初中数学几何辅助线作法小结
初中数学辅助线的做法总结

初中数学辅助线的做法总结一、加法与减法辅助线1.相差减一法:对于计算两个数之差的问题,我们可以使用相减法,即将两个数按位相减,并将每一位之差写在下方。
为了更加清晰,可以在个位上方画一条水平线,表示个位数。
例如:45-23,画线表示为:4-233—2.加减齐次法:当计算加法或减法的时候,两个数位数不同,我们可以借助辅助线将两数齐次,使问题更易解。
例如:34+20,可以在个位上方画一条辅助线,表示个位数相加得4,十位数不变。
+0-----3.补充法:当计算减法时,被减数小于减数,我们可以通过补充的方式,使被减数增加一个数位,将问题转化为一个正常的减法。
例如:36-47,可以在个位上方画一条辅助线,表示个位数不够减,需要向十位借1,并在个位上加10,即变成36+10=46-47,再进行减法运算。
-136+10-47-------1二、乘法与除法辅助线1.竖式计算法:对于较复杂的乘法运算,我们可以使用竖式计算法,将乘法运算拆分为多个小的乘法运算。
例如:36×25,可以将25拆分成20和5,然后依次与36相乘,最后相加。
36×20-----72+180-----9002.倍数计算法:当计算除法时,我们可以利用倍数的性质,将除法问题转化为乘法问题。
分为两种情况:一是被除数为倍数的情况,二是除数为倍数的情况。
例如:115÷5,可以找到被除数和除数都是5的倍数,115÷5=(100+10+5)÷5=20+2+1=233.分数的乘法与除法:对于计算分数的乘除法,我们可以利用分数的定义和简化规则,将计算转化为整数的运算。
例如:(8/5)×(7/3),可以将其转化为整数相乘,然后再进行约分。
8×7=565×3=15所以结果为56/15,再进行约分。
三、几何问题的辅助线1.直角三角形辅助线:解决直角三角形的问题时,可以在直角处画一条垂线,以辅助解题。
初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。
以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。
例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。
2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。
例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。
3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。
例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。
4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。
例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。
总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。
需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。
初中数学几何辅助线作法小结

DCBAEFCBA几何辅助线作法小结三角形中常见辅助线的作法:①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。
常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. (一)、倍长中线(线段)造全等1:已知,如图△ABC 中,AB =5,AC =3,则中线AD 的取值范围是_________. 2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF , D 是中点,试比较BE +CF 与EF 的大小.EDCBA3:如图,△ABC 中,BD =DC =AC ,E 是DC 的中点,求证:AD 平分∠BAE .E D CB A中考应用以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.(二)、截长补短1.如图,ABC ∆中,AB =2AC ,AD 平分BAC ∠,且AD =BD ,求证:CD ⊥ACCDBABACBA2:如图,AC ∥BD ,EA ,EB 分别平分∠CAB ,∠DBA ,CD 过点E ,求证;AB =AC +BD3:如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
