全国高中数学联赛模拟试题5

合集下载

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。

为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。

请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。

解:由题意得,房子在四周建墙,所以共4个墙面。

墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。

因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。

用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。

因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。

当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。

当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。

所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。

因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。

2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。

求$\sum_{k=1}^{2019}s_k$的个位数。

全国高中数学联赛模拟试题及参考答案

全国高中数学联赛模拟试题及参考答案

全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2k k e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O ABC 中,若点O 处的三条棱两两垂直,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由ABC ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将ABC ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a bb b b b b ++=++,且123min{,,}a a a 123min{,,}b b b ≤,求证:123max{,,}a a a 123max{,,}b b b ≤.第二试一、设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC ∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、已知周长为1的i i i ABC ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a bc =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.全国高中数学联赛训练题(1)参考答案:令3xt =,[0,3]x ∈则3()()271f x g t t t ==-+,[1,27]t ∈,而'()3(3)(3)g t t t =-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.:设2a t =,则由21n n n a a a ++=-依次写出数列{}n a 的前8项为:1,,1,1,,1,1,t t t t t - - - - .于是易知:该数列是以周期6T =的一个周期数列,故由20002000a =可得20006333222000a a a t ⨯+====,从而2010335661120001999a aa t ⨯===-=-=-,即20101999a =-. :由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x AB ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.:由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4.:由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2c x a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.:设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k ka c =,2k k k k ce a -==,故可得2k k a -=,于是可得121222212n n n a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.:如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=.:设三角形最多有n 个,则根据角度相等可得20072n πππ⨯+=⨯,故2200714015n =⨯+=.: 令1122(,),(,)M x y N x y ,设点(,0)A a ,则由(,0)2p F 得12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实根,即是说12,x x 是方程22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-. 故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.:当(0,)2πθ∈时,函数s i n y x =与cos y x =的图像关于直线4x π=对称,函数t a n y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有s i n c o s s i n c o s θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.:设123123a a a b b b p ++=++=,122331122331a a a a a a bb b b b b q ++=++=,且123a a a r =,123'b b b r =, 则123,,a a a 是函数32()f x x px qx r =-+-的零点,123,,b b b 是函数32()'g x x px qx r =-+-的零点.不妨设123123,a a a b b b ≤≤ ≤≤,则由123min{,,}a a a 123min{,,}b b b ≤知11a b ≤. 而1()0f a =,1111213()()()()0g a a b a b a b =---≤,故11()()g a f a ≤,即3232111111'a pa qa r a pa qa r -+-≤-+-,故3232333333'a pa qa r a pa qa r -+-≤-+-, 即33()()g a f a ≤,也即是33132333()()()()()0g a a b a b a b f a =---≤=.若33a b >,则313233()()()0a b a b a b --->,这与33132333()()()()()0g a a b a b a b f a =---≤=矛盾! 所以有123max{,,}a a a 123max{,,}b b b ≤.:由西姆松定理知,,P Q R 共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有DAC DPR DPQ ∠=∠=∠.故DAC ∆∽DPQ ∆,同理可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PRDB DA DP PR BA BC DC DQ QR BCDB BA⋅===⋅⋅.从而PR QR =的充要条件是DA BABC =.又由角平分线的性质得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. :由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,即可得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=.2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. :由640p q r s +++=,及,,,p q r s 是不同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故332(1)26402p q r s p q s qs q s +++=++=-++=,即有(32)(34)3857719q s ++==⨯⨯于是得3419,3272s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====. :所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.第二步说明26n =是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。

2024年全国高中数学联赛北京赛区预赛一试试题(解析版)

2024年全国高中数学联赛北京赛区预赛一试试题(解析版)

2024年全国高中数学联赛北京赛区预赛一试试题考试时间:8:00-9:20填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合{}12345A a a a a a =,,,,,若A 中所有三元子集的三个元素之积组成的集合为{}30,15,10,6,5,3,26,10,15B =------,,则集合A =.2.已知函数()201ln 102x x f x x x +<⎧⎪=⎨⎛⎫+≥ ⎪⎪⎝⎭⎩,,若关于x 的方程()()f f x m =恰有三个不相等的实数根123,,x x x 且满足123x x x <<,则()1229ln 4x x ++的取值范围是.3.从1,2,,2024 中任取两个数()a b a b ≤,,则37a b +的值中,个位数字为8的数有个.4.设复数z 满足32i 6z -=,令21107457iz z z z -+=-+,则1z 的最大值是.5.已知函数()*,1,,,N ,,,x x f x q q x p q p q p q p p ⎧⎪=+⎨=∈>⎪⎩若为无理数若其中且互质,则函数()f x 在区间89,910⎛⎫ ⎪⎝⎭上的最大值为.6.对于0c >,若非零实数a b ,满足224240a ab b c -+-=,且使2a b +最大,则342a b c -+的最小值为.7.已知函数()44cos sin sin4f x x x a x b =++-,且π6f x ⎛⎫+ ⎪⎝⎭为奇函数.若方程+=0在[]0,π上有四个不同的实数解1234,,,x x x x ,则12344x x x x f +++⎛⎫ ⎪⎝⎭的平方值为.8.已知{}1,2,,2625A ⊆ ,且A 中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式202320240()i i f x x cx ==+∑,其中{}1,0,1i c ∈-.记N 为()f x 的正整数根的个数(含重根).若()f x 无负整数根,N 的最大值是.10.在棱长为4的正方体1111ABCD A B C D -中,E 为棱1AA 上的一点,且11,A EF =为截面1A BD 上的动点,则AF FE +的最小值等于.11.数列{}n a 定义如下:设()()2!!2024!n n n +写成既约分数后的分母为(),n A n a 等于()2A n 的最大质因数,则n a 的最大值等于.2024年全国高中数学联赛北京赛区预赛二试试题考试时间:9:40-12:3012.设,,a b c 是三个正数,求证:++13.如图所示,锐角ABC V 的三条高线AD ,BE ,CF 交于点H ,过点F 作//FG AC 交直线BC 于点G ,设 CFG 的外接圆为O O ,与直线AC 的另一个交点为P ,过P 作//PQ DE 交直线AD 于点Q ,连接OD ,OQ .求证:OD OQ =.14.有n 个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.15.设12n a a a ,,,为n 个两两不同的正整数且12n a a a 恰有4048个质因数.如果12n a a a ,,,中任意多个数相乘均不是一个整数的4049次方,求n 的最大值.1.{}2,1,1,3,5--【分析】依据总的乘积,绝对值最大的乘积,绝对值最小的乘积去分析集合A 中的各元素即可.【详解】A 中所有三元子集共有35C 10=个,A 中的每个元素在这些三元子集中均出现了10365⨯=次,故()()()()()()()612345301510653261015a a a a a =-⨯-⨯-⨯-⨯-⨯-⨯⨯⨯⨯,1234530a a a a a =,因为集合B 中的元素有6个负数4个正数,故集合A 中的元素有2个负数3个正数,所以1234530a a a a a =,不妨设12345a a a a a ≤≤≤≤,三个元素之积绝对值最大时,34530a a a =-,121a a =-,又A 为整数集合,所以11a =,21a =-或者11a =-,21a =;三个元素之积绝对值最小时,1232a a a =,又121a a =-,所以32a =-,4515a a =,因为集合A 中的元素有2个负数3个正数,故4a 、5a 均为正整数,所以43a =,55a =,故{}2,1,1,3,5A =--.故答案为:{}2,1,1,3,5--.【点睛】关键点点睛:本题考查集合的子集,关键是理解题目的意思,并从“总的乘积,绝对值最大的乘积,绝对值最小的乘积”这些不同的角度去分析集合A 中的各元素.2.11,1ln 22ln 2⎡⎫+⎪⎢⎣⎭【分析】求出嵌套函数解析式4,2,1(())ln 2,20,211ln ln 11,022x x f f x x x x x ⎧⎪+<-⎪⎪⎪⎛⎫=+-≤<⎨ ⎪⎝⎭⎪⎪⎡⎤⎛⎫++≥⎪ ⎪⎢⎥⎝⎭⎪⎣⎦⎩,作出其图象,得到0ln 2m ≤<,化简得()121ln 229221ln 4ln 2x x m ⎛⎫- ⎪+=- ⎪++ ⎪⎝⎭,设右边为新函数,根据其单调性得到范围.【详解】当2x <-时,则20x +<,则()()224f f x x x =++=+,当20x -≤<时,022x £+<,则()()()11ln 21ln 222f f x x x ⎡⎤⎛⎫=++=+ ⎪⎢⎥⎣⎦⎝⎭,当0x ≥时,()()11ln ln 1122f f x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,即4,2,1(())ln 2,20,211ln ln 11,022x x f f x x x x x ⎧⎪+<-⎪⎪⎪⎛⎫=+-≤<⎨ ⎪⎝⎭⎪⎪⎡⎤⎛⎫++≥⎪ ⎪⎢⎥⎝⎭⎪⎣⎦⎩方程(())f f x m =恰有三个不相等的实数根等价于直线y m =与函数(())y f f x =的图象有三个不同交点,因此0ln 2m ≤<.此时14x m +=且21ln 22x m ⎛⎫+= ⎪⎝⎭,则14x m =-,()2ln 4ln 2x m +=+,从而()121ln 22921221ln 4ln 2ln 2x m x m m ⎛⎫- ⎪++==- ⎪+++ ⎪⎝⎭,设()1ln 2221ln 2h m m ⎛⎫- ⎪=- ⎪+ ⎪⎝⎭,则其在[0,ln 2)上单调递增,因此()1229ln 4x x ++的取值范围是11,1ln 22ln 2⎡⎫+⎪⎢⎣⎭.故答案为:11,1ln 22ln 2⎡⎫+⎪⎢⎣⎭.【点睛】关键点点睛:本题的关键是利用分段函数的解析式求出()()y f f x =的表达式,然后利用转化法、数形结合思想进行求解.。

