用函数观点看一元二次方程教案
26.2用函数观点看一元二次方程_(2课时)

●请你把这节课你学到了东西告诉你的同 请你把这节课你学到了东西告诉你的同 讨 论 然后告诉老师? 桌,然后告诉老师?
这节课应有以下内容: 节课应有以下内容:
二次函数与一 元二次方程的 关系
二 次 函 数 与
当二次函数y=ax2+bx+c中y的值 当二次函数 中 的值 确定, 的值时, 确定,求x的值时,二次函数就变 的值时 为一元二次方程。即当y取定值时 取定值时, 为一元二次方程。即当 取定值时, 二次函数就为一元二次方程。 二次函数就为一元二次方程。
y
y = x2 + x − 2
O
y = x2 − 6x + 9
y
(a)
O
(b)
(c)
对应二次函数(1)-(3)得到图象(a)-(c)。
x
O
x y
y = x2 − x + 1
x
y
O
y = x + x−2
2
y = x2 − 6 x + 9
y y
O O
y = x2 − x + 1
y = x 2 + x − 2 的函数图象与 轴的公共点的横坐标是 和1, 的函数图象与x轴的公共点的横坐标是 轴的公共点的横坐标是-2和 , (1) )
两个交点
轴 的 交 点
交 一个交点 点 没有交点 的交点的
b2-4ac>0 b2-4ac=0 b2-4ac<0 一元二次方程的
二次函数与x 二次函数与
x
练习:看谁算的又快又准。 练习 看谁算的又快又准。 看谁算的又快又准 1.不与 轴相交的抛物线是 D ) 不与x轴相交的抛物线是 不与 轴相交的抛物线是( A y=2x2 – 3 B y= - 2 x2 + 3 D y=-2(x+1)2 - 3 C y= - x2 – 2x 2.如果关于 的一元二次方程 x2-2x+m=0有两个相等的实 如果关于x的一元二次方程 如果关于 有两个相等的实 1 数根,则 __ __,此时抛物线 轴有_ 数根 则m=__ 此时抛物线 y=x2-2x+m与x轴有_ 个 与 轴有 1 交点. 交点 16 3.已知抛物线 y=x2 – 8x +c的顶点在 x轴上 则c=____ 已知抛物线 轴上,则 ____ ____. 的顶点在 轴上 (0,2) 4.抛物线 抛物线y=x2-3x+2 与y轴交于点____ 与x轴交 轴交于点____ 抛物线 轴交于点____,与 轴交 (1,0) 于点___ 于点___ (2,0) . _
《用函数观点看一元二次方程》教学设计

《用函数观点看一元二次方程》教学设计单位:玉林市兴业县卖酒镇二中 姓名:龚亚华教学媒体 多 媒 体教 学 目 标知识 技能 1. 理解一次函数与二元一次方程(组)的对应关系。
2. 会用画图象的方法解二元一次方程组。
过程 方法 1、 通过对一次函数与二元一次方程(组)关系的探究及相关实际问题的解决,学会用函数的观点去认识问题的方法。
2、 体验数形结合思考意义,逐步学习利用数形结合思想分析问题和解决问题,提高解决实际问题的能力。
情感 态度通过对一次函数与二元一次方程(组)关系的探究,培养学生严谨的科学态度以及独立思考的习惯。
教学重点 探究一次函数与二元一次方程(组)的关系。
教学难点灵活运用函数知识解决相关实际问题。
教 学 过 程 设 计教学程序及教学内容师生行为设计意图 一、情境引入1、已知 2x-y=1,用含x 的代数式表示y ,则y=________2、方程2x-y=1的解有______个。
3、 x=1y=1 是方程2x-y=1的一个解吗?4、(1,1)是否是直线2x-y=1上的一个点?通过上述问题,你认为一次函数与二元一次方程有何关系?二、探究新知1、3x+5y=8对应的一次函数(以x 为自变量)是_________。
2、直线y=53x+58上任取一点(x ,y )则(x ,y )一定是方程 3x+5y=8的解吗?为什么? 3、在同一直角坐标系中画出直线y=2x-1与y=-53x+58的图象并思考: (1)它们有交点吗? (2)交点的坐标与方程组 2x-y=1 的 解有何关系? 3x+5y=8 4、当自变量x 取何值时,函数y=2x-1与 y=-53x+58的值相等?这时的函数值是多少?教师给出问题,学生很快作出回答。
学生交流讨论归纳概况,出版认识二元与一次方程的解。
函数有对应关系。
学生独立思考1、2、3,教师巡视,师生共同归纳:每一个二元一次方程对应着一个一次函数。
直线上每一点坐标都是二元一次方程组的解。
用函数观点看一元二次方程 教案