初中几何中常用的辅助线方法的资料

初中几何是学生学习几何知识的基础阶段,掌握正确的辅助线技巧对于解决几何问题至关重要。
下面是一份关于初中几何中常用的辅助线方法的资料,希望能帮助到您。
一、基本概念辅助线:在解决几何问题时,为了更好地展现图形的性质或构建所需的条件,临时添加的线段称为辅助线。
辅助线不改变原图形的基本结构,但能帮助我们发现解题的关键线索。
二、常用辅助线方法1. 过顶点作垂线●应用场景:证明直角、等腰三角形的性质,求解高、距离等问题。
●示例:证明一个三角形是直角三角形时,可以尝试从一个顶点向对边作垂线,利用勾股定理。
2. 连接中点●应用场景:证明线段倍长、中位线性质、平行四边形和梯形的构造。
●示例:证明两条线段相等时,连接它们的中点,利用中位线定理。
3. 平行线构造●应用场景:形成相似三角形、构造平行四边形、证明角度关系。
●示例:为证明两个角相等,可以在其中一个角的一边上作一条平行于另一角所在直线的辅助线,从而构成一对内错角或同位角。
4. 过顶点作平行线●应用场景:构造全等三角形、证明角平分线性质。
●示例:证明两角相等时,可以从一个角的顶点出发作一条平行于另一个角一边的线,这样可以构造出一组等角的三角形。
5. 延长线段●应用场景:寻找共线点、证明交比不变、构造平行线。
●示例:当需要证明四点共线时,延长某些线段,利用交叉线段的比值相等来证明。
6. 作角平分线或垂直平分线●应用场景:证明等腰三角形、等边三角形性质,解决与圆相关的几何问题。
●示例:证明一个点在三角形某边的垂直平分线上,可以过该点作这条边的垂线,利用垂直平分线的性质。
三、技巧总结1.观察图形特征:首先分析图形的已知条件和所求目标,根据图形的特殊形状或已知条件选择合适的辅助线方法。
2.尝试多种方案:有时候,一种辅助线方法可能不足以解决问题,需要尝试几种不同的方法。
3.灵活运用定理:熟练掌握各种几何定理,并能灵活应用到辅助线的构造中。
4.练习与总结:多做练习,每次解题后总结辅助线的使用经验,逐步提高解题效率。
初中初中几何辅助线做法总结满分必备

【初中】初中最全几何辅助线做法总结,满分必备!几何中,同学们最头疼的就是做辅助线了,所以,今天整理了做辅助线的102条规律,从此,再也不怕了!线、角、相交线、平行线规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个.规律7. 如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.三角形部分规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或及求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线及一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
初中数学:几何常见辅助线作法口诀知识点总结

初中数学:几何常见辅助线作法口诀知识点总结在初中数学的学习中,同学们几乎都说几何很困难,难点就在辅助线。
辅助线到底如何添?除了把握定理和概念外,还要刻苦钻研,找出规律经验,才能更好的学好几何。
三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
初中数学辅助线应用技巧总结

初中数学辅助线应用技巧总结数学是一门需要逻辑思维和推理能力的学科,而辅助线是在解决数学问题时起到辅助作用的直线。
学会灵活运用辅助线可以帮助我们更好地理解和解决数学问题。
本文将总结几种初中数学辅助线的应用技巧。
一、应用技巧1:利用垂直线垂直线是辅助线中最常见的一种。
在解决几何问题时,垂直线可以帮助我们确定几何图形的性质。
例如,在求解平面几何问题时,我们可以利用垂直线来证明两条直线垂直。
在作图时,通过画出垂直线可以辅助我们队几何图形进行分析。
二、应用技巧2:运用平行线平行线也是常用的辅助线之一。
在解决平面几何问题时,可以利用平行线的特性来求解未知角度、边长或形状。
例如,当我们需要求解两条直线平行时,可以通过与这两条直线交叉的另一条直线来构造平行线,从而帮助我们解决问题。