2020全国高中数学联赛模拟试题(五) 新人教A版 精品

2020全国高中数学联赛模拟试题(五) 新人教A版 精品

2020全国高中数学联赛模拟试题(五)第一试一、 选择题:(每小题6分,共36分)1、空间中n (n ≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论(1) 没有任何两个平面互相平行; (2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;(4) 平面间的每一条交线均与n -2个平面相交. 其中,正确的个数为 (A )1(B )2(C )3(D )42、若函数y =f (x )在[a ,b ]上的一段图像可以近似地看作直线段,则当c ∈(a ,b )时,f (c )的近似值可表示为 (A )()()2b f a f +(B )⎪⎭⎫⎝⎛+2b a f(C )()()()()()a b b f a c a f c b --+-(D )()()()[]a f b f ab ac a f ----3、设a >b >c ,a +b +c =1,且a 2+b 2+c 2=1,则 (A )a +b >1(B )a +b =1 (C )a +b <1(D )不能确定,与a 、b 的具体取值有关4、设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫⎝⎛23,0P 到椭圆上的点的最远距离是47,则短半轴之长b = (A )161 (B )81 (C )41(D )215、S ={1,2,…,2003},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是 (A )32003C(B )2100221001C C +(C )2100221001A A +(D )32003A6、长方体ABCD -A 1B 1C 1D 1,AC 1为体对角线.现以A 为球心,AB 、AD 、AA 1、AC 1为半径作四个同心球,其体积依次为V 1、V 2、V 3、V 4,则有 (A )V 4<V 1+V 2+V 3(B )V 4=V 1+V 2+V 3(C )V 4>V 1+V 2+V 3(D )不能确定,与长方体的棱长有关二、 填空题:(每小题9分,共54分)1、已知k ==βαβαcos cos sin sin 33,则k 的取值范围为 . 2、等差数列{a n }的首项a 1=8,且存在惟一的k 使得点(k ,a k )在圆x 2+y 2=102上,则这样的等差数列共有 个.3、在四面体P -ABC 中,PA =PB =a ,PC =AB =BC =CA =b ,且a <b ,则b a的取值范围为 . 4、动点A 对应的复数为z =4(cos+isin),定点B 对应的复数为2,点C为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为 .5、∑=200313k k 被8所除得的余数为 .6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为 .三、 (20分)已知抛物线y 2=2px (p >0)的一条长为l 的弦AB .求AB 中点M 到y 轴的最短距离,并求出此时点M 的坐标.四、 (20分)单位正方体ABCD -A 1B 1C 1D 1中,正方形ABCD 的中心为点M ,正方形A 1B 1C 1D -1的中心为点N ,连AN 、B 1M .(1)求证:AN 、B 1M 为异面直线; (2)求出AN 与B 1M 的夹角.五、 (20分)对正实数a 、b 、c .求证:cabc b ac b a bc a 888222+++++≥9.第二试一、 (50分)设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△PAB 的内切圆与边AB 的切点.乘积PA ·PB 的值随着长方形ABCD 及点P 的变化而变化,当PA ·PB 取最小值时, (1)证明:AB ≥2BC ; (2)求AQ ·BQ 的值.二、 (50分)给定由正整数组成的数列⎩⎨⎧+===++n n n a a a a a 12212,1(n ≥1). (1)求证:数列相邻项组成的无穷个整点(a 1,a 2),(a 3,a 4),…,(a 2k -1,a 2k ),…均在曲线x 2+xy -y 2+1=0上.(2)若设f (x )=x n +x n -1-a n x -a n -1,g (x )=x 2-x -1,证明:g (x )整除f (x ).三、 (50分)我们称A 1,A 2,…,A n 为集合A 的一个n 分划,如果 (1)A A A A n =Y ΛY Y 21; (2)∅≠j i A A I ,1≤i <j ≤n .求最小正整数m ,使得对A ={1,2,…,m }的任意一个13分划A 1,A 2,…,A 13,一定存在某个集合A i (1≤i ≤13),在A i 中有两个元素a 、b 满足b <a ≤89b .参考答案第一试一、选择题:二、填空题:1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,2121,1Y ;2、17;3、⎪⎭⎫ ⎝⎛-1,32;4、()134122=+-y x ; 5、4;6、117600.三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫⎝⎛<<2222,2,2,20,8,20,8p pl p l M p l p l p l M p l pl .四、(1)证略;(2)32arccos .五、证略.第二试一、(1)证略(提示:用面积法,得PA ·PB 最小值为2,此时∠APB =90°); (2)AQ ·BQ =1.二、证略(提示:用数学归纳法).三、m =117.。

解析版-2024年全国高中数学联赛福建赛区预赛试卷

解析版-2024年全国高中数学联赛福建赛区预赛试卷

2024 年全国高中数学联赛福建赛区预赛 暨 2024 年福建省高中数学竞赛试卷参考答案(考试时间: 2024 年 6 月 22 日上午 9:00-11:30, 满分 160 分)一、填空题 (共 10 小题, 每小题 6 分, 满分 60 分. 请直接将答案写在题中的横线上) 1. 在 △ABC 中,已知 AB =4,BC =2,AC =2√3 ,若动点 P 满足 |CP⃗⃗⃗⃗⃗ |=1 ,则 AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 . 【答案】 5【解答】取 AB 中点 O ,则AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =14[(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ )2−(PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )2]=14[(2PO ⃗⃗⃗⃗⃗ )2−BA⃗⃗⃗⃗⃗ 2]=PO ⃗⃗⃗⃗⃗ 2−14×42=PO ⃗⃗⃗⃗⃗ 2−4由 AB =4,BC =2,AC =2√3 ,知 AB 2=CA 2+CB 2 ,于是 CA ⊥CB . 所以 CO =12AB =2 .又 |CP⃗⃗⃗⃗⃗ |=1 ,所以 |PO ⃗⃗⃗⃗⃗ | 的最大值为 CO +1=3 . 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 32−4=5 . 2. 已知 z 1,z 2,z 3 为方程 z 3=−i 的三个不同的复数根,则 z 1z 2+z 2z 3+z 3z 1= . 【答案】 0【解答】设 z =x +yi (x,y ∈R ) 为方程 z 3=−i 的复数根, 则 z 3=(x +yi )3=x 3+3x 2(yi )+3x (yi )2+(yi )3=−i . 即 x 3+3x 2yi −3xy 2−y 3i =−i,x 3−3xy 2+(3x 2y −y 3)i =−i . 由 x,y ∈R ,得 {x 3−3xy 2=03x 2y −y 3=−1,解得 {x 1=0y 1=1 , {x 2=√32y 2=−12,{x 3=−√32y 3=−12.于是 z 1=i, z 2=√32−12i, z 3=−√32−12i . 所以 z 2+z 3=(√32−12i)+(−√32−12i)=−i ,z 2z 3=(√32−12i)(−√32−12i)=(−12i)2−(√32)2=−14−34=−1.因此 z 1z 2+z 2z 3+z 3z 1=z 1(z 2+z 3)+z 2z 3=i ×(−i )−1=0 .3. 设a=66⋯6⏟10个6,b=33⋯3⏟6个3,则a,b的最大公约数为 .【答案】 33【解答】用(x,y)表示正整数x,y的最大公约数.则(a,b)=(66⋯6⏟10个6,33⋯3⏟6个3)=(33⋯3⏟10个3,33⋯3⏟6个3)=3(11⋯1⏟10个1,11⋯1⏟6个1) .设m=11⋯1⏟10个1, n=11⋯1⏟6个1,则由m=11⋯1⏟10个1=104×11⋯1⏟6个1+1111 ,可知(m,n)=(1111,11⋯1⏟6个1) .同理可得, (m,n)=(1111,11⋯1⏟6↑1)=(11,1111)=(11,11)=11 .所以(a,b)=3(m,n)=33 .4. 某校三个年级举办乒乓球比赛, 每个年级选派 4 名选手参加比赛. 组委会随机将这 12 名选手分成 6 组, 每组 2 人, 则在上述分组方式中每组的 2 人均来自不同年级的概率为 .【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有: C122C102C82C62C42C22A66=11×9×7×5×3×1种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有C42×C42×A44=36×24种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有2×1种.所以每组的 2 人均来自不同年级的分组方式有36×24×2种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5. 如图,在棱长为 6 的正方体ABCD−A1B1C1D1中,点E,F分别为 AB,BC 的中点,点 G 在棱 CC 1 上. 若平面 EFG 与底面 ABCD 所成角的余弦值为 3√1717,则平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得截面多边形的周长为 . 【答案】 6√13+3√2【解答】如图,以 D 为原点,射线 DA,DC,DD 1 分别为 x 轴, y 轴,(第 5 题图) z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E (6,3,0),F (3,6,0) . 设 G (0,6,t ) ,则 EF ⃗⃗⃗⃗⃗ =(−3,3,0) , EG ⃗⃗⃗⃗⃗ =(−6,3,t ) . 设 m ⃗⃗ =(x,y,z ) 为平面 EFG 的一个法向量,则{m ⃗⃗ ⋅EF⃗⃗⃗⃗⃗ =−3x +3y +0=0m ⃗⃗ ⋅EG⃗⃗⃗⃗⃗ =−6x +3y +tz =0 ,于是 m ⃗⃗ =(t,t,3) 为平面 EFG 的一个法向量.又 n ⃗ =(0,0,1) 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为 3√1717, 所以 |cos⟨m ⃗⃗ ,n ⃗ ⟩|=|m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ ||=√2t 2+9⋅1=3√1717. 结合 t >0 ,解得 t =2 . 所以 G (0,6,2),CG =2 .延长 EF 交直线 DC 于点 M ,由 E,F 分别为 AB,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 . 由 CG DD 1=26=39=MCMD 知, M,G,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得的截面多边形. 易知 EF =√32+32=3√2,FG =√32+22=√13,GD 1=√42+62=2√13 ,D 1P =√62+42=2√13, PE =√22+32=√13.所以截面五边形的周长为 6√13+3√2 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF,∠GHC 为二面角 G −EF −D 的平面角,于是 tan∠GHC =CGCH =3√22=2√23,因此 CG =2 。

