撞项.用格子玻尔兹曼模型进行流体的数值模拟有一些明显的优越性.如,它的对流(advection)过程是通过常数值速度实现的.这相应的计算是一项极其简单的操作步骤.当适当的格子网格选定后,该过程通常可以用完全平移的方式实现.用计算数学里的常规有限插值语言来讲,它对应于上风插值.但所不同的是其对应的柯郎数(Courant Number)等于1.相比之下,纳维——斯托克思方程的对流项是一个随时空变化的非线性函数.众所周知,对于它的计算不是一项简单的事,并且,数值稳定性的要求迫使人们在实际问题的计算中只能使用比1小得多的柯朗数.在给定空间分辨度的情况下,小柯朗数意味着小时间步长,从而大大延长了计算时间:同时,小柯朗数也增大了数值扩散误差,迫使人们采用更高精度格式或隐式格式.其后果是,或者算法变得极为复杂,并行效率大大降低;或者计算只限制在处理定常流的情况下.事实上,定常流是对流动情况的极大限制.许多重要的流体力学问题,如分离流,即使我们只关心它的时间平均的结果,也是不能用定常流假设来近似的.在此我们也要提一下格子玻尔兹曼方程的另一个本质特性:所有非线性效应在格子玻尔兹曼方法里都包含在碰撞项中,并且是以纯粹局部信息的方式体现的.这进一步发挥了并行计算的长处.所有这些理由意味着格子玻尔兹曼方法是对非定常流动实行大规模并行模拟计算的一种比较优越的方法.相比之下,以流体力学方程(纳维一斯托克思方程或Burnett类型方程)宏观描述为基础的传统计算方法对许多这类问题存存基本困难.除边界条件之外,利用各种封闭性假设推导出的超越纳维一斯托克思的宏观方程直至现今仍存在对其数学规范性的疑问和争议,多相流的计算也存存同样问题.众所周知,流体系统中存在多相的物理机制是分子问的长程作用力,这种机制早已超出了流体力学方程所能描述的物理现象范围.以流体力学方程为基础的多相流计算方法必须依赖额外的模型来模拟流体力学方程本身所不包含的物理现象.除了实际数值结果显示的问题之外,这种方法本质上隐含着严重的基本物理缺陷,这种缺陷集中表现在对相交界面的准确描述上面,即在十分尖锐的相界面附近,纳维一斯托克思方程之类近平衡态的近似表象是有相当疑问的.这也反映在相界面和兀滑动(no—slip)固体边界条件的互斥性上面,为了修补这一缺憾,人们不得不引入各种滑动经验模型.反之,以细观(mesoscopic)为表象基础的格子玻尔兹曼方法可容忍更大的非平衡态程度及更广义的严格边界条件.另外,压力的状态方程在细观表象中是由粒子的相互作用自然得出的,而不用直接输入和处理.在相变情况下,物体的宏观特性将产生不连续性,而对应的微观和细观力学机制并无改变.格子玻尔兹曼方法在模拟多相流上有着广泛的使用.然而,这种为大多数人所熟悉的格子玻尔兹曼方法的理论框架存在本质上的缺陷.由于它运用逆向切普曼一安斯柯格展开的途径来适定平衡态分布函数中的关键参数,以达到复建宏观物理体系的目的,这就使其。
有限体积格子Boltzmann方法的算法改进及性能分析

有限体积格子Boltzmann方法的算法改进及性能分析武频;曹啸鹏;尚伟烈;郑德群;高升【期刊名称】《计算机应用研究》【年(卷),期】2012(29)10【摘要】有限体积格子Boltzmann方法(LBM)能够将标准LBM的应用范围扩展到非结构网格,但是比起标准的LBM这个方法需要更多的内存用量和计算量.针对此问题采用了优化计算顺序、简化计算方程的方法对有限体积LBM算法进行改进.科学的分析和实验的结果表明,改进后的算法能够在不增加计算量的基础上减少内存用量,在一些情况下还可以大量减少计算时间.%Finite volume lattice Boltzmann method ( LBM) can extend the standard LBM to unstructured mesh, but compared with standard LBM this method suffers from higher memory consumption and poorer computational performance. In order to solve this problem, the improvement process used the methods of optimizing evaluation order and simplifying calculating equation. Scientific analysis and experimental results demonstrate that the improved algorithm results in lower memory usage without additional computation, and in some conditions it reduces much computation.【总页数】4页(P3706-3709)【作者】武频;曹啸鹏;尚伟烈;郑德群;高升【作者单位】上海大学计算机工程与科学学院,上海200072;上海大学计算机工程与科学学院,上海200072;上海大学计算机工程与科学学院,上海200072;上海大学计算机工程与科学学院,上海200072;上海大学计算机工程与科学学院,上海200072【正文语种】中文【中图分类】TP391【相关文献】1.异构平台下格子Boltzmann方法实现及性能分析 [J], 张丹丹;徐莹;徐磊2.基于格子Boltzmann方法和有限体积法的方柱绕流特性对比分析 [J], 史冬岩;李红群;王志凯3.基于非结构化网格的高可扩展并行有限体积格子Boltzmann方法 [J], 徐磊;陈荣亮;蔡小川4.有限体积格子Boltzmann方法用于近空间连续流区绕流模拟 [J], 皮兴才;李志辉;彭傲平;张子彬5.格子Boltzmann并行程序的优化与性能分析 [J], 赵鹏;张丹丹;汪鲁兵;田振夫;钱跃竑因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的粘 性 , 可 在 一 定 条 件 下 逼 近 N i — tks 程 。 又 a e Soe 方 v 同时 ,B 的这种 用简 单模 型实 现 复杂 系 统 的数 学 建 LM 模方法 , 打破 了传 统 的建模 观念 , 也 为其他 复 杂 系统 的
于航空 器等 高速 运 动物 体 的计 算 , 文 通过 深 入研 究 本 单 肖文提 出 的 用 He t r e函数 推 导 出 分 布 函 数 的方 mi 法 J探 索解 决 L M 方 法求 解 可 压 缩 流 动 问题 , 文 , B 本
计 算 , 程研究 中对 流体计 算要求 迅 速得 到结 果 , 已 工 而
有 的方 法 由于 存 在 以上 的缺 点 制 约 着 流 体 计 算 的发
展, 因此 迫切需 要 一种 具 有 高 扩展 性 和 数 值 稳定 性 较
好 的并行 算法 。
改 进该 方法 后 对 高 速 可压 缩 流 体 问 题 进 行 了深 入 研 究 , 到 了 07马赫 流体 计算结 果 , 过对 几个 典 型算 得 . 通
宏观 和微观 的可 能性 和现实性 。它既能 直接 计算 流 体
l B hman方 程 的 B K模 型 oz n G
B K模 型 是 带 碰 撞 项 的 B l m n G o z a n方 程 ( ol t C l. i
s nl oz anE utn 的一 种 近 似 , i a B lm n qao ) o t i 近年 来 在 C D F
编程 相对 简单 , 并行 计算效率高的特点 , 但是现有的 D Q B 2 9L M模 型只能计 算速度在 0 3马赫下的 .
