正确理解泊松分布

合集下载

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。

中文名泊松分布外文名poisson distribution 分类数学时间1838年台译卜瓦松分布提出西莫恩·德尼·泊松目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。

泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。

这个分布在更早些时候由贝努里家族的一个人描述过。

分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。

泊松分布适合于描述单位时间内随机事件发生的次数。

泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。

通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。

应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。

泊松分布

泊松分布
x P(x) 0.1779 0.3071 0.2651 0.1526 0.0658 T A (A-T)2/T
0
1 2 3 4 合计
27.90
42.50 32.37 16.44 6.26
26
40 38 17 7
0.1294
0.1474 0.9775 0.0191 0.0872 1.3606
自由度=组数-1-1=5-2=3
一个放射性物体5分钟测得脉冲数为200次, 这两种物体混合后估计5分钟脉冲数的总体 平均数及标准差是多少?
140+200=340
340 18.44
二、泊松分布的图形
泊松分布的特征只决定于平均数 ,不同的参数对应
不同的Poisson分布,即的大小决定了Poisson分布 的图形特征
x1 ( 38 29 36) / 3 34.33 x 2 ( 25 18) / 2 21.50 u 34.33 21.50 2.732 34.33 / 3 21.50 / 2
u
X1 X 2 X1 X 2 n1 n2
P<0.01,拒绝H0接受H1
用泊松分布对聚集性的研究

在室内不同位置放置6个平皿,隔一定时间后进行培
养,得葡萄球菌落数分别为21,26,22,18,19, 32,问细菌在室内不同位置的分布是否随机?
x 23
5.91 6 1 5
2 2 0 .05(5) 11.07 2 2 0 .05(5) , p 0.05
泊松分布资料的差异显著性检验
(三)泊松分布资料的差异显著性检验
1. 样本均数与总体均数比较: 直接计算概率法 例 8-10
例8-11

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法

目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。

泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。

这个分布在更早些时候由贝努里家族的一个人描述过。

分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。

泊松分布适合于描述单位时间内随机事件发生的次数。

泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。

通常当n≧20,p≦时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。

应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。

因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。

应用示例泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。

如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。

泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。

这个分布在更早些时候由贝努里家族的一个人描述过。

分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。

泊松分布适合于描述单位时间内随机事件发生的次数。

泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。

通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。

应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。

因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。

应用示例泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。

中文名泊松分布外文名poisson distribution 分类数学时间1838年台译卜瓦松分布提出西莫恩·德尼·泊松目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。

泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Sim éon-Denis Poisson)命名的,他在1838年时发表。

这个分布在更早些时候由贝努里家族的一个人描述过。

分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。

泊松分布适合于描述单位时间内随机事件发生的次数。

泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。

通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。

应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。

泊松分布的特点与应用

泊松分布的特点与应用

泊松分布的特点与应用标题:泊松分布的特点与应用摘要:本文将深入探讨泊松分布,该分布以法国数学家西蒙·泊松命名,被广泛应用于不同领域的事件计数问题。

我们将介绍泊松分布的特点、概率函数以及其在实际问题中的应用。

通过深入了解泊松分布,读者将能够更好地理解该分布的性质和应用,以及如何在实际问题中应用它。

1. 引言1.1 泊松分布的定义与历史背景1.2 泊松分布的特点和概率函数2. 泊松分布的性质2.1 离散性和非负性2.2 泊松分布的概率质量函数(PMF)2.3 期望和方差3. 泊松分布的应用3.1 事件计数问题3.1.1 网络流量3.1.2 自然灾害频率3.2 生物学和遗传学3.2.1 基因突变频率3.2.2 突发疾病发生率3.3 金融和保险3.3.1 保险索赔的发生率3.3.2 股票价格波动4. 结论4.1 对泊松分布的观点和理解4.2 对泊松分布应用的总结和回顾1. 引言1.1 泊松分布的定义与历史背景泊松分布是一种离散概率分布,由法国数学家西蒙·泊松在19世纪中期提出并命名。