三、应用技巧3:利用等腰三角形等腰三角形是一个重要的几何图形,其辅助线的运用可以帮助我们解决关于三角形的问题。
例如,在求解三角形的面积或者角度时,我们可以构造等腰三角形,从而简化问题的解决。
另外,等腰三角形的对称性质也在解决证明问题时起到重要作用。
四、应用技巧4:利用垂直平分线垂直平分线是连接线段的中点并垂直于该线段的直线。
在解决几何问题时,利用垂直平分线可以帮助我们证明角的相等、线段的相等以及几何图形的对称性质。
例如,当我们需要证明一个四边形是矩形时,可以利用垂直平分线来证明其中的两个角相等。
五、应用技巧5:利用相似三角形相似三角形是指形状相似但大小不同的三角形。
在解决几何问题时,我们可以通过构造相似三角形来求解未知边长或者角度。
例如,在利用勾股定理求解三角形问题时,常常需要使用相似三角形的性质进行推导和证明。
六、应用技巧6:使用角平分线角平分线是将一个角分成两个相等的角的直线。
在解决几何问题时,角平分线可以帮助我们证明角的相等或者构造特定的几何图形。
例如,在求解两个角相等时,可以通过画出角平分线来帮助我们得出证明结果。
七、应用技巧7:利用直行线直行线是指两条相交直线间的形成的四个角中有两个是相等的。
初中数学几何辅助线作法小结

几许辅帮线做法小结之阳早格格创做三角形中罕睹辅帮线的做法:①延少中线构制齐等三角形;②利用翻合,构制齐等三角形;③引仄止线构制齐等三角形;④做连线构制等腰三角形.罕睹辅帮线的做法有以下几种:1)逢到等腰三角形,可做底边上的下,利用“三线合一”的本量解题,思维模式是齐等变更中的“对付合”.2)逢到三角形的中线,倍少中线,使延少线段与本中线少相等,构制齐等三角形,利用的思维模式是齐等变更中的“转化”.3)逢到角仄分线,不妨自角仄分线上的某一面背角的二边做垂线,利用的思维模式是三角形齐等变更中的“对付合”,所考知识面时常是角仄分线的本量定理或者顺定理.4)过图形上某一面做特定的仄分线,构制齐等三角形,利用的思维模式是齐等变更中的“仄移”或者“翻转合叠”5)截少法与补短法,简曲干法是正在某条线段上截与一条线段与特定线段相等,或者是将某条线段延少,是之与特定线段相等,再利用三角形齐等的有闭本量加以道明.那种做法,符合于道明线段的战、好、倍、分等类的题目.D CB A ED FCB A 特殊要领:正在供有闭三角形的定值一类的问题时,常把某面到本三角形各顶面的线段对接起去,利用三角形里积的知识解问.(一)、倍少中线(线段)制齐等1:已知,如图△ABC 中,AB=5,AC=3,则中线AD 的与值范畴是_________. 2:如图,△ABC 中,E 、F 分别正在AB 、AC 上,DE ⊥DF ,D 是中面,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC ,E 是DC 的中面,供证:AD 仄分∠BAE.中考应用以ABC ∆的二边AB 、AC 为腰分别背中做等腰Rt ABD ∆战等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒对接DE ,M 、N 分别是BC 、DE 的中面.商量:AM 与DE 的位子闭系及数量闭系.(1)如图①当ABC ∆为曲角三角形时,AM 与DE 的位子闭系是,线段AM 与DE 的数量闭系是;(2)将图①中的等腰Rt ABD ∆绕面A 沿顺时针目标转化︒θ(0<θ<90)后,如图②所示,(1)问中得到的二个论断是可爆收改变?并道明缘由.D C B A P QCB A (二)、截少补短1.如图,ABC ∆中,AB=2AC ,AD 仄分BAC ∠,且AD=BD ,供证:CD ⊥AC2:如图,AC ∥BD ,EA,EB 分别仄分∠CAB,∠DBA ,CD过面E ,供证;AB =AC+BD3:如图,已知正在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别正在BC ,CA 上,而且AP ,BQ 分别是BAC ∠,ABC ∠的角仄分线.供证:BQ+AQ=AB+BP 4:如图,正在四边形ABCD 中,BC >BA,AD =CD ,BD仄分ABC ∠,供证:0180=∠+∠C A 5:如图正在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任性一面,供证;AB-AC>PB-PC中考应用(三)、仄移变更1.AD 为△ABC 的角仄分线,曲线MN ⊥AD 于A.E 为MN上一面,△ABC 周少记为A P ,△EBC 周少记为B P .