计算机算法设计与分析 第2章
算法设计与分析知到章节答案智慧树2023年天津大学

算法设计与分析知到章节测试答案智慧树2023年最新天津大学第一章测试1.下列关于效率的说法正确的是()。
参考答案:提高程序效率的根本途径在于选择良好的设计方法,数据结构与算法;效率主要指处理机时间和存储器容量两个方面;效率是一个性能要求,其目标应该在需求分析时给出2.算法的时间复杂度取决于()。
参考答案:问题的规模;待处理数据的初态3.计算机算法指的是()。
参考答案:解决问题的有限运算序列4.归并排序法的时间复杂度和空间复杂度分别是()。
参考答案:O(nlog2n);O(n)5.将长度分别为m,n的两个单链表合并为一个单链表的时间复杂度为O(m+n)。
()参考答案:错6.用渐进表示法分析算法复杂度的增长趋势。
()参考答案:对7.算法分析的两个主要方面是时间复杂度和空间复杂度的分析。
()参考答案:对8.某算法所需时间由以下方程表示,求出该算法时间复杂度()。
参考答案:O(nlog2n)9.下列代码的时间复杂度是()。
参考答案:O(log2N)10.下列算法为在数组A[0,...,n-1]中找出最大值和最小值的元素,其平均比较次数为()。
参考答案:3n/2-3/2第二章测试1.可用Master方法求解的递归方程的形式为()。
参考答案:T(n)=aT(n/b)+f(n) , a≥1, b>1, 为整数, f(n)>0.2.参考答案:对3.假定,, 递归方程的解是. ( )参考答案:对4.假设数组A包含n个不同的元素,需要从数组A中找出n/2个元素,要求所找的n/2个元素的中点元素也是数组A的中点元素。
针对该问题的任何算法需要的时间复杂度的下限必为。
( )参考答案:错5.使用Master方法求解递归方程的解为().参考答案:6.考虑包含n个二维坐标点的集合S,其中n为偶数,且所有坐标点中的均不相同。
一条竖直的直线若能把S集合分成左右两部分坐标点个数相同的子集合,则称直线L为集合S的一条分界线。
若给定集合S,则可在时间内找到这条分界线L。
计算机算法设计与分析(第5版)

作者简介
王晓东:男,1957年生,山东人,福建工程学院副院长,教授,博士生导师,福建省计算机学会理事长。主 讲课程:算法与数据结构、算法设计与分析、文献阅读与选题报告 。
目录
(注:目录排版顺序为从左列至右列 )
教学资源
《计算机算法设计与分析(第5版)》有配套教材——《计算机算法设计与分析习题解答(第5版)》 。
教材特色
《计算机算法设计与分析(第5版)》修正了第4版中发现的一些错误,并将各章的习题分为算法分析题和算 法实现题两部分,增加了算法实践性内容,增加了有关串和序列的算法内容。
《计算机算法设计与分析(第5版)》由王晓东担任主编;傅清祥教授、吴英杰教授、傅仰耿博士和朱达欣教 授参加了该教材有关章节的讨论,对该教材内容及各章节的编排提出了意见;田俊教授审阅了全书。该教材在编 写过程中,得到了全国高等学校计算机专业教学指导委员会的支持。福州大学“211工程”计算机与信息工程重 点学科实验室和福建工程学院为该教材的写作提供了设备和工作环境 。
该教材各章的论述中,首先介绍一种算法设计策略的基本思想,然后从解决计算机科学和应用中的实际问题 入手,描述几个算法。同时对每个算法所需的时间和空间进行分析,使读者既能学到一些常用的算法,也能通过 对算法设计策略的反复应用,牢固掌握这些算法设计的基本策略。该教材选择某些问题,通过对解同一问题的不 同算法的比较,使读者体会到每种算法的设计要点。
2018年8月,该教材由电子工业出版社出版 。
算法分析与设计概论