该分布用于描述在固定时间或空间范围内事件发生的数量。

泊松分布的应用领域广泛,涵盖了自然科学、社会科学、工程学等众多领域。

1.2 泊松分布的特点和概率函数泊松分布具有以下特点:离散性、非负性和无记忆性。

对于一个满足泊松分布的随机事件,其发生的概率由泊松分布的概率质量函数(PMF)给出。

PMF可用于计算一个特定事件发生的概率。

2. 泊松分布的性质2.1 离散性和非负性泊松分布是离散型分布,意味着它的取值是离散的且不可负。

对于一个随机事件的计数,不可能出现负数的情况。

2.2 泊松分布的概率质量函数(PMF)泊松分布的PMF给出了在特定时间或空间内事件发生次数的概率。

它的表达式为P(X=k) = (e^-λ * λ^k) / k!,其中λ是平均发生率、X是事件计数。

2.3 期望和方差泊松分布的期望和方差均等于λ,即E(X) = λ,Var(X) = λ。

泊松分布的经典教学案例解析

泊松分布的经典教学案例解析

泊松分布的经典教学案例解析泊松分布可以被用来描述某个随机事件发生的概率。

它是一个常用的数学概念,是统计学中的重要概念之一。

它的应用已经扩展到工程、物理、计算机科学、金融等多个领域,因此,泊松分布的教学及解析在数学、统计学等课程中十分重要。

下文将通过一个泊松分布教学案例,介绍如何解析该分布。

一、案例描述现有一家名为“A公司”的工厂,它从一个特殊的服务供应商购买零件,而这个服务供应商的交付速度是不可预测的。

工厂使用泊松分布来估计每天从服务供应商收到零件的期望数量。

根据调研,每天被交付零件的期望数量为x=5,标准差为σ=2.5。

二、教学目标1.理解泊松分布的含义:泊松分布是一种概率分布模型,用于描述某个随机事件在一定时间内发生次数的概率分布;2.掌握泊松分布的两个参数:λ和μ;3.学习如何使用数学公式来解析泊松分布:首先,使用指数分布函数计算发生一次该事件的概率;然后,使用泊松分布函数计算一段时间内发生多次该事件的概率。

三、教学步骤1.首先,将教学案例中提到的概念解释给学生,使学生能够理解泊松分布的概念:在特定的时间周期内,某个随机事件发生的概率。

2.接下来,给学生介绍泊松分布的两个参数λ和μ。

λ表示的是在给定的时间周期内,随机事件发生的期望次数;μ表示的是在给定的时间周期内,该随机事件发生的方差。

3.然后,给学生讲解怎样使用数学公式来解析泊松分布:首先,使用指数分布函数计算某个特殊的随机事件在一个特定的时间点上发生的概率,而参数λ对应于一定时间段内平均发生的次数;其次,使用泊松分布函数计算某种随机事件在给定时间段内发生某个特定次数的概率,而参数μ对应于时间段内发生次数的方差。

4.最后,我们可以通过一个简单的实例来帮助学生理解:假设在一个月中,服务供应商以每周平均3次的速度向A公司交付零件,其对应的λ和μ分别为12和3。

由此,我们可以通过指数分布函数来计算在给定的时间点上服务供应商交付零件的期望概率,期望概率等于λ/μ,即12/3=4;此外,我们还可以使用泊松分布函数计算在一个月中服务供应商交付零件的概率,即可以计算出在一个月中,收到6次或7次零件的概率等。

关于泊松分布与纯生过程

关于泊松分布与纯生过程

关于泊松分布与纯生过程泊松分布和纯生过程可以说是概率论中的两个基本知识点。

和许多概率分布一样,泊松分布和纯生过程都是数学模型,用来描述随机现象的概率分布。

泊松分布:是描述单位时间(或单位面积、体积)内某事件发生次数的离散分布模型。

例如,在一条道路上每小时通过的汽车数、一棵树上某一区域内的落叶数、一台电话交换机接到的呼叫数等,都可视作服从泊松分布的随机变量。

泊松分布的基本特征有两个:1. 时间或空间的长度无限拓展,2. 每个单元中出现一个事件的概率是稳定不变的,同时也是互相独立的。

从定义可以看出,如果一个事件以一定的频率发生,那么我们就可以将其建模为一个泊松分布。

用公式表示泊松分布为:P(X=k)= e^(-λ) (λ^k)/ k!其中,P(X=k)是事件发生次数为k的概率,e是自然对数的底数(e≈2.71828),λ为单位时间(或单位面积、体积)内事件的发生率,也被称为泊松分布的参数,k为一个非负整数。