供证B P >A P .2:如图,正在△ABC 的边上与二面FE DCB A D 、E ,且BD=CE ,供证:AB+AC>AD(四)、借帮角仄分线制齐等1:如图,已知正在△ABC 中,∠B=60°,△ABC 的角仄分线AD,CE 相接于面O ,供证:OE=OD2:如图,△ABC 中,AD 仄分∠BAC ,DG ⊥BC 且仄分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)道明BE=CF 的缘由;(2)如果AB=a ,AC=b ,供AE 、BE 的少.中考应用如图①,OP 是∠MON 的仄分线,请您利用该图形绘一对付以OP 天圆曲线为对付称轴的齐等三角形.请您参照那个做齐等三角形的要领,解问下列问题:(1)如图②,正在△ABC 中,∠ACB 是曲角,∠B=60°,AD 、CE 分别是∠BAC 、∠BCA 的仄分线,AD 、CE 相接于面F.请您推断并写出FE 与FD 之间的数量闭系;(2)如图③,正在△ABC 中,如果∠ACB 不是曲角,而(1)中的其余条件稳定,请问,您正在(1)中所得论断是可仍旧创制?若创制,请道明;若不可坐,请道明缘由. (五)、转化 1:正圆形ABCD 中,E 为BC 上的一面,F 为CD 上的一面,BE+DF=EF ,供∠EAF 的度数. (第23题图) O P AM N E B C D F A CE F BD图① 图②图③A 2:D 为等腰Rt ABC ∆斜边AB 的中面,DM ⊥DN,DM,DN 分别接BC,CA 于面E,F.(1)当MDN ∠绕面D 转化时,供证(2) 若AB=2,供四边形DECF 3.如图,ABC ∆是边少为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=干一个060角,使其二边分别接AB 于面N ,对接MN ,则AMN ∆的周少为;中考应用 1、已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 面转化,它的二边分别接AD DC ,(或者它们的延少线)于E F ,.当MBN ∠绕B 面转化到AE CF =时(如图1),易证AE CF EF +=. 当MBN ∠绕B 面转化到AE CF ≠时,正在图2战图3那二种情况下,上述论断是可创制?若创制,请赋予道明;若不可坐,线段AE CF ,,EF 又有何如的数量闭系?2,PB=4,以AB 为一边做正圆形ABCD,使P 、D AB 的二侧. (1)如图,当∠APB=45°时,供AB 及PD 的少; (图1) C (图2) A B C DE FM N (图3) A B C D E F MN(2)当∠APB变更,且其余条件稳定时,供PD的最大值,及相映∠APB的大小.3、正在等边ABC∆的二边AB、AC天圆曲线上分别有二面M、N,D为ABC中一面,且︒=BDC,BD=DC.∠120MDN,︒∠60=商量:当M、N分别正在曲线AB、AC上移动时,BM、NC、MN之间的数量闭系及AMN∆的周少Q与等边ABC∆的周少L 的闭系.图1 图2 图3(I)如图1,当面M、N边AB、AC上,且DM=DNQ;时,BM、NC、MN之间的数量闭系是;此时=L(II)如图2,面M、N边AB、AC上,且当DM≠DN 时,预测(I)问的二个论断还创制吗?写出您的预测并加以道明;(III)如图3,当M、N分别正在边AB、CA的延少线上时,若AN=x,则Q=(用x、L表示).圆中做辅帮线的时常使用要领(1)做弦心距,以便当用弦心距与弧、弦之间的闭系与垂径定理.(2)若题目中有“弦的中面”战“弧的中面”条件时,普遍对接中面战圆心,利用垂径定理的推论得出截止.(3)若题目中有“曲径”那一条件,可符合采用圆周上的面,连结此面与曲径端面得到90度的角或者曲角三角形.(4)连结共弧或者等弧的圆周角、圆心角,以得到等角.(5)若题中有与半径(或者曲径)笔曲的线段,如图1,圆O中,BD⊥OA于D,时常是:①如图1(上)延少BD接圆于C,利用垂径定理.②如图1(下)延少AO接圆于E,连结BE,BA,得Rt△ABE.图1(上)图1(下)(6)若题目中有“切线”条件时,普遍是:对付切线引过切面的半径,(7)若题目中有“二圆相切”(内切或者中切),往往过切面做二圆的切线或者做出它们的连心线(连心线过切面)以相通二圆中有闭的角的相等闭系.(8)若题目中有“二圆相接”的条件,时常做二圆的大众弦,使之得到共弧上的圆周角或者形成圆内接四边形办理,偶尔还引二连心线以得到截止.