9
How to Study Algorithm?
“Sometimes we have experiences, and sometimes not. Therefore, the better way is to learn more."
10
1.1 算法与程序
算法:是满足下述性质的指令序列。
输 入:有零个或多个外部量作为算法的输入。 输 出:算法产生至少一个量作为输出。 确定性:组成算法的每条指令清晰、无歧义。 有限性:算法中每条指令的执行次数有限,执行 每条指令的时间也有限。
1) 第一种解法:
输入:所购买的三种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[ ],m[ ],s[ ] 1. void chicken_question(int n,int &k,int g[ ],int m[ ],int s[ ]) 2. { int a,b,c; 4. k = 0; 5. for (a=0;a<=n;a++) 6. for (b=0;b<=n;b++) 7. for (c=0;c<=n;c++) { 8. if ((a+b+c==n)&&(5*a+3*b+c/3==n)&&(c%3==0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. }}}
矩阵。
数组 T:表示售货员的路线,依次存放旅行路线中的城 市编号。
售货员的每一条路线,对应于城市编号的一个排列。
n 个城市共有 n! 个排列,采用穷举法逐一计算每一条路线的费 用,从中找出费用最小的路线,便可求出问题的解。
(陈慧南 第3版)算法设计与分析——第2章课后习题答案

因此 T (n) (n 2 ) (3) a 28, b 3, f n cn3
nlogb a nlog3 28 n3.033 ,则 f (n) c n 2 (nlogb a - ) ,其中可取 =0.04 。符合主定理
的情况 1 ,因此 T (n) (n3.033 )
21 21 当 n n0 时, f n g n ,所以 f n = g n 2 2
(2) f n n 2 logn , g n n log 2 n
2 当 n 4 时, f n n 2 logn n 2 , g n n log 2 n n 。因此可取 n0 4, c 1 ,当
g n
(1) f n 20n logn , g n n+ log 3 n
f n 20n logn 21n , g n n+ log 3 当 n 3 时, logn n log3 n 2n n 因此
因此可取 n0 3, c
f n g n ,所以 f n = g n
2-12 将下列时间函数按增长率的非递减次序排列
3 2
n
, log n , log 2 n , n log n , n ! , log(log(n)) , 2 n , n1 log n , n 2
答: n1 log n
f ( n ) ( n m )
证明:
f (n) am nm am1nm1 a1n a0 F (n) am n m am1 n m1
a1 n a0
由 F (n) 单调性易知,存在 nt 0 ,使得 F (n) 取 n 1 ,且 nt0 nt , F (nt0 ) 0 ,则 当 n nt0 时, F (n) 0 即: f (n) am n m am1 n m1
《算法设计与分析》(全)

1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
算法设计与分析习题与实验题(12.18)

《算法设计与分析》习题第一章引论习题1-1 写一个通用方法用于判定给定数组是否已排好序。
解答:Algorithm compare(a,n)BeginJ=1;While (j<n and a[j]<=a[j+1]) do j=j+1;If j=n then return trueElseWhile (j<n and a[j]>=a[j+1]) do j=j+1;If j=n then return true else return false end ifEnd ifend习题1-2 写一个算法交换两个变量的值不使用第三个变量。
解答:x=x+y; y=x-y; x=x-y;习题1-3 已知m,n为自然数,其上限为k(由键盘输入,1<=k<=109),找出满足条件(n2-mn-m2)2=1 且使n2+m2达到最大的m、n。
解答:m:=k; flag:=0;repeatn:=m;repeatl:=n*n-m*n-m*n;if (l*l=1) then flag:=1 else n:=n-1;until (flag=1) or (n=0)if n=0 then m:=m-1until (flag=1) or (m=0);第二章基础知识习题2-1 求下列函数的渐进表达式:3n 2+10n ; n 2/10+2n ; 21+1/n ; log n 3; 10 log3n 。
解答: 3n 2+10n=O (n 2), n 2/10+2n =O (2n ), 21+1/n=O (1), log n 3=O (log n ),10 log3n =O (n )。
习题2-2 说明O (1)和 O (2)的区别。
习题2-3 照渐进阶从低到高的顺序排列以下表达式:!n ,3/22,2,20,3,log ,4n n n n n 。
解答:照渐进阶从低到高的顺序为:!n 、 3n、 24n 、23n 、20n 、log n 、2习题2-4(1) 假设某算法在输入规模为n 时的计算时间为n n T 23)(⨯=。
计算机算法设计与分析(第4版) 王晓东习题解答