纯生过程:是一个随机过程,它描述了随着时间的推移,随机事件的发生次数如何变化。

它在概率论中有着广泛的应用。

一个纯生过程的基本特征是随机事件之间的间隔时间是指数分布的。

纯生过程的定义是:如果X1,X2,X3...是独立同分布的(具有相同的分布)指数型随机变量,那么S1=X1,S2=X1+X2,S3=X1+X2+X3,... 就构成了纯生过程。

在纯生过程中,单个事件的发生频率是不变的,是否发生某次事件不受前面事件是否发生的影响。

换句话说,每个事件发生的时间互不关联或独立于发生频率,所以它被称为纯生过程。

纯生过程通常表示为N(t),表示时间t内发生的事件数量,其中t可以是任何正实数。

当t→∞时,纯生过程有一个明显的特征:N(t)/t的期望值等于这个过程的发生频率。

结论:泊松分布和纯生过程都是离散概率分布,关于随机事件频次的描述。

它们有很多类似点,其中一个重要的特征是每个事件是相互独立的。

但是,它们之间也有很多区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正确理解泊松分布
很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。

虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。

如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。

而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。

如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?”
泊松分布最常见的一个应用就是,它作为了排队论的一个输入。

什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。

但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。

在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200
个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。

也就是在单位时间内有k个学生到达的概率为:
其中为单位时间内学生的期望到达数。

问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

二项分布很容易理解,比如一个牛仔一枪打中靶子的概率是p,如果我们让他开10枪,如果每击中一次目标就得1分,问他一共能得几分?虽然我们不能在牛仔射击前准确地预测出具体的得分k,但可以求出k的概率分布,比如k=9的概率是50%,k=8分的概率是30%……并且根据k的分布来判断他的枪法如何,这便是概率统计的思想。

具体计算的方法就是求出“得k分”的概率。

比如“得9分”可以是“射失第1发,而命中其余的9发”,它的概率是p的9次方乘上1-p。

X O O O O O O O O O
O X O O O O O O O O
O O X O O O O O O O
……
根据组合数性质,在种情况下,牛仔都可以得到9分。

因此牛仔“得9分”的概率。

同理,“得k分”的概率就是。

而对于一个神枪手(p=1)来讲,他“得10分”的概率就是1。

二项分布和泊松分布最大的不同是前者的研究对象是n个离散的事件(10次射击),而后者考察的是一段连续的时间(单位时间)。

因此泊松分布就是在二项分布的基础上化零为整。

如果我们把单位时间划分成n个细小的时间片,假设在每个时间片内牛仔都在射击,只是这次他发射的不是子弹,而是学生——“命中目标”就代表向食堂成功地发射出一个学生,如果“没有命中”就表示学生被打到了食堂意外的其它地方。

如果n不是无穷大,那么在某个时间片内可能出现两个学生同时进入食堂的状况,这样的话就和我们假设任意的时间片内之可能发生“有一个学生出现”或“没有学生出现”不符,为了能用二项分布去近似泊松分布,因此n必须趋向无穷,时间片必须无穷小,这也是为什么泊松分布的前提之一是“n很大”的原因!(另一个前提是“p很小”)
这样一来我们就可以用二项分布的公式表示单位时间到来k个学生的概率了。

在单位时间内发生n次独立的“发射学生”实验,把学生“发射”到食堂的概率是p:
那么单位时间内食堂到来k个学生的概率
把组合数展开,
上下同乘,
把拆成k个p连乘的形式放到左边分子上,
调整,
因为,,
令,
这就是我们熟悉的泊松公式,其中的物理意义是单位时间内学生到来的数量,也就是平均到达率,是一个常数。

相关文档
最新文档