不 可 压 缩 流体 , 出的 新 的 L M 模 型 可 以 处理 速 度 07马 赫 以 下 的 流 体 问题 , 且 具 有 较 好 的 数 值 提 B . 并
不大 , 想提 高计 算 速度 只 有 发 展 多核 多 处 理器 并 行 要
L M( B 尤其 是 L G B K模 型 ) 的演化过 程非 常简单 清 晰 , 序 比较简 洁 。格 子 B lman方法 中涉 及 的计 算 程 oz n t
都是 局部性 的 , 有天 然 的并行性 , 常适合 在 大规模 具 非
并 行计 算机 上运 行 。正 是 由于 具 有这 些 优 势 , B 被 LM 认 为 是一种 很有 潜 力的计算 方法 并引起 人们 强 的 L M 方 法 只 能处 理 速度 小 于 0 3马 B .
赫 的低 速流 体 , 大地 限制该 方法 的应 用范 围 , 能用 极 不
例 的计算 研究 , 证实 了新 方法 的正确性 。 本 文还对 新方 法 的 并行 可 扩 展 性进 行 了研 究 , 提
近年 来备 受 人 们 关 注 的 Ltc oz n to ateB lmanMe d i t h 方法 ( 简称 L M方 法 ) 于基 于 介 观模 型 方 法 。其 B 属 本 质上是 通过求 解 B hm n oz an方程 得 到 流 体 的运 动 规
第3 卷 8
第 5期
航 空 计 算 技 术
Aeo a t a o u ig T c n q e r n u i lC mp t e h iu c n
V0 . 8 No 5 13 . S p. 0 e 2 08
20 0 8年 9月
基 于 可压 缩 格 子 B lman方 法 的高 可 扩 展 并 行 算 法研 究 oz n t
引言
计 算流体 力学 ( F 已经 在科 学研究 和 工程 实践 C D) 中得 到了大量 的 应用 , 是 现 有 的方法 基 本 都 是基 于 但 求解 N i — tks 程 , 隐式 求 解 算 法 在 集群 计 算 a e Soe 方 v 其 机上可 扩展并 行性 能较差 , 显式 算法 数值稳 定 性较 差 , 迭代计 算步 数 多 , 算 时 间 长 。现代 计 算 机 每个 处 理 运 器 的计算 速度受 到技 术 的限制计 算性 能 的提高 的空间
律 , LM方法中, 在 B 流体被 抽象 为大 量 的微 观粒 子 , 并 且这 些微 观粒子 根据 简单 的运动 规则 在离散 的格 子 上
出了基 于 Cce 化 并 行 计 算 性 能 的方 法 , 并 行 性 ah 优 对
能 的测试 结果 证 明该 算法 具有 很高 的并行 扩展性 能 。
稳 定性 , 对计算程序 并行 性能深入研 究的基础上 , 出了基于 cce的性 能优化 , 提 ah 经过程序性 能测试 证 明该方法具有较好并行计 算效 率, 并具有很好 的可扩展性 。 关键词 : 并行计算 ; 格子波 尔兹 曼方法 ; 空腔 流
中 图分 类 号 :P 0 . ; P9 .7 T 3 16 T 3 17 文 献标 识 码 : A 文 章 编 号 :6 1 6 4 ( 0 8 0 — 0 5 0 17 — 5 X 20 ) 5 06 — 4
进行 迁移 和碰撞 。通过 对粒 子 的统计 就可 以得 到流 体 的宏 观运 动 特 征 。L M 的这 种 粒 子 特性 也使 其 具 有 B 许多 常规数值 方法 没有 的独 特优 点 , 如物 理 图像 清 晰 , 边界处 理 容 易 和 本 质 并 行 性 等 。L M 还 提供 了联 系 B
何 冰 封 卫兵 张 , , 武 武 , 频。 白 文 李 立 , ,
( . 海大 学 计算机 工程 与科 学学 院 , 海 20 7 ;. 1上 上 00 22 中国航 空计 算技 术研 究所 , 陕西 西安 706 ) 10 9
摘 要 :ai o z a nMe o s L M)是近年 来发展 的求解流体 问题 的计 算新 方法 , Ltc B lm n t d ( B te t h 该方法具有