教学过程一、复习预习上节课我们学习了二次函数一般式中a,b,c和图像之间的关系、二次函数解析式的确定、二次函数求最值的方法,有细心的同学发现了一个问题:抛物线b2-4ac的符号与x轴交点的个数有某种联系?他说:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0。
这就是我们这节课要讲的内容:用函数的观点看一元二次方程。
二、知识讲解1. 二次函数与x轴交点情况:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数。
由于二次函数与x 的交点纵坐标为0,因此02=++c bx ax 的次方程有几个解就意味着二次函数与x 轴有几个交点。
一元二次方程的解的情况是由ac b 42-来决定的,因此二次函数c bx ax y ++=2与x 轴的交点个数也由ac b 42-来决定。
2.二次函数图象与一元二次方程)0(02≠=++a c bx ax 的关系: (1)如果二次函数)0(2≠++=a c bx ax y 的图象与x 轴有两个公共点,那么一元二次方程)0(02≠=++a c bx ax 有两个不相等的实数根; (2)如果二次函数)0(2≠++=a c bx ax y 的图象与x 轴有且只有一个公共点,那么一元二次方程)0(02≠=++a c bx ax 有两个相等的实数根;(3)如果二次函数)0(2≠++=a c bx ax y 的图象与x 轴没有公共点,那么一元二次方程)0(02≠=++a c bx ax 没有实数根; ① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2AB x =.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.3.抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 4.当二次函数c bx ax y ++=2中的y 取一个具体值时(y=m ),就变成了一个一元二次方程m c bx ax =++2。
初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思《二次函数与一元二次方程》教学设计【课题】九年级下册5.6《二次函数与一元二次方程》(第1课时)一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系。
因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。
2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
三、教学目标知识与技能:1.探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系2.能根据二次函数y=ax2+bx+c的系数,判断它的图象与x轴的位置关系3.应用二次函数和一元二次方程的关系解决相关问题过程与方法:经历探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系的过程,培养学生分析问题,解决问题的能力。
情感态度和价值观:使学生在数学应用增强自信心,在合作学习中增强集体责任感,加强学生数形结合思想的应用。
四、教学重难点重点:应用二次函数和一元二次方程的关系解决相关问题难点:理解二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0根的关系五、教法学法教法:类比探究法、归纳总结法、讲练结合法学法:合作探究法、小组讨论法六、教学内容与过程(一)、立体式复习检测(1)一次函数y=-3x+6的图象与x轴的交点(,)一元一次方程-3x+6=0的根为________(2)不解方程,判断方程x2-3x+3=0根的情况是________(3)解方程: x2-2x-3=0(4)(中考·白银)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________【师生活动】:同桌提问判别式△与方程实数根的关系,然后请4位同学分别板书以上4个题目,其他同学在导学案完成以上题目。
用函数观点看一元二次方程(教案)