第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。
若f=Ο(g),则必然存在常数c1>0和n0,使得∀n≥n0,有f≤c1*g(n)。
由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。
必要性。
同理,若g=Ω(f),则必然存在c2>0和n0,使得∀n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。
2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得∀n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。
由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。
3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。
证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得∀n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。
4)log(n!)= Θ(nlogn)证明:∙由于log(n!)=∑=n i i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。
∙由于对所有的偶数n 有,log(n!)= ∑=n i i 1log ≥∑=n n i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。
当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得∀n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。
大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。
全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。
主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。
书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。
为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 递归的概念
例6 Hanoi塔问题 void hanoi(int n, int a, int b, int c) 当n=1时,问题比较简单。此时,只要将编号为1的圆盘从塔座a直 在问题规模较大时,较难找到一般的方法,因此我们尝试 接移至塔座b上即可。 用递归技术来解决这个问题。 { 当n>1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个 if (n > 0) 较小的圆盘依照移动规则从塔座a移至塔座c,然后,将剩下的最 { 大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照 hanoi(n-1, a, c, b); 移动规则从塔座c移至塔座b。 move(a,b); 由此可见,n个圆盘的移动问题可分为2次n-1个圆盘的移动问题, hanoi(n-1, c, b, a); 这又可以递归地用上述方法来做。由此可以设计出解Hanoi塔问题 的递归算法如下。 } }
分治法的设计思想是,将一个难以直接解决的大问题, n = T(n) 分割成一些规模较小的相同问题,以便各个击破, 分而治之。 n/2 n/2 n/2 n/2
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
1 q(n, n) q(n, m) 1 q(n, n 1) q(n, m 1) q(n m, m)
正整数n的划分数p(n)=q(n,n)。
n 1, m 1 nm nm n m 1
2.1 递归的概念
例6 Hanoi塔问题 设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这 些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号 为1,2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍 按同样顺序叠臵。在移动圆盘时应遵守以下移动规则: 规则1:每次只能移动1个圆盘; 规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上; 规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中 任一塔座上。
2.1 递归的概念
例5 整数划分问题 前面的几个例子中,问题本身都具有比较明显的递归关系,因 而容易用递归函数直接求解。 在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关 系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个 数记作q(n,m)。可以建立q(n,m)的如下递归关系。
T(n)
n/2
=
n/2
n
n/2 n/2
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
算法总体思想
将求出的小规模的问题的解合并为一个更大规模的问 题的解,自底向上逐步求出原来问题的解。
2.1 递归的概念