高中数学全国希望杯竞赛模拟试题(五)

高中数学全国希望杯竞赛模拟试题(五)

题41E、F是椭圆22x y142+=的左、右焦点,l是椭圆的准线,点P l∈,则EPF∠的最大值是()A、15°B、30°C、45°D、60°(第十三届高二培训题第21题)解法1 不妨设l是右准线,点P在x轴上方(如图所示),则l的方程为2axc==,故可设点P为()()0y y>,记EPFθ∠=,由PE到PF的角为θ,得tan1PF PEPF PEk kk kθ-=+.又知PFk==PEk==,代入上式并化简,得2tan6yθ=+.由假设知0y>,所以tan0,0,2πθθ⎛⎫>∈ ⎪⎝⎭.由基本不等式得tanθ≤=,所以θ的最大值为30°,当Py.故选B.解法2 如上图,设,EPD FPDαβ∠=∠=,则(),tan tanθαβθαβ=-=-=tan tan61tan tan3222262612y yy yαβαβ-==≤==+-++,因为0,,2πθ⎛⎫∈ ⎪⎝⎭所以θ的最大值为30°.故选B.解法3 由EPF∆面积的两种表示方法,即11sin22s EF y EP FPθ==,得sinθ=(222EF yEP FPy y===+21220y≤==+,因为θ为锐角,所以θ的最大值为30°.故选B.解法4 依题意,经过E 、F 且与椭圆的准线l 相切于点P 的圆,使EPF ∠最大.如图1,不妨设l 是右准线,点P 在x 轴上方,则准线方程为2a x c==,易得圆心C的坐标为(,因此点P (使EPF ∠最大.又PE 、PF的斜率分别为3、设准线l x ⊥轴于点A,则30,60PEA PFA ∠=∠=,此时30EPF ∠=.故选B.评析 一般说来,要求某个角的最值,常常先求出此角的某一三角函数的最值.然后根据角所在范围内此三角函数的单调性确定角的最值.解法1运用到角公式与基本不等式求出了EPF ∠正切的最大值,又利用θ为锐角时tan θ单调增,求出了EPF ∠的最大值.解法2将θ表示成两角差,并利用基本不等式求出了tan θ的最大值,进而求出θ的最大值.而解法3利用同一三角形面积的两种不同表示方法,求出了sin θ的最大值,再由sin θ在0,2π⎛⎫⎪⎝⎭上单调增,求出了θ的最大值.此法颇有新意.解法4则利用平几中“同弧所对的圆周角总大于圆外角”巧妙地解决问题.我们知道,平面解析几何研究的就是平面几何问题,只不过所用研究方法是代数方法,即解析法而已.解法4告诉我们,若能直接运用平几中的结论解决解析几何问题,常可收到化繁为简的效果.拓展 经研究,我们还可得到下面的定理 若点P 在过椭圆22221x y a b+=的长轴的一个端点的切线l 上移动,则当点P 到长轴的距离等于半短轴长时,点P 与两焦点连线的夹角θ取得最大值arcsin e .证明 如图2,不妨设0,a b l >>的方程为x a =,则以椭圆的上顶点Q 为圆心,且过焦点E 、F 的圆必与l 相切(设切点为P ˊ)(因为QF QP a ='=)根据同圆Q 的弦EF 所对的圆周角总大于圆外角,可知EP F ∠'就是最大的θ,此时(),P a b ',又()(),0,,0,,P bE CF C k a c 'E -=+ 222222.tan ,121P FP E P F P F P Eb b k k bbc bc ca c a c k EP Fb b ac k k a c b b b a c a c'''''---+=∠'=====-+-++-+图1图2sin ,arcsin cEP F e EP F e a∠'===∴∠'=.原命题得证. 练习1. 在直线20x y --=上求一点P,使它与点()()1,1,1,1A B -连线的夹角APB ∠最大. 2. 足球比赛场地宽为m 米,球门宽为n 米,在足球比赛中,甲方边锋带球过人沿边线直进,试问该边锋在距乙方底线多远处起脚射门,能使命中角最大?最大角是多少? 答案 ()1.1,1,45P APB -∠=米,arcsin n m题42 椭圆()012222>>=+b a by a x 的两焦点是1F 、2F ,M 为椭圆上与1F 、2F 不共线的任意一点,I 为21F MF ∆的内心,延长MI 交线段1F 2F 于点N,则IN MI :的值等于 ( ) A 、b a B 、c a C 、c b D 、ac(第十三届高二培训题第19题)解法1 如图1,设点M 的坐标为()y x ,,21F MF ∆的内切圆半径为r,y c y F F S F MF =⋅=∆212121,又()()121212112222MF F S MF MF F F r a c r∆=++=+()a c r =+.()r c a y c +=∴,cca ry +=,c a rr y =-,caIM MI =∴:.故选B. 解法2 如图2,不妨令M 为椭圆与y 轴的正半轴的交点.由已知,I 必在线段MO 上,且N 与O 重合.I 为21F MF ∆的内心,caOF MF IOMI INMI ===∴22.故选B.评析 按常规,可设()()0,≠y y x M ,然后求出21MF F ∠与21F MF ∠(或12F MF ∠)的平分线的方程,解方程组求出点I 的坐标,令21MF F ∠平分线的方程中的0=y ,得点N 的坐标,再求出MI 与IN .求比值时如何消去x ,y 还不得而知,其复杂程度也是完全可以想象的.作为一个选择题,轻易地这样去解显然是不可取的.图2图1解法1灵活运用平面几何等知识巧妙地解决了问题.解法2更是抓住了选择题的本质特征,运用特殊化思想,轻而易举地解决了问题.由题意,不论点M 在椭圆上的何种位置(只要与1F 、2F 不共线即可),:MI IN 的值总是定值,即结论对一般情形成立,故对其中的特殊情形M 为椭圆与正半y 轴的交点时也应当成立,从而排除特殊情形下不成立的选择支,进而得出正确答案.充分显示了运用特殊化思想解某些选择题的优越性.拓展 对此题作研究,可得下面的定理 1 设 1F 、2F 是椭圆:C ()012222>>=+b a by a x 的左,右焦点,点P 在此椭圆上,且点P 、1F 、2F 不共线,椭圆的离心率为e ,则(1)21F PF ∆的内心内分21PF F ∠的平分线PM 所成的比是定值e1. (2)21F PF ∆的与边()21PF PF 相切的旁切圆的圆心横坐标为定值()a a -;21F PF ∆的与边21F F 相切的旁切圆的圆心外分21PF F ∠的平分线PQ 的比为定值e1-. (3)由焦点向21F PF ∆的21PF F ∠的外角平分线作垂线,垂足必在以坐标原点为圆心,a 为半径的圆上.证明 (1)如图3,设I 为21F PF ∆的内心,连接I F 1、I F 2,则在PM F 1∆及PM F 2∆中由角平分线定理得MF P F MF P F IMPI 2211==,所以ec a MF M F P F P F IMPI 1222121==++=. (2)如图4,设旁切圆圆心为()00,y x I ,M 、N 、R 为切点,则PM PN =,R F M F 11=,22020F R F N c x F P PM c x =⇒-=+⇒-121212FM F P PM FM PF PF +=++=+=012c x F R a ⇒-+=002c x c x a ⇒---=0x a ⇒=-为定值.图3同样的方法可以证明与21F PF ∆的边2PF 相切的旁切圆的圆心横坐标为定值a .如图5,设PQ 交21F F 与R .由外角平分线定理得RF PF RF PF QRPQ 2211==,由合比定理得ec a RF R F PF PF QRPQ 1222121==++=,e QR PQ 1-=∴. (3)如图6,过2F 作12F PF ∠的外角平分线的垂线,A 为垂足,延长A F 2交P F 1的延长线于B ,则PB PF =2,AB A F =2.由椭圆定义可知a PF PF 221=+,故PB PF B F +=11aPF PF 221=+=.又21OF O F =,∴OA ∥B F 1且112OA F B =,所以a OA =.∴垂足A 在以O 点为圆心,a 为半径的圆上.若将定理1中的椭圆该为双曲线,又得定理2 设1F 、2F 是双曲线()2222:10x y C a b a b-=>>的两个焦点,点P 在此双曲线上,且点P 、1F 、2F 不共线,双曲线的离心率为e ,则(1) 21F PF ∆的内心横坐标是定值,且当点P 在左支上时,定值为a -;当点在右支上时,定值为a .(2) 21F PF ∆的与边1PF (或与边2PF )相切的旁切圆的圆心分21PF F ∠的外角平分线PM 的比为定值e1;21F PF ∆的与边21F F 相切的旁切圆的圆心横坐标为常数(当点P 在右支上时常数为a -;当点P 在左支上时,常数为a ).(3) 由焦点向21F PF ∆的21PF F ∠的平分线作垂线,垂足必在以坐标原点为圆心,a 为半径的圆上.读者可仿照定理1的证明,证明定理2.