(9)有些问题不妨先道明四面共圆,借帮于辅帮圆中角之间的等量闭系去道明.(10)对付于圆的内接正多边形的问题,往往加做边心距,抓住一个曲角三角形去办理.例题1:如图,正在圆O中,B为的中面,BD为AB的延少线,∠OAB=500,供∠CBD的度数.例题2:如图3,正在圆O中,弦AB、CD相接于面P,供1(弧AD+弧BC)的度数.证:∠APD的度数=2一、制曲角三角形法1.形成Rt△,常对接半径例1. 过⊙O内一面M ,最少弦AB = 26cm,最短弦CD = 10cm ,供AM少;2.逢有曲径,常做曲径上的圆周角例2. AB是⊙O的曲径,AC切⊙O于A,CB接⊙O于D,过D做⊙O的切线,接AC于E.供证:CE = AE;3.逢有切线,常做过切面的半径例3 .割线AB接⊙O于C、D,且AC=BD,AE切⊙O于E,BF 切⊙O于F.供证:∠OAE = ∠OBF;4.逢有公切线,常构制Rt△(斜边少为圆心距,背去角边为二半径的好,另背去角边为公切线少)例4 .小⊙O1与大⊙O2中切于面A,中公切线BC、DE分别战⊙O1、⊙O2切于面B、C战D、E,并相接于P,∠P = 60°.供证:⊙O1与⊙O2的半径之比为1:3;5.正多边形相闭估计常构制Rt△例5.⊙O的半径为6,供其内接正圆形ABCD与内接正六边形AEFCGH的大众部分的里积.A C O 1P 二、欲用垂径定理常做弦的垂线段例 6. AB 是⊙O 的曲径,CD 是弦,AE ⊥CD 于E,BF ⊥CD 于F.(1)供证:EC = DF;(2)若AE = 2,CD=BF=6,供⊙O 的里积;三、变更割线与弦相接的角,常形成圆的内接四边形 例7. AB 是⊙O 曲径,弦CD ⊥AB,M 是AC 上一面,AM 延少线接DC 延少线于F.供证: ∠F = ∠ACM;四、切线的概括使用1.已知过圆上的面,常_________________例8.如图,已知:⊙O1与⊙O2中切于P ,AC是过P 面的割线接⊙O1于A ,接⊙O2于C ,过面O1的曲线AB ⊥BC 于B.供证:BC 与⊙O2相切.例9.如图,AB 是⊙O 的曲径,AE 仄分∠BAF 接⊙O 于E ,过E 面做曲线与AF 笔间接AF 延少线于D 面,且接AB 于C面.供证:CD 与⊙O 相切于面E .2.二个条件皆不,常___________________例10.如图,AB 是半圆的曲径,AM ⊥MN ,BN ⊥MN ,如果AM+BN =AB ,供证: 曲线MN 与半圆相切;例11.等腰△ABC 中,AB=AC,以底边中面D 为圆心的圆切AB边于E 面. 供证:AC 与⊙D 相切;例12.菱形ABCD二对付角线接于面O,⊙O与AB相切.供证:⊙O也与其余三边皆相切;五、二圆相闭题型1.二圆相接做_____________________例13.⊙O1与⊙O2相接于A、B,过A面做曲线接⊙O1于C 面、接⊙O2于D面,过B面做曲线接⊙O1于E面、接⊙O2于F面. 供证:CE∥DF;例14. ⊙O1与⊙O2中切于面P,过P面的曲线分别接⊙O1与⊙O2于A、B二面,AC切⊙O1于A面,BC接⊙O2于D 面.供证:∠BAC = ∠BDP;3.二圆或者三圆相切做_________________例15.以AB=6为曲径做半⊙O,再分别以OA、OB为曲径正在半⊙O内做半⊙O1与半⊙O2,又⊙O3与三个半圆二二相切.供⊙O3的半径;4.一圆过另一圆的圆心,做____________例16.二个等圆⊙O1与⊙O2相接于A、B二面,且⊙O1过面O2,过B面做曲线接⊙O1于C面、接⊙O2于D面. 供证:△ACD是等边三角形;六、启搁性题目例17.已知:如图,以ABC△的边AB为曲径的O接边AC于面D,且过面D的切线DE仄分边BC.(1)BC与O是可相切?请道明缘由;CEB(2)当ABC△谦脚什么条件时,以面O,B,E缘由.新文章哦刘项本去不读书籍(回复三十年回瞅:几多宁调研(二)——大茂初级中教(吴益仄)死"启心道" (梁珠)下考革新三十年:正在迷雾中觅找目标()尔要干太阳(☆无泪¢泪痕)上海是何如博得下考自决权的()教教拾萃(一)(文昌市会文核心小教华秋雨)四边形辅帮线干法一、战仄止四边形有闭的辅帮线做法1.利用一组对付边仄止且相等构制仄止四边形例1 如图1,已知面O是仄止四边形ABCD的对付角线AC 的中面,四边形OCDE是仄止四边形.供证:OE与AD互相仄分.2.利用二组对付边仄止构制仄止四边形例2 如图2,正在△ABC中,E、F为AB上二面,AE=BF,ED//AC,FG//AC接BC分别为D,G.