例5 整数划分问题 将正整数n表示成一系列正整数之和:n=n1+n2+…+nk, 其中n1≥n2≥…≥nk≥1,k≥1。 正整数n的这种表示称为正整数n的划分。求正整数n的不 同划分个数。 例如正整数6有如下11种不同的划分: 6; 5+1; 4+2,4+1+1; 3+3,3+2+1,3+1+1+1; 2+2+2,2+2+1+1,2+1+1+1+1; 1+1+1+1+1+1。
T(n)
n/2
=
n/2
n
n/2 n/2
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
算法总体思想
将求出的小规模的问题的解合并为一个更大规模的问 题的解,自底向上逐步求出原来问题的解。
递归小结
优点:结构清晰,可读性强,而且容易用 数学归纳法来证明算法的正确性,因此它 为设计算法、调试程序带来很大方便。
缺点:递归算法的运行效率较低,无论是 耗费的计算时间还是占用的存储空间都比 非递归算法要多。
递归小结
解决方法:在递归算法中消除递归调用,使其 转化为非递归算法。 1、采用一个用户定义的栈来模拟系统的递归调 用工作栈。该方法通用性强,但本质上还是递 归,只不过人工做了本来由编译器做的事情, 优化效果不明显。 2、用递推来实现递归函数。 3、通过变换能将一些递归转化为尾递归,从而 迭代求出结果。 后两种方法在时空复杂度上均有较大改善, 但其适用范围有限。
2.1 递归的概念
例5 整数划分问题 前面的几个例子中,问题本身都具有比较明显的递归关系,因 而容易用递归函数直接求解。 在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关 系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个 数记作q(n,m)。可以建立q(n,m)的如下递归关系。
第2章 递归与分治策略
学习要点:
理解递归的概念。 掌握设计有效算法的分治策略。 通过下面的范例学习分治策略设计技巧。
(1)二分搜索技术;
(2)大整数乘法; (3)Strassen矩阵乘法; (4)棋盘覆盖;
(5)合并排序和快速排序;
(6)线性时间选择; (7)最接近点对问题; (8)循环赛日程表。
(1) q(n,1)=1,n1; (3) q(n,n)=1+q(n,n-1); 当最大加数n1不大于1时,任何正整数n只有一种划分形式, 正整数n的划分由n1=n的划分和n1≤n-1的划分组成。 n 即 n 111 (2) q(n,m)=q(n,n),mn; (4) q(n,m)=q(n,m-1)+q(n-m,m),n>m>1; 正整数n的最大加数n1不大于m的划分由n1=m的划分和 最大加数n1实际上不能大于n。因此,q(1,m)=1。 n1≤n-1 的划分组成。
2.1 递归的概念
直接或间接地调用自身的算法称为递归算法。 用函数自身给出定义的函数称为递归函数。 由分治法产生的子问题往往是原问题的较小模 式,这就为使用递归技术提供了方便。在这种 情况下,反复应用分治手段,可以使子问题与 原问题类型一致而其规模却不断缩小,最终使 子问题缩小到很容易直接求出其解。这自然导 致递归过程的产生。 分治与递归像一对孪生兄弟,经常同时应用在 算法设计之中,并由此产生许多高效算法。
1 5 n1 1 5 n1 1 F (n) 2 5 2
本例中的Ackerman函数却无法找到非递归的定义。
2.1 递归的概念
例3 Ackerman函数 A(n,m)的自变量m的每一个值都定义了一个单变量函数: M=0时,A(n,0)=n+2 M=1时,A(n,1)=A(A(n-1,1),0)=A(n-1,1)+2,和A(1,1)=2故 A(n,1)=2*n M=2时,A(n,2)=A(A(n-1,2),1)=2A(n-1,2),和 A(1,2)=A(A(0,2),1)=A(1,1)=2,故A(n,2)= 2^n 。
分治法的基本步骤
divide-and-conquer(P) { if ( | P | <= n0) adhoc(P); //解决小规模的问题 divide P into smaller subinstances P1,P2,...,Pk;//分解问题 for (i=1,i<=k,i++) yi=divide-and-conquer(Pi); //递归的解各子问题 return merge(y1,...,yk); //将各子问题的解合并为原问题的解 } 人们从大量实践中发现,在用分治法设计算法时, 最好使子问题的规模大致相同。即将一个问题分成 大小相等的k个子问题的处理方法是行之有效的。 这种使子问题规模大致相等的做法是出自一种平衡 (balancing)子问题的思想,它几乎总是比子问题 规模不等的做法要好。
2.1 递归的概念
例4 排列问题 设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列。
设R={r1,r2,…,rn}是要进行排列的n个元素,Ri=R-{ri}。 集合X中元素的全排列记为perm(X)。 (ri)perm(X)表示在全排列perm(X)的每一个排列前加上前 缀得到的排列。R的全排列可归纳定义如下: 当n=1时,perm(R)=(r),其中r是集合R中唯一的元素; 当n>1时,perm(R)由(r1)perm(R1),(r2)perm(R2),…, (rn)perm(Rn)构成。
M=3时,类似的可以推出 n M=4时,A(n,4)的增长速度非常快,以至于没有适当的数学式子 来表示这一函数。
2
2
2 2
2.1 递归的概念
例3 Ackerman函数 定义单变量的Ackerman函数A(n)为,A(n)=A(n, n)。 定义其拟逆函数α(n)为:α(n)=min{k| A(k)≥n}。即α(n)是使n≤A(k)成立的最小的k值。 α(n)在复杂度分析中常遇到。对于通常所见到的 正整数n,有α(n)≤4。但在理论上α(n)没有上 界,随着n的增加,它以难以想象的慢速度趋向正 无穷大。
算法总体思想
对这k个子问题分别求解。如果子问题的规模仍然不够 小,则再划分为k个子问题,如此递归的进行下去,直 将要求解的较大规模的问题分割成k个更小规模的子问 到问题规模足够小,很容易求出其解为止。 题。
T(n)
=
பைடு நூலகம்
n
T(n/2)
T(n/2)