题43 过椭圆左焦点F 作直线交椭圆于B A 、两点,若3:2:=BF AF ,且直线与长轴的夹角为4π,则椭圆的离心率为 ( ) 图6A 、51 B 、52 C 、53 D 、52(第十一届高二第一试第8题)解法1由''AF BF e AA BB ==及23AF BF =::,得 23.AA BB =‘’::如图1,过A 作B B AM '⊥于M,则154522BM AA AB AF MBA ︒==∠=’,,.2BM AB ∴=.由12522AA AF '=得'5AF e AA ==.故选B.解法2 设椭圆222210x y a b a b+=>>(),1122,,(,),A x y B x y AF a =()则,1ex + )(,122x x e AF BF ex a BF -=-+=①,又32::=BF AF ②,由①、②得=BF 21213(),2(),e x x AF e x x -=-215()AB AF BF e x x =+=-③.又AB 与长轴夹角为4π,所以2121212121211,,))AB y y k y y x x AB y y x x x x -==-=-=-=--④ .由③、④得)(2)(51212x x x x e -=-, 52=∴e .故选B.评析 解法1是运用椭圆第二定义求离心率e 的,AA BM '与及BM 与AB 的关系沟通了A A '与AF 的关系,也是用此法解题的关键所在.解法2则先设出椭圆方程及A 、B 的坐标,运用焦半径公式带出 e ,由)(12x x e AF BF -=-及32::=BF AF 解出AF 与BF ,由AB 与长轴夹角为︒45得1212x x y y -=-,又由弦长公式求出AB ,同为AB ,得图1图2)(2)(51212x x x x e -=-,从而52=e ,是典型的运用方程思想解题的实例. 拓展 以此题为背景,对于椭圆、双曲线、抛物线有以下一般结论.命题1 如图3,过椭圆12222=+by a x 的焦点F 作直线交椭圆于B A 、两点,若n BF m AF ==,,直线与长轴的夹角为θ,椭圆的离心率为e,则有)(cos n m e nm +-=θ. 证明 设直线过椭圆的左焦点,过B A 、作相应准线l 的垂线B B A A ''和,B A ''和为垂足.过A 作B B '的垂线与B B '的延长线交于点C ,则θ=∠ABC .由椭圆定义,可知A A AF ':=:.BF BB e '=,m n AA BB e e''∴==.于是e nm B B A A BC -='-'=.在ABC Rt ∆中, cos cos ()m nABC e m n θ-∠==+.当直线过右焦点时,证法与上相同.又由于θ为直线与长轴的夹角,)(cos .0cos n m e nm +-=≥∴θθ故.命题2 如图4,过双曲线12222=-by a x 的焦点F 作直线与双曲线中的一支交于B A 、两点,若n BF m AF ==,,且直线与实轴的夹角为θ,双曲线的离心率为e,则有cos ()m ne m n θ-=+.命题3 如图5,过双曲线12222=-by a x 的焦点F 作直线与双曲线的两支分别交于B A 、两点,若n BF m AF ==,,且直线与实轴的夹角图4图5图3为θ,双曲线的离心率为e, 则有cos ()m ne m n θ+=-.命题4 如图6,过抛物线px y 22=的焦点F 作直线与抛物线交于B A 、两点,若AF =n BF m =,,且直线与抛物线的对称轴的夹角为θ,则有cos m nm nθ-=+. 命题2、3、4的证明与命题1的证明类似,留给读者完成. 对于焦点在y 轴上的圆锥曲线与过焦点的直线交于两点,弦被焦点分成的两段n m 、与圆锥曲线的离心率e 及直线和y 轴的夹角θ之间仍有上述关系成立.运用上述命题可得本题如下解答: 令2312,3(0),cos ()(23)5m n t t AF m t BF n t t e m n e t t eθ--====>===++,e 51,4∴=πθ 52,22==e . 请读者完成下面两题:1.过抛物线x y 32=的焦点F 的直线与抛物线相交于B A 、两点.AF :BF =3:1.求该直线的方程.(答案:)43(3-±=x y )2.过双曲线1322=-y x 的左焦点1F 作倾斜角为︒30的直线与双曲线交于B A 、两点,求11:BF AF 的值.(答案:32-) 题44 如果点A 的坐标为(1,1),1F 是椭圆459522=+y x 的左焦点,点P 是椭圆上的动点,则1PF PA +的最小值为_________________.(第十一届高二培训题第66题)解 己知椭圆方程可化为15922=+y x ,其半长轴长3=a ,由椭圆定义,可得2121216,26AF PF PA AF PA PF PF PF a -≥+∴++≤+==, 右焦点2F 的坐标为26)(,211),0,2(min 12-=+∴=+=∴PF PA AF ,(此时2,,P A F 共线,且A 在2,F P 之间).评析 此题运用了椭圆定义及11AF PF PA ≥+,体现了二次曲线的定义在解题中的作用.如果将此题改为求1PF PA +的最大值,又如何解答呢?设)0(1>=+t t PF PA ,则21222()666t PA PF PF PF PA PF AF =-++=-+≤+=1max ()6PA PF ∴+=P 、2F 、A 共线且2F 在P 、A 之间).拓展 此题可作如下推广:推广1 如果A 是椭圆22221(0)x y a b a b+=>>内的定点,则2min 12max 12)(,2)(AF a PF PA AF a PF PA -=++=+.证明由椭圆定义,得212PF a PF -=,则122()PA PF a PA PF +=+-22a AF ≤+,又2212)(2AF a PA PF a PF PA -≥--=+,故当P 在2AF 的延长线上时,2max 12)(AF a PF PA +=+;当P在A F 2的延长线上时,2min 12)(AF a PF PA -=+(如图1).说明:如果点A 在椭圆上,推广1仍成立.推广2 如果A 是椭圆22221(0)x y a b a b+=>>外的定点,21,F F 是两个焦点,P 是椭圆上的动点,则1min 12max 1)(,2)(AF PF PA AF a PF PA =++=+.证明 由椭圆定义,得212PF a PF -=,于是2212)(2AF a PF PA a PF PA +≤-+=+,故当P 在2AF 的延长线上时,2max 12)(AF a PF PA +=+;当P 在线段1AF 上时,1min 1)(AF PF PA =+(如图2).图1图2推广3 如果A 是椭圆22221(0)x y a b a b+=>>内的定点,21,F F 是两个焦点,P 是椭圆上的动点,则0,min11max1=-=-PF PA AF PF PA .证明 ∴≤-,11AF PF PA 当1,,F A P 三点共线时,1max1AF PF PA =-;当P 在线段1AF 的中垂线上,即1PF PA =时,0min1=-PF PA (如图3).说明:如果点A 在椭圆上,推广3仍成立.推广4 如果A 是椭圆)0(12222>>=+b a by a x 外的定点,21,F F 是两个焦点,P 是椭圆上的动点,则0,min11max1=-=-PF PA AF PF PA (当线段1AF 的中点在椭圆内或椭圆上时).证明 ∴≤-,11AF PF PA 当P 在1AF 的延长线上时,;1max1AF PF PA =-当P 在线段1AF 的中垂线上(当线段1AF 的中点在椭圆内或椭圆上),即1PF PA =时,1min0PA PF -=(如图4).以此题为背景,通过猜想与探索,还能得到下面关于圆锥曲线的一些一般结论:命题1 如图5,若M 为椭圆内一定点,直线M F 1与椭圆交于Q P ,两点,则Q P ,分别为椭圆上到M 及2F 的距离之和的最小和最大的点.证明 设K 为椭圆上任意一点,11KF MF KM -≤11,KF F M ≤+11212a MF KF KF MF ∴-=+-2KM KF ≤+12112KF KF F M a F M ≤++=+,以上两不等式左端取等号的条件为点M 在线段1KF 上,右端取等号的条件为点1F 在线段KM 上,即Q P ,分别图3图4图5为椭圆上到M 及2F 距离之和的最小和最大点.命题2 如图6,若M 为椭圆外一定点,直线M F 1与椭圆交于Q P ,两点,则有(1)点)(Q P 为椭圆上到1F 及M 距离之差(和)最大(小)点.(2)点)(Q P 为椭圆上到M 及1F 距离之和(差)最小(大)点.证明 (1)设K 为椭圆上任意一点,MF a M F KF KF KM KF M F KF KM KF MF 1121211112,+=++≤+∴+≤≤- ①,M F a MF KF KF KM KF 111222-=-+≤-②,不等式①取等号的条件为点1F 在线段KM 上,不等式②取等号的条件为点K 在线段1MF 上,故点)(Q P 为椭圆上到2F 及M 距离之差(和)最大点.