供证:ED+FG=AC. 3.利用对付角线互相仄分构制仄止四边形例3 如图3,已知AD是△ABC的中线,BE接AC于E,接AD于F,且AE=EF.供证BF=AC.二、战菱形有闭的辅帮线的做法CEBA(第23题)战菱形有闭的辅帮线的做法主假如对接菱形的对付角线,借帮菱形的判决定理或者本量定定理办理问题.例4 如图5,正在△ABC 中,∠ACB=90°,∠BAC 的仄分线接BC 于面D ,E 是AB 上一面,且AE=AC ,EF//BC 接AD 于面F ,供证:四边形CDEF 是菱形.例5如图6,四边形ABCD 是菱形,E 为边AB 上一个定面,F 是AC 上一个动面,供证EF+BF 的最小值等于DE 少. 3. 与矩形有辅帮线做法战矩形有闭的题型普遍有二种:(1)估计型题,普遍通过做辅帮线构制曲角三角形借帮勾股定理办理问题;(2)道明或者探索题,普遍连结矩形的对付角线借帮对付角线相等那一本量办理问题战矩形有闭的试题的辅帮线的做法较少.例6 如图7,已知矩形ABCD 内一面,PA=3,PB=4,PC=5.供PD 的少.例7如图8,过正圆形ABCD 的顶面B 做BE//AC ,且AE=AC ,又CF//AE.供证:∠BCF=21∠AEB.五、与梯形有闭的辅帮线的做法战梯形有闭的辅帮线的做法是较多的.主要波及以下几种典型:(1)做一腰的仄止线构制仄止四边形战特殊三角形;(2)做梯形的下,构制矩形战曲角三角形;(3)做一对付角线的仄止线,构制曲角三角形战仄止四边形;(4)延少二腰形成三角形;(5)做二腰的仄止线等.例8 已知,如图9,正在梯形ABCD 中,AD//BC ,AB=AC ,∠BAC=90°,BD=BC ,BD 接AC 于面0.供证:CO=CD. 例9 如图10,正在等腰梯形ABCD 中,AD//BC ,AC ⊥BD ,AD+BC=10,DE ⊥BC 于E.供DE 的少.六、战中位线有闭辅帮线的做法例10 如图11,正在四边形ABCD 中,AC 于BD 接于面0,AC=BD ,E 、F 分别是AB 、CD 中面,EF 分别接AC 、BD 于面H 、G .供证:OG=OH.中考数教典范几许道明题1. (1)如图1所示,正在四边形ABCD 中,AC =BD ,AC 与BD 相接于面O ,E F 、分别是AD BC 、的中面,联结EF ,分别接AC 、BD 于面M N 、,试推断OMN △的形状,并加以道明;(2)如图2,正在四边形ABCD 中,若AB CD =,E F 、分别是AD BC 、的中面,联结FE 并延少,分别与BA CD 、的延少线接于面M N 、,请正在图2中绘图并瞅察,图中是可有相等的角,若有,请间接写出论断:;(3)如图3,正在ABC △中,AC AB >,面D 正在AC 上,AB CD =,E F 、分别是AD BC 、的中面,联结FE 并延少,与BA 的延少线接于面M ,若45FEC ∠=︒,推断面M 与以AD 为曲径的圆的位子闭系,并简要道明缘由.训练1、为了让州乡住户有更多戚忙战娱乐的场合,政府又新修了几处广场,工人师傅正在铺设大天时,准备采用共一种正多边形天砖.现有底下几种形状的正多边形天砖,其中不克不迭举止仄里镶嵌的是()A. 正三角形B. 正圆形C. 正五边形D. 正六边形2、矩形纸片ABCD 中,AB=4,AD=3,合叠纸片使AD 边与对付角线BD 沉合,合痕为DG ,则AG 的少为()A .1B .34C .23D .2 3、把正圆形ABCD 绕着面A ,按顺时针目标转化得到正圆形AEFG ,边FG 与BC 接于面H (如图).试问线段HG 与线段HB 相等吗?请先瞅察预测,而后再道明您的预测.二、与梯形有闭的辅帮线的做法 战梯形有闭的辅帮线的做法是较多的.主要波及以下几种典型:(1)做一腰的仄止线构制仄止四边形战特殊三角形;(2)做梯形的下,构制矩形战曲角三角形;(3)做一对付角线的图 1 图2 图3F B AC D E F M N O D CA B GH F E仄止线,构制曲角三角形战仄止四边形;(4)延少二腰形成三角形;(5)做二腰的仄止线等.例1 已知,如图,正在梯形ABCD中,AD//BC,AB=AC,∠BAC=90°,BD=BC,BD接AC于面0.供证:CO=CD.例2 如图,正在等腰梯形ABCD中,AD//BC,AC⊥BD,AD+BC=10,DE⊥BC于E.供DE的少.三、战中位线有闭辅帮线的做法例3 如图,正在四边形ABCD中,AC于BD接于面0,AC=BD,E、F分别是AB、CD中面,EF分别接AC、BD 于面H、G.