26.2 用函数观点看一元二次方程(第一课时)
教学目标:
1.感受二次函数与一元二次方程的关系,会判断抛物线与x轴交点情况、掌握方程与函数间的转化。
2.探索二次函数与一元二次方程间的关系,函数图像与x轴的交点情况。
由特殊到一般,提高学生的分析、探索、归纳能力。
3. 在独立探索和集体讨论中体验数学和自身价值并在活动中获得获得情感体验,发展个性。
教学重点:探索二次函数与对应一元二次方程关系,理解抛物线与x 轴交点情况。
教学难点:函数、方程、x轴交点,三者之间关系的理解。
教学方法:采用“问题讨论教学法”、“多层次教学法”和“数形结合法”相结合的教学方法。
以学生自主探索、合作交流为主,以教师引导为辅。
教学过程
请学生观察图形,回答下列问题:
用函数观点看一元二次方程
教案
惠州市第五中学
李晖。
从函数观点看一元二次方程

答案 不是,二次函数的零点是二次函数图象与 x 轴交点的横坐标.
课前预学
课堂导学
一元二次方程 ax2+bx+c=0(a≠0)的根就是二次函数 y=ax2+bx+c(a≠0)当函数
值取零时自变量 x 的值,即二次函数 y=ax2+bx+c(a≠0)的图象与 x 轴交点的横坐
标,也称为二次函数 y=ax2+bx+c(a≠0)的零点.
轴的交点的横坐标.
课堂导学
课前预学
解析
1
1
(1)由 3x -2x-1=0 解得 x1=1,x2=- ,所以函数 y=3x -2x-1 的零点为 1 和- .
2
2
3
3
(2)①当 a=0 时,y=-x-1,由-x-1=0 得 x=-1,所以函数的零点为-1.
②当 a≠0 时,由 ax -x-a-1=0 得(ax-a-1)(x+1)=0,解得 x1=
所以二次函数的解析式为 y=-x2+x+2.
(2)由(1)得 y=- x-
1 2 9
+ ,
2
4
9
5
4
4
所以结合图象可知当 1-k> ,即 k<- 时,方程 ax2+bx+c=1-k 无实根.
课前预学
课堂导学
任务 1: 二次函数的零点
已知 ax2+bx+c=0.
问题 1:当 a<0 时,一元二次方程 ax2+bx+c=0 的根与二次函数 y=ax2+bx+c 的图
2022
必修第一册
第二章
2.2
一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
《用函数的观点看一元二次方程》的教案_模板

《用函数的观点看一元二次方程》的教案_模板《用函数的观点看一元二次方程》的教案一、教学目标:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点、难点:教学重点:1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
教学难点:1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导合作交流四:教具、学具:课件五、教学媒体:计算机、实物投影。
六、教学过程:[活动1] 检查预习引出课题预习作业:1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2] 创设情境探究新知问题1.课本P16 问题.2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?(结合预习题1,完成课本P16 观察中的题目。
)师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.2用函数观点看一元二次方程
(3)球的飞行高度能否达到20.5 m? 若能,需要多少时间?
(4)球从飞出到落地要用多少时间?
图26.2-1
24
20
10
5
15
O
图26.2-1-1
[活动2]
问题:下列二次函数的图象与x 轴有没有公共点?若有,求出公共点的横坐标;当x 取公共点的横坐标时,函数的值是多少?
参见教材图26.2-2.
在本次活动中,教师应关注:
(1)学生对问题从函数到方程的转换; (2)学生对根的理解;
(3)方程的解与函数中自变量的关系.
解方程:
略.
在本次活动中,教师应关注: (1)一元二次方程的解法; (2)函数图象的应用;
(3)方程与函数的联系.
教师展示问题,学生讨论合作完成: 分析:
(1) 如何作出函数的图象; (2) 利用图象确定函数的值; (3) 由函数图象,能得出相应的 一元二次方程的根吗?
图象法求解:
(1)函数图象与x 轴的公共点的横坐标是-2,1,此时的函数值是0;
(2)函数图象与x 轴的公共点的横坐标是3,此时的函数值为0;
(3)函数图象与x 轴没有公共点.
(注:此题的上述解法也可以脱离图象,理解为代数法求解.)
教师提出问题,学生在独立思考完成.
1
)3(9
6)2(2)1(222+-=+-=-+=x x y x x y x x y y
x。