对于(2),同理可证.命题3 如图7,若M 为双曲线右支内一定点,直线1MF 与双曲线分别交于Q P ,两点,则有(1)点)(Q P 为双曲线右(左)支上到)(12F F 及M 距离之和最小的点;(2)点)(P Q 为双曲线左(右)支上到)(12F F 及M距离之和最小的点.证明 (1)设K 为双曲线右支上任意一点, 图7,2,1211211a M F KF KF M F KM KF KF M F KM -=+-≥+∴-≥ 当K 在线段M F 1上时取等号,故P 为双曲线右支上到2F 及M 距离之和最小的点,对于点Q ,命题显然成立.(2)设K 为双曲线左支上任意一点,由(1)易得,212a M F KF KM +≥+,当且仅当K 在线段M F 1上时取等号,故Q 为双曲线左支上到2F 及M 距离之和最小点,对于点P ,命题显然成立.命题4 如图8,若M 为双曲线外一定点,直线1MF 与双曲线左、右支分别交于P Q ,两点,则F 1F 2P图6xyOMQ(1)点)(Q P 为双曲线右(左)支上到)(12F F 及M 距离之差(和)最大(小)的点; (2)点)(P Q 为双曲线左(右)支上到)(12F F 及M 距离之和(差)最小(大)的点. 证明 (1)设K 为双曲线右支上任意一点,11,KM KF MF ≥-221112,KF KM KF KF MF MF a ∴-≤-+=-当且仅当点M 在线段1KF 上时取等号,即P 为双曲线右支上到2F 及M 距离之差最大的点,对于点Q ,命题显然成立.(2)设K 为双曲线左支上任意一点,,11KF MF KM -≥,211212a MF KF KF MF KM KF +=-+≥+∴当且仅当K 在线段1MF 上时取等号,即Q 为双曲线左支上到2F 及M 距离之和最小的点,对于点P ,命题显然成立. 命题5 如图9,若M 为抛物线内一定点,过M 作抛物线准线l 的垂线交抛物线于点P ,则点P 为抛物线上与M 及F 距离之和最小的点.命题6 如图10,若M 为抛物线外一定点,过M 作抛物线准线l 的垂线交抛物线于点P ,则点P 为抛物线上与F 及M 距离之差最大的点.命题5、6留给读者自己证明.运用这些命题,可以很容易地解决下列问题:1、如果点A 的坐标为(2,2),2F 是椭圆459522=+y x 的右焦点,点P 是椭圆上的动点,则2PF PA -的最大值为____,PA PF +2的最大值为____.2、如果点A 的坐标为(3,1),21,F F 分别是双曲线3322=-y x 的左、右焦点,点P Q ,分别为双曲线左、右支上的动点,则2PF PA +的最小值为____,2QA QF +的最小值为____.3、如果点A 的坐标为(1,1),21,F F 分别是双曲线3322=-y x 的左、右焦点,点P Q ,分别为双曲线左、右支上的动点,则PA PF -2的最大值为____,QA QF +2的最小值为____.4、如果点A 的坐标为(1,3),F 是抛物线x y 42=的焦点,点P 为抛物线上的动点,则PA PF -的最大值为____.图10图9答案:1、526;526+- 2、3226;3226+-3、210;210+-4、2题45 设1F 、2F 是椭圆的两个焦点,若椭圆上存在点P ,使oPF F 12021=∠,则椭圆离心率e 的范围是______.(第十二届高二第一试第20题)解法1 如图1,当点P 与短轴端点B 重合时,21PF F ∠最大.故由题设可知oPF F 12021≥∠. ∴tan 1F BO ∠≥tan 360=o,即tan 31≥=∠bcBO F .则==ac e 2313111)(1222=+≥+=+cbc b c .又椭圆离心率1<e ,∴123<≤e . 解法2 设m PF =1,n PF =2,c F F 221=.则由椭圆定义及余弦定理,得mn n m c 24222-+=o 120cos mn n m ++=22,即mn n m c -+=22)(4,亦即mn a c -=2244.从而,22222)22()2(44a an m mn c a ==+≤=-,即,22244a c a ≤-,2234a c ≥∴432≥e .又知10<<e ,故123<≤e 为所求. 解法3 不妨设点),(y x P 在x 轴上方,又知)0,(1c F -,)0,(2c F ,则=o 120tan 12121PF PF PF PF k k k k ⋅+-cx y c x y c x yc x y +⋅-++--=12222c y x cy-+=.由椭圆方程有22222y ba a x -=,代入上式,得03234222=--b cy b yc .解得032>=cb y 或032<-=c b y (舍去).又知,0y b <≤故有,20bc <≤,3b c ≤.∴图1222222a b a a c e -==221a b -=22)31a ≥- 2113e =-,即432≥e .又10<<e ,∴123<≤e 为所求. 解法4 设α=∠21F PF ,β=∠12F PF ,则ooo60120180=-=+βα.由正弦定理得,βαβααβsin sin 2sin sin sin sin 120sin 2+=++===an m n m c o ,故2sin12032sin sin 24sin cos 4sin 30cos 222o o c e a αβαβαβαβ====≥+--+.又10<<e ,故123<≤e 为所求. 解法5 由焦半径公式及余弦定理得op p p p ex a ex a ex a ex a c 120cos ))((2)()(4222-+--++=,解得222234e a c x p-=.由椭圆的范围知220a x p ≤≤,故有2222043c a e a ≤-≤.∵10<<e ,∴123<≤e 为所求. 解法6 由已知及椭圆焦点三角形的面积公式得2232120tan 21b b S oPF F ==∆.由椭圆的范围知bc S PF F =∆max )(21,∴有bc b ≤23,c b 33≤以下同解法3. 评析 椭圆的离心率e 反应了椭圆的扁平程度,而扁平程度与椭圆的范围相关.解法1中的“∠12F PF 最大”,解法3中的“b y ≤≤0”,解法5中的“220a x p ≤≤”,解法 6中的“bc S PF F =∆max )(21”,都是运用椭圆的范围求离心率e 的范围.解法2运用椭圆定义、余弦定理及基本不等式,解法4运用三角函数的有界性,巧妙地求出了离心率e 的范围.拓展 解法1的依据是下面的定理 椭圆上的任意一点与其长轴上关于中心对称的两点连线所成张角中以短轴端点所成的张角为最大.证明 如图2,经过对称的两点1P 、2P 及短轴端点A 作圆,则点A 显然在圆上,椭圆在x 轴上方部分(含左、右顶点)的任意一点P (A 除外)都在圆外 ,根据平几中“同弦上的圆周角大于圆外角”,可知2121PP P AP P ∠≥∠.由椭圆的对称性,可知当点P 是椭圆上任意一点时,也都有2121PP P AP P ∠≥∠,故定理成立.该定理是椭圆的一个重要性质,它对与椭圆有关的离心率、范围、字母讨论、位置等问题能起到优化解题思路的作用.本赛题可作如下推广推广1 设1F 、2F 是椭圆12222=+by a x)0(>>b a 的两个焦点,若椭圆上恒存在一点P ,使得12F PF θ∠=,则221cos e -≥θ.证明 由已知及焦点三角形面积公式,得bc b S PF F ≤=∆2tan221θ,即tan2b c θ≤,从而222tan 2b c θ≤,222222tan 2tan c c a ≤-θθ,2sec )2tan 1(2tan 222222θθθc c a =+≤,2222tan 112sin cos 222sec 2e θθθθ∴≥==-.221cos e -≥∴θ.推广2 如图3,设1A 、2A 是椭圆12222=+by a x的长轴的两个端点,若椭圆上恒存在一点P 使得θ=∠21PA A ,则θ为钝角且有24244tan ee -≥θ. 证明 不妨设点),(y x P 在x 轴上方,又知)0,(1a A -,)0,(2a A 则有=θtan 12121PA PA PA PA k k k k ⋅+-ax y a x y a x ya x y +⋅-++--=12222a y x ay -+=.由椭圆方程有22222y b a a x -=,代入上式,得)(2tan 222a b y ab -=θ.由假设0>y ,而022<-a b .从而知0tan <θ.又),0(πθ∈ ,故θ为钝角.由上式可得θcot 2222⋅-=a b ab y .由椭圆的性质,知b y ≤,故b c ab ≤⋅-θcot 222,即图222cot 1abc θ⋅≤-,,θ为钝角, cot 0,θ∴< 22244cot 1a b cθ∴⋅≤2222242444tan .a c e c e e θ-∴≥⋅=-若将焦点换为长轴所在直线与准线的交点,又得推广3 设1E 、2E 是椭圆12222=+by a x )0(>>b a 的两条准线与x 轴的交点,若椭圆上恒存在一点P (P 与长轴端点不重合),使得θ=∠21PE E ,则θ为钝角且1tanθ≥-. 