供证:OG=OH.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何辅助线作法小结三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.(一)、倍长中线(线段)造全等1:已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.3:如图,△ABC 中,BD =DC =AC ,E 是DC 的中点,求证:AD 平分∠BAE .中考应用以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变并说明理由.(二)、截长补短1.如图,ABC ∆中,AB =2AC ,AD 平分BAC ∠,且AD =BD ,求证:CD ⊥AC2:如图,AC ∥BD ,EA ,EB 分别平分∠CAB ,∠DBA ,CD 过点E ,求证;AB =AC +BD3:如图,已知在ABC V 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
求证:BQ +AQ =AB +BP4:如图,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分ABC ∠, 求证:0180=∠+∠C A5:如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB -AC >PB -PC 中考应用(三)、平移变换为△ABC的角平分线,直线MN⊥AD于为MN上一点,△ABC周长记为A P,△EBC周长记为B P.求证B P>A P.2:如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD(四)、借助角平分线造全等1:如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD2:如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. (1)说明BE=CF的理由;(2)如果AB=a,AC=b,求AE、BE的长.中考应用如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。
请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由。
(五)、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE +DF =EF ,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN ,DM ,DN 分别交BC ,CA 于点E ,F 。
(1) 当MDN ∠绕点D 转动时,求证DE =DF 。
(2) 若AB =2,求四边形DECF 的面积。
3.如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则AMN ∆的周长为 ;中考应用(第23题图)OP AMNEB CD F AE FBD图①图② 图③1、已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =o ∠,60MBN =o ∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系2、已知:PA,PB =4,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧. (1)如图,当∠APB =45°时,求AB 及PD 的长;(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.3、在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N ,D 为ABC V 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD =DC . 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3(图1) ABCDEFMN(图2)ABCDEFMN(图3)ABCDEFMN(I )如图1,当点M 、N 边AB 、AC 上,且DM =DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时=LQ; (II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还成立吗写出你的猜想并加以证明;(III ) 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN =x ,则Q = (用x 、L 表示).圆中作辅助线的常用方法(1)作弦心距,以便利用弦心距与弧、弦之间的关系与垂径定理。
