实数培优题

合集下载

【学生卷】初中七年级数学下册第六单元《实数》经典练习题(课后培优)

【学生卷】初中七年级数学下册第六单元《实数》经典练习题(课后培优)

一、选择题1.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .102.64的算术平方根是( ) A .8 B .±8 C .22D .22± 3.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个4.下列命题是真命题的是( )A .两个无理数的和仍是无理数B .有理数与数轴上的点一一对应C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等5.下列实数中,是无理数的为( )A .3.14B .13C .5D .96.在0.010010001,3.14,π,10,1.51,27中无理数的个数是( ). A .5个 B .4个 C .3 D .2个7.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 8.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+9.下列计算正确的是( ) A .11-=- B .2(3)3-=- C .42=±D .31182-=- 10.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n11.已知无理数m 的小数部分与5的小数部分相同,它的整数部分与5π-的整数部分相同,则m 为( ) A .5 B .10 C .51- D .5π-12.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .413.64的平方根为( )A .8B .8-C .22D .22± 14.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B .7C .11D .无法确定 15.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9二、填空题16.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2)求12a +的平方根和立方根.17.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.18.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当a b ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.19.若a ,b 分别为11的整数部分和小数部分,则a-b 的值为__.20.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.21.求下列各式中的x :(1)29(1)25x -=(2)3548x += 22.比较大小:312-___________12 23.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.24.比较大小,填“>”或“<”号:12_________512 25.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎣=8→82⎡=⎣→2⎤⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.26.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.三、解答题27.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-28.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

《易错题》初中七年级数学下册第六单元《实数》习题(培优练)

《易错题》初中七年级数学下册第六单元《实数》习题(培优练)

一、选择题1.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .8D 解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D .【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.2 )A .3B .﹣3C .±3D .6A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】 ∵9,∴3,故选:A .【点睛】. 3.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提.4.若3a =,则a 在( ) A .3-和2-之间 B .2-和1-之间 C .1-和0之间 D .0和1之间C 解析:C【分析】案.【详解】解:∵4<5<9,∴23.∴-1<0.故选:C .【点睛】5.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,【点睛】本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.在1.414,213,5π,2中,无理数的个数是( ) A .1B .2C .3D .4C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:1.414是有限小数,属于有理数;213是分数,属于有理数; 5π是无理数;2是无理数,∴无理数的个数是3个,故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.8.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 解析:C无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227分数,是有理数,选项不符合题意;B、1.2012001是有理数,选项不符合题意;C、2π是无理数,选项符合题意;D、81=9,9是整数是有理数,,选项不符合题意.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.在 -1.414,2,16,π,2+3,3.212212221…,227,3.14这些数中,无理数的个数为()A.2 B.3 C.4 D.5C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】164=,223.1428577=小数点后的142857是无限循环的,则在这些数中,无理数有2,,23,3.212212221π+⋯,共4个,故选:C.【点睛】本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.10.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+p=0,则m,n,p,q四个有理数中,绝对值最大的一个是()A.p B.q C.m D.n B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n 和p 互为相反数,∴原点在线段PN 的中点处,∴绝对值最大的一个是Q 点对应的q .故选B .【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.二、填空题11.计算:()214322--⨯-(【分析】利用实数的混合运算法则计算得出答案【详解】解:原式=4+9=4+9=4+93=4+27=31【点睛】本题主要考查了实数的运算正确化简各数是解题的关键解析:【分析】利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.12.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.13.计算:(12(2)22(2)8x -=(1)1;(2)【分析】(1)实数的混合运算利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解【详解】解:(1)===1(2)∴【点睛】本题考查实数的混合运算及利用平方根解方 解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.14.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.15.(22-平方根然后进行加减运算即可【详解】解:===【点睛】此题考查了实数的运算熟练掌握算术平方根和立方根的性质是解本题的关键解析:8-【分析】先化简绝对值、立方根、算术平方根,然后进行加减运算即可.【详解】(22=2243--⨯+()=412-=8-【点睛】此题考查了实数的运算,熟练掌握算术平方根和立方根的性质是解本题的关键. 16.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.17.2-.4【分析】原式利用平方根立方根定义及绝对值化简计算即可得到结果【详解】解:原式【点睛】本题考查了实数的运算熟练掌握平方根立方根定义是解本题的关键解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.18.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键.19.计算20201|-+=_________.-5【分析】本题涉及乘方绝对值立方根以及二次根式化简等知识点在计算时需要针对每个知识点分别进行计算然后根据实数的运算法则求得计算结果【详解】解:===-5故答案为:-5【点睛】本题主要考查了实数的综解析:-5【分析】本题涉及乘方、绝对值、立方根以及二次根式化简等知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:20201|-+=12|2|----=122---=-5.故答案为:-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、二次根式、三次根式、绝对值等知识点的运算.20.一个正数的两个平方根分别是21a -与2a -+,则这个正数是______.9【分析】根据一个正数的两个平方根互为相反数可得关于a 的方程解方程即可求出a 进一步即可求出答案【详解】解:因为一个正数的两个平方根分别是与所以+()=0解得:a=﹣1所以这个正数是故答案为:9【点睛解析:9【分析】根据一个正数的两个平方根互为相反数可得关于a 的方程,解方程即可求出a ,进一步即可求出答案.【详解】解:因为一个正数的两个平方根分别是21a -与2a -+,所以21a -+(2a -+)=0,解得:a =﹣1,所以这个正数是()22119⨯--=⎡⎤⎣⎦.故答案为:9.【点睛】本题考查了平方根的定义,属于基础题型,掌握解答的方法是解题的关键. 三、解答题21.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.22. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根.解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.23.已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少?解析:(1)m =121;(2)a +b +c 的立方根是2【分析】(1)由正数的平方根互为相反数,可得2n +1+4﹣3n =0,可求n =5,即可求m ; (2)由已知可得a =3,b =0,c =n =5,则可求解.【详解】解:(1)正数m 的平方根互为相反数,∴2n +1+4﹣3n =0,∴n =5,∴2n +1=11,∴m =121;(2)∵|a ﹣3|(c ﹣n )2=0,∴a =3,b =0,c =n =5,∴a +b +c =3+0+5=8,∴a +b +c 的立方根是2.【点睛】本题考查平方根的性质;熟练掌握正数的平方根的特点,绝对值和偶次方根数的性质是解题的关键.24.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 17++=-x-y 的值. 解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数.25.计算:()214322--⨯-( 解析:【分析】 利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.26.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 27.解方程:(1)2810x -=;(2)38(1)27x +=. 解析:(1)9x =±;(2)12x =. 【分析】 (1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键.--28.计算:(1)225(2)1+解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】--解:(1)225=-4+6-1-5=-4;(2)1)=++1=+1=-+1=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.。

浙教版七上数学第三章:实数培优训练试题(附答案)

浙教版七上数学第三章:实数培优训练试题(附答案)

浙教版七上数学第三章:实数培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.一个正数的算