证明 如图4,不妨设点),(y x P 在x 轴上方,因为)0,(21c a E -,)0,(22caE ,所以由1PE 到2PE 的角为θ,得=θtan 12121PE PE PE PE k k k k ⋅+-ca x y c a x y c a x yc a x y 22221+⋅-++--=4222222a y c x c cy a -+=.由椭圆方程得22222a x a y b=-,代入上式,得=θtan 22422420a b cy c y a b -<+,θ∴为钝角,且222221tan 2a b cy a c yab c e θ≥-=-=-,即1tan eθ≥-.题46 1F 、2F 是椭圆2214x y +=的两个焦点, P 是椭圆上任意一点,则21PF PF ⋅的最小值是____.(第七届高二第一试第19题)解法1 如图,设x PF =1,则x PF -=42,易知1211F A x F A ≤≤,即3232+≤≤-x .4)2(4)4(2221+--=+-=-=⋅x x x x x PF PF 在]2,32[-上递增,在]32,2[+上递减,21PF PF ⋅∴在32+=x 或32-=x 时的值达到最小.14)232()(2min 21=+-±-=⋅∴PF PF .解法2 设),(00y x P ,由焦半径公式,得01232x PF +=,02232x PF -=, 200021434)232)(232(x x x PF PF -=-+=⋅∴.220≤≤-x ,∴当20-=x 或20=x 时,21PF PF ⋅取得最小值1)2(4342=±-. 解法3 421=+PF PF ,=--+=⋅∴])()[(4122122121PF PF PF PF PF PF2121[16()]4PF PF --.显然,当点P 位于长轴端点时,221)(PF PF -取得最大值12221=F F .1)1216(41)(min 21=-=⋅∴PF PF .解法4 421=+PF PF .设坐标原点为O,则PO 为21F PF ∆的中线,由中线公式,得22212221)2()(2PO F F PF PF +=+,将3221=F F ,421=+PF PF 代入,得2215PO PF PF -=⋅.21≤≤PO ,∴当2=PO 时,21PF PF ⋅取最小值1.解法5 设11r PF =,22r PF =,m r r =21,421=+r r .则1r 、2r 是方程042=+-m x x 的两个实根,其中1r 、]32,32[2+-∈r .设m x x x f +-=4)(2,则在]32,32[+-上0)(=x f 有解的充要条件是⎪⎩⎪⎨⎧≥+≥-≥∆0)32(0)32(0f f ,即⎪⎩⎪⎨⎧≥≥≤114m m m ,即41≤≤m .∴21r r 即21PF PF ⋅的最小值为1.解法6 由椭圆焦点三角形的面积公式得2tan221θb S F PF =∆.又θsin 212121PF PF S F PF =∆,得θθsin 2tan 2221b PF PF =⋅,12=b ,2tan 12tan2sin 2θθθ+=,代入上式得2tan1221θ+=⋅PF PF .故当02tan=θ时,21PF PF ⋅取最小值1.评析 本题要求的是21PF PF ⋅的最小值,若能把它表示为某变量的函数,则问题变为求此函数的最小值.除解法5运用方程思想外的所有方法都是运用这种函数思想解决问题的,不过选取的自变量有所不同罢了.当21PF PF ⋅表示为某变量的函数后,确定该函数的定义域也是很关键的一点.解法2与解法5还分别用到了焦半径公式及椭圆的焦点三角形面积公式等重要结论.会推导这些公式,并能灵活运用这些公式对解题也是十分重要的.解法4运用平面几何中的中线公式为我们进一步拓宽了解题思路.拓展 将此题条件一般化,便得下面的定理1 若P 是以1F 、2F 为焦点的椭圆12222=+by a x )0(>>b a 上的任意一点,则2212a PF PF b ≤⋅≤.证明 PO 为21F PF ∆的边21F F 上的中线,由中线公式,得22212221)2()(2PO F F PF PF +=+,即2221212214]2)[(2PO F F PF PF PF PF +=⋅-+,整理得22212121211()24PF PF PF PF F F PO ⋅=+--.把a PF PF 221=+,222122b ac F F -==代入上式并整理,得22212PF PF a b PO ⋅=+-.a POb ≤≤ ,2212a PF PF b ≤⋅≤∴.当点P 位于长轴端点处时左边取等号;当点P位于短轴端点处时右边取等号. 若将椭圆改为双曲线,又得定理2 若点P 是以1F 、2F 为焦点的双曲线12222=-by a x 上的任意一点,则221b PF PF ≥⋅.证明 PO 为21F PF ∆的边21F F 上的中线,由中线公式,得22212221)2()(2PO F F PF PF +=+,即2221212214]2)[(2PO F F PF PF PF PF +=⋅+-.把222214)2()(a a PF PF ==-,2222221444)2(b a c c F F +===代入上式并整理得22221PO a b PF PF +-=⋅.a PO ≥ ,222221b a a b PF PF =+-≥⋅∴.当P 位于实轴端点处时取等号.题47 21,F F 是椭圆()012222>>=+b a b y a x 的焦点,P 是椭圆上的一点,且︒=∠9021PF F ,则21PF F ∆的面积是 .(第四届高二第一试第30题)解法1 设,,2211r PF r PF ==则.221a r r =+ ︒=∠9021PF F ,().42222221c c r r ==+∴()()[]()2222221221214441412121b c a r r r r r r S PF F =-=+-+==∴∆. 解法2 设,cos 2cos ,90,2112121αααc F F PF PF F F PF ==∴=∠=∠︒.cos sin 2sin 2cos 22121.sin 2sin 22121221ααααααc c c PF PF S c F F PF PF F =⋅⋅=⋅=∴==∆,221a PF PF =+ 即,cos sin ,2sin 2cos 2c aa c c =+=+αααα,两边平方,得..1cos sin 2,cos sin 21222222222222221b c b c S c b c c a c a c a PF F =⋅=∴=-=-=∴=+∆αααα 解法3 设()∴=∠︒︒︒,90,,21PF F y x P 点P 在线段21F F 为直径的圆222c y x =+上,222c y x =+∴︒︒①.又点P 在已知椭圆上,12222=+∴︒︒bya x ②.①-⨯2a ②,并注意到,222c b a =-得2122222221.21PF PF S b a c a x c PF F ⋅=∴-=∆︒ ()()()()22222222222222422142121︒︒︒︒︒︒︒︒-=-++=+-⋅++=x c c x c c y xy c x y c x .24222222224224b b c b b a b a c a c x c c ==-=+-=-=︒评析 因为要求的是直角21PF F ∆的面积,且21,F F 的坐标确定,按常规思路,只要知道点P 的坐标,问题便解决了.于是解法3设()︒︒y x P ,,便得121212F PF S PF PF ∆=⋅,x y ︒︒=必须消去,因为222c y x =+︒︒(这也可由121-=⋅PF PF k k 得到),且12222=+︒︒by a x ,于是得到,222222b a c a x c -=︒,从而使问题获解.这里运用了方程的思想,整体思想的运用也使得解题过程相对简化.解法1则综合运用了椭圆的定义,勾股定理,直角三角形的面积公式,且巧妙运用代数式的恒等变形,使得整个过程极其简捷,充分显示了二次曲线定义及平几知识在解题中的作用(解法2也运用了椭圆的定义).三种解法都引进了参数,参数思想也是重要的解题思想.消参的方法很多,涉及许多知识与技巧,灵活运用各种知识是消参的捷径.1994年的一道全国高考题与此题十分类似:设21,F F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足︒=∠9021PF F .则21PF F ∆的面积是 ( )A 、1B 、25C 、2D 、5 拓展 如果将21PF F ∠一般化,我们便得定理1 21,F F 是椭圆()012222>>=+b a by a x 的焦点,P 是椭圆上的点,且θ=∠21PF F ,则21PF F ∆的面积为.2tan2θb证明 设2211,r PF r PF ==,则a r r221=+,两边平方并整理,得212222124r r a r r -=+①.