(2)若题目中有“弦的中点”和“弧的中点”条件时,一般连接中点和圆心,利用垂径定理的推论得出结果。
(3)若题目中有“直径”这一条件,可适当选取圆周上的点,连结此点与直径端点得到90度的角或直角三角形。
(4)连结同弧或等弧的圆周角、圆心角,以得到等角。
(5)若题中有与半径(或直径)垂直的线段,如图1,圆O 中,BD ⊥OA 于D ,经常是:①如图1(上)延长BD 交圆于C ,利用垂径定理。
②如图1(下)延长AO 交圆于E ,连结BE ,BA ,得Rt △ABE 。
图1(上) 图1(下)(6)若题目中有“切线”条件时,一般是:对切线引过切点的半径,(7)若题目中有“两圆相切”(内切或外切),往往过切点作两圆的切线或作出它们的连心线(连心线过切点)以沟通两圆中有关的角的相等关系。
(8)若题目中有“两圆相交”的条件,经常作两圆的公共弦,使之得到同弧上的圆周角或构成圆内接四边形解决,有时还引两连心线以得到结果。
(9)有些问题可以先证明四点共圆,借助于辅助圆中角之间的等量关系去证明。
(10)对于圆的内接正多边形的问题,往往添作边心距,抓住一个直角三角形去解决。
例题1:如图,在圆O 中,B 为的中点,BD 为AB 的延长线,∠OAB =500,求∠CBD 的度数。
例题2:如图3,在圆O 中,弦AB 、CD 相交于点P ,求证:∠APD 的度数=21(弧AD +弧BC )的度数。
一、造直角三角形法 1.构成Rt △,常连接半径例1. 过⊙O 内一点M ,最长弦AB = 26cm ,最短弦CD = 10cm ,求AM 长; 2.遇有直径,常作直径上的圆周角例2. AB 是⊙O 的直径,AC 切⊙O 于A ,CB 交⊙O 于D ,过D 作⊙O 的切线,交AC 于E . 求证:CE = AE ;3.遇有切线,常作过切点的半径例3 .割线AB 交⊙O 于C 、D ,且AC =BD ,AE 切⊙O 于E ,BF 切⊙O 于F . 求证:∠OAE = ∠OBF ;4.遇有公切线,常构造Rt △(斜边长为圆心距,一直角边为两半径的差,另一直角边为公切线长)例4 .小 ⊙O 1与大⊙O 2外切于点A ,外公切线BC 、DE 分别和⊙O 1、⊙O 2切于点B 、C 和D 、E ,并相交于P ,∠P = 60°。
求证:⊙O 1与⊙O 2的半径之比为1:3; 5.正多边形相关计算常构造Rt △例5.⊙O 的半径为6,求其内接正方形ABCD 与内接正六边形AEFCGH 的公共部分的面积. 二、欲用垂径定理常作弦的垂线段例6. AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E ,BF ⊥CD 于F .(1)求证:EC = DF ; (2)若AE = 2,CD =BF =6,求⊙O 的面积;三、转换割线与弦相交的角,常构成圆的内接四边形例7. AB 是⊙O 直径,弦CD ⊥AB ,M 是»AC 上一点,AM 延长线交DC 延长线于F . 求证: ∠F = ∠ACM ; 四、切线的综合运用1.已知过圆上的点,常_________________例8.如图, 已知:⊙O 1与⊙O 2外切于P ,AC 是过P 点的割线交⊙O 1于A ,交⊙O 2于C ,过点O 1的直线AB ⊥BC 于B .求证: BC 与⊙O 2相切.例9.如图,AB 是⊙O 的直径,AE 平分∠BAF 交⊙O 于E ,过E 点作直线与AF 垂直交AF 延长线于D 点,且交AB 于C 点. 求证:CD 与⊙O 相切于点E .2.两个条件都没有,常___________________例10. 如图,AB 是半圆的直径, AM ⊥MN ,BN ⊥MN ,如果AM +BN =AB ,求证: 直线MN 与半圆相切;例11.等腰△ABC 中,AB =AC ,以底边中点D 为圆心的圆切AB 边于E 点. 求证:AC 与⊙D 相切; 例12.菱形ABCD 两对角线交于点O ,⊙O 与AB 相切。