又由余弦定理得θcos 242122212r r r r c -+=,即θcos 242122221r r c r r +=+②.由①,②得.cos 12,cos 2424221212212θθ+=+=-b r r r r c r r a.2tan cos 1sin cos 1sin 221sin 212222121θθθθθθb b b r r S PF F =+⋅=+⋅==∴∆ 由定理1,此赛题的答案应是22290tan b b =︒. 随着b a ,取值的不同,即椭圆的扁平程度不同,椭圆上是否一定存在一点P ,使得︒=∠9021PF F 呢?经研究,有下面的定理.定理2 已知21,F F 是椭圆()012222>>=+b a by a x 的焦点.⑴椭圆上存在点P 使︒=∠9021PF F 的充要条件是b a 2≥.21b证明 设2211,r PF r PF ==⑴22212121212222222121224290(2)4r r a r r a r r F PF r r c r r c︒+=⎧+=-⎧⎪∠=⇔⇔⎨⎨+=+=⎪⎩⎩ 2212424a r r c ⇔-= 2122r r b ⇔=.又.2222222121b a b a r r r r ≥⇔≥⇔≥+故椭圆上存在点P 使︒=∠9021PF F 的充要条件是b a 2≥.⑵由对称性,不妨设点P 的坐标为()y x ,且b y a x ≤≤≤≤0,0.在21PF F ∆中,c F F ex a r ex a r 2,,2121=-=+=,由余弦定理得21222212124cos r r c r r PF F -+=∠ ,0.21222222222222a x x e a b x e a c x e a ≤≤-+-=--+= ∴当0=x 时,21cos PF F ∠取得最小值2221a b +-,即2222a a b -.又[)π,021∈∠PF F 且21222,2arctan 2cos PF F a a b b c ∠∴-=⎪⎭⎫ ⎝⎛的最大值是bcarctan 2.若将焦点改为顶点,我们又得定理 3 已知21,A A 与21,B B 分别是椭圆12222=+by a x 的长轴与短轴的两个端点,P 是椭圆上的动点,则21PA A ∠的最大值为21,arctan 2PB B b a ∠的最小值为ab arctan2. 证明 不妨设()()()0,,0,,0,0,,21a A a A b y a x y x P -≤<<≤,则21.,21PA A ax y k a x y k PF PA ∠-=+=是直线1PA 到直线2PA 的角, 2222121tan 1212ay x ay k k k k PF A PF PF PF PF -+=⋅+-=∠∴,又22222,a x a y b -=- ()212222tan .ab A PA a b y-∴∠=-122220,tan .aby b A PA b a<≤∴≥∠>-∞- 又222tan 2arctan,a ab b b a ⎛⎫= ⎪-⎝⎭12A PA ∴∠的最大值为baarctan 2.21a有了这些定理,不难解决下面的问题:1. 21,F F 是椭圆221123x y +=的焦点,点P 在椭圆上,且︒=∠6021PF F ,则12F PF ∆的面积= .2.21,F F 是椭圆的两个焦点,P 是椭圆上的一点,︒=∠6021PF F ,则椭圆的离心率e 的取值范围是( )⎪⎭⎫ ⎝⎛21,0`A ⎥⎦⎤ ⎝⎛21,0`B ⎪⎭⎫ ⎝⎛1,21`C ⎪⎭⎫⎢⎣⎡1,21`D (第十届高二培训题第23题)3. 已知圆22:25C x y +=与x 轴交于两点1F 、2F ,求以1F 、2F 为焦点且与圆C 有公共点的长轴最长的椭圆方程.答案:1.2215025x y += 题48 椭圆12222=+by a x 的内接三角形的最大面积是____.(第九届高二第二试第20题)解 不妨设b a >,ABC ∆为以原点为中心的椭圆E 的内接三角形(如图).显然,ABC ∆的面积可以写成(划分为)若干个(至多4个)底边平行于(或在)x 轴的三角形面积之和.若x 轴方向上不变,在y 轴方向上的长度都增大ba倍,则椭圆E 就变成以O 为圆心,a 为半径的圆.设A 、B 、C 三点经伸长后的对应点为'A 、'B 、'C ,它们就在此圆上.因此,ABC C B A S baS ∆∆='''.易知圆O 的内接三角形'A 'B 'C 面积的最大值是2max 433'a S =,所以椭圆E 的内接三角形ABC 面积的最大值是ab a a b S a b S 433433'2max max ===.评析 直接将椭圆内接三角形的面积用其三个顶点的动坐标表示,再求其最大值,难度是可想而知的.考虑到圆是特殊的椭圆(椭圆的长、短轴相等时即为圆),当b a >时,将椭圆上的每一点的横坐标不变,纵坐标伸长到原来的ba倍,椭圆就变成了半径为a 的圆.由于圆内接三角形面积的最大值可求,故问题解决.这里,运用特殊化思想,把求椭圆内接三角形面积最大值转化为求圆内接三角形面积的最大值;通过伸缩变换,把椭圆变为圆,运用了简单化原则;半径为a 的圆的内接三角形面积的最大值为2433a ,运用了熟悉化原则;由于在伸缩变换中椭圆上各点的横坐标不变,则内接三角形的底在变换过程中不变(不妨设圆的面积最大的内接三角形的底边与y 轴垂直),伸缩前的高为伸缩后的ba倍,则运用了直观化原则.灵活运用上述原则解题,常常可收到意想不到的效果. 拓展 椭圆的投影可以是圆,看下面的定理 椭圆所在的平面α与平面β所成二面角为θ(ab arccos =θ,其中a 、b 分别为椭圆的长半轴和短半轴的长),且椭圆的短轴与平面β平行,则椭圆在平面β上的投影为圆,且半径为b .证明 不妨设椭圆所在位置如图所示.在平面α内分别以长轴和短轴所在直线为x 轴和y 轴建立直角坐标系xoy ;在平面β内分别以长轴与短轴的射影所在直线为'x 轴和'y 轴建立直角坐标系'''y o x .在椭圆上任取一点)sin ,cos (θθb a P ,过P 作 x 轴和y 轴的垂线PQ 、PR ,垂足为Q 、R ;过 P 的射影'P 分别作'x 轴和'y 轴的垂线''Q P 、''R P , 垂足为'Q 、'R ,由y 轴与β平行,可知PQ ∥''Q P且PQ =''Q P ,θθθcos cos cos ''b aba PR R P =⋅==, ∴'P 在坐标系'''y o x 中的坐标是)sin ,cos (θθb b ,由P 的任意性,知'P 的轨迹是半径为b 的圆.用此定理解决本赛题:设椭圆的内接三角形面积为S ,则它在β上的射影为圆的内接三角形,其面积为S abS S ==θcos '.因为圆内接三角形面积最大时为正三角形,其面积2433b S =,所以椭圆的内接三角形面积的最大值2max 3344a S ab b ==. 运用此定理,不难求得椭圆12222=+by a x )0(>>b a 的面积为ab π.题49 Rt △ABC 中,AB=AC,以C 点为一个焦点作一个椭圆,使这个椭圆的另一个焦点在边AB上,且椭圆过A,B 两点.求这个椭圆的离心率.(第二届高二第二试第21题)解法1 如图,设θ=∠AFC ,则4πθ-=∠BCF(F 在AB 内,F 是椭圆的另一个焦点).设椭圆的方程为)0(12222>>=+b a by a x .则c CF 2=,θsin 2⋅=c AC ,θcos 2⋅=c AF .在△BCF 中,由正弦定理和合分比定理,⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-++=⎪⎭⎫ ⎝⎛-=4sin sin 24sin sin 4sin sin πθθπθθπθθaBFBC BFBC . ⎪⎭⎫⎝⎛-+⋅=∴4sin sin sin 2πθθθa BC . 在Rt △ABC 中,θsin 222c AC BC ==,由此得到 ()⎪⎭⎫ ⎝⎛-+⋅+=⎪⎭⎫ ⎝⎛-+⋅=4sin sin sin cos sin 24sin sin sin 2sin 22πθθθθθπθθθθc a c , ()2sin sin sin sin sin cos 4πθθθθθθ⎡⎤⎛⎫∴+-=+ ⎪⎢⎥⎝⎭⎣⎦.2tan =∴θ,36sin =θ,3cos .θ=21632cos 2sin cos sin 3663FC c c a AF AC c c θθθθ∴======-+++++.解法2 设F 、C 为二焦点,m AB =.由椭圆定义知BC BF AC AF +=+,()m AC BC BF AF 12-=-=-∴①,又m AB BF AF ==+②.由①、②,解得m AF 22=,m BF ⎪⎪⎭⎫⎝⎛-=221.在Rt AFC∆中,222222FC AF AC m m ⎛⎫=+=+= ⎪ ⎪⎝⎭。

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛模拟试题(含详细答案)高中数学竞赛试题(模拟)一、选择题:共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知函数f(x)是R上的奇函数,g(x)是R上的偶函数,若f(x)-g(x)=x+9x+12,则f(x)+g(x)=(。

)。

A。

-x+9x-12B。

x+9x-12C。

-x-9x+12D。

x-9x+122.有四个函数:①y=sinx+cosx②y=sinx-cosx③y=sinxcosx④y=(空缺)其中在(x,y)上为单调增函数的是(。

)。

A。

①B。

②C。

①和③D。

②和④3.方程x+x-1=xπ2的解集为A(其中π为无理数,π=3.141…,x为实数),则A中所有元素的平方和等于(。

)。

A。

B。

C。

1D。

44.已知点P(x,y)满足(x-4cosθ)+(y-4sinθ)=4(θ∈R),则点P(x,y)所在区域的面积为(。

)。

A。

36πB。

32πC。

20πD。

16π5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为(。

)。

A。

9B。

12C。

15D。

186.已知数列{an}为等差数列,且S5=28,S10=36,则S15等于(。

)。

A。

807.已知曲线C:y=-x2-2x与直线l:x+y-m=0有两个交点,则m的取值范围是(。

)。

A。

(-2-1,2)B。

(-2,2-1)C。

[,2-1)D。

(,2-1)8.过正方体ABCD-A1B1C1D1的对角线BD1的截面面积为S,Smax和Smin分别为S的最大值和最小值,则Smax/Smin的值为(。

)。

A。

B。

C。

D。

9.设x=.82,y=sin1,z=log2237,则x、y、z的大小关系为(。

)。

A。

x<y<zB。

y<z<xC。

z<x<yD。

z<y<x10.如果一元二次方程x-2(a-3)x-b+9=0中,a、b分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P=(。

全国高中数学联赛模拟训练题.docx

全国高中数学联赛模拟训练题.docx

的交点为交、C.现有以A为焦点,过B、C且开口向左的抛物线,抛物线的顶点坐标当椭圆的离心率e满足|<^2<1,求实数秫的取值范围.四、(20分)。

、b、c均为实数,奸b, b?c, c^a.证明:2/M.2C|+"-M|+|C3-24<2.2 \a - b\ + \b - c\ + \c - a\五、(20分)已知fi^x^ax^+b^+cx^+dx,满足(i)。

、》、c、d均大于0; (ii)对于任一个{-2, -1,0,1,2},/3)为整数;(iii,/(5)=70.试说明,对于每个整数X, Rr)是否为整数.弟—试—、(50分)设K为、AB C的内心,点G、瓦分别为边A3、AC的中点,直线AC与GK交于点B2,直线AB于BiK交于点C2.若△AB2C2于△ABC的面积相等,试求ZCAB.二、(50 分) 设w = cosy + isin,/(.V)=(.V-M')(A'-VV3)(.V-VV7)(A'-M'9).求证:/U)为一整系数多项式,且Rx)不能分解为两个至少为一次的整系数多项式之积.三、(50分)在圆上有21个点.求在以这些点为端点组成的所有的弧中,不超过120°的弧的条数的最小值.参旁答案第一试(3 ,目、三、1,兰士 .四、证略.五、是.第二试一、60°;二、证略.三、100.I 4 J金国高甲够样联赛模拟试茎(^)ZvZv 、_41弟一试一、选择题:(每小题6分,共36分)1、设log力是一个整数,且log a - > log a4b > \og b a2,给出下列四个结论b®— > 4b > a2;②logaZ?+log*=0;③OV Q V^VI;④沥一1=0.b 」」其中正确结论的个数是(A) 1 (B) 2 (C) 3 (D) 4金国高中够样联赛模拟试茎(^)ZvZv 、_41弟一试一、选择题:(每小题6分,共36分)1、a、0是异面直线,直线c与a所成的角等于c与。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高中数学联赛模拟试题(五)
第一试
一、 选择题:(每小题6分,共36分)
1、空间中n (n ≥3)个平面,其中任意三个平面无公垂面.那么,下面四个
结论
(1) 没有任何两个平面互相平行;
(2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;
(4) 平面间的每一条交线均与n -2个平面相交. 其中,正确的个数为 (A )1 (B )2 (C )3 (D )4
2、若函数y =f (x )在[a ,b ]上的一段图像可以近似地看作直线段,则当c ∈(a ,b )
时,f (c )的近似值可表示为
(A )
()()2
b f a f +
(B )⎪⎭

⎝⎛+2b a f
(C )
()()()()()
a b b f a c a f c b --+-
(D )()()()[]a f b f a
b a
c a f ----
3、设a >b >c ,a +b +c =1,且a 2+b 2+c 2=1,则
(A )a +b >1 (B )a +b =1 (C )a +b <1 (D )不能确定,与a 、b 的具体取值有关
4、设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫
⎝⎛23,0P 到椭圆上的点的最远
距离是
47
,则短半轴之长b = (A )161 (B )81 (C )41
(D )2
1
5、S ={1,2,…,2003},A 是S 的三元子集,满足:A 中的所有元素可以组成等
差数列.那么,这样的三元子集A 的个数是
(A )32003C
(B )2
1002
21001C C + (C )2
100221001A A +
(D )32003A
6、长方体ABCD -A 1B 1C 1D 1,AC 1为体对角线.现以A 为球心,AB 、AD 、AA 1、AC 1为半径作四个同心球,其体积依次为V 1、V 2、V 3、V 4,则有 (A )V 4<V 1+V 2+V 3 (B )V 4=V 1+V 2+V 3 (C )V 4>V 1+V 2+V 3 (D )不能确定,与长方体的棱长有关
二、 填空题:(每小题9分,共54分)
1、已知k ==βα
βαcos cos sin sin 33,则k 的取值范围为 .
2、等差数列{a n }的首项a 1=8,且存在惟一的k 使得点(k ,a k )在圆x 2+y 2=102上,则这样的等差数列共有 个.
3、在四面体P -ABC 中,P A =PB =a ,PC =AB =BC =CA =b ,且a <b ,则b
a
的取
值范围为 .
4、动点A 对应的复数为z =4(cos θ+isin θ),定点B 对应的复数为2,点C 为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为 .
5、∑=2003
13k k 被8所除得的余数为 .
6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为 .
三、 (20分)
已知抛物线y 2=2px (p >0)的一条长为l 的弦AB .求AB 中点M 到y
轴的最短距离,并求出此时点M 的坐标.
四、 (20分)
单位正方体ABCD -A 1B 1C 1D 1中,正方形ABCD 的中心为点M ,正方形A 1B 1C 1D 1的中心为点N ,连AN 、B 1M . (1)求证:AN 、B 1M 为异面直线; (2)求出AN 与B 1M 的夹角.
五、 (20分)
对正实数a 、b 、c .求证:
c
ab
c b ac b a bc a 888222++
+++≥9.
第二试
一、 (50分)
设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△P AB 的内切圆与边AB 的切点.乘积P A ·PB 的值随着长方形ABCD 及点P 的变化而变化,当P A ·PB 取最小值时, (1)证明:AB ≥2BC ; (2)求AQ ·BQ 的值.
二、 (50分)
给定由正整数组成的数列
⎩⎨
⎧+===++n n n a a a a a 12
212
,1(n ≥1). (1)求证:数列相邻项组成的无穷个整点
(a 1,a 2),(a 3,a 4),…,(a 2k -1,a 2k ),…
均在曲线x 2+xy -y 2+1=0上.
(2)若设f (x )=x n +x n -1-a n x -a n -1,g (x )=x 2-x -1,证明:g (x )整除f (x ).
三、 (50分)
我们称A 1,A 2,…,A n 为集合A 的一个n 分划,如果 (1)A A A A n = 21; (2)∅≠j i A A ,1≤i <j ≤n .
求最小正整数m ,使得对A ={1,2,…,m }的任意一个13分划A 1,A 2,…,A 13,一定存在某个集合A i (1≤i ≤13),在A i 中有两个元素a 、b
满足b <a ≤8
9
b .
参考答案
第一试
二、填空题:
1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝

--1,2121,1 ;
2、17;
3、⎪⎭⎫ ⎝⎛-1,32;
4、
()13
4
12
2
=+-y x ;
5、4;
6、117600.
三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫ ⎝⎛<<2
222,2,2,2
0,8,20,8p pl p l M p l p l p l M p l p l .
四、(1)证略;
(2)3
2arccos

五、证略.
第二试
一、(1)证略(提示:用面积法,得P A ·PB 最小值为2,此时∠APB =90°); (2)AQ ·BQ =1.
二、证略(提示:用数学归纳法).
三、m =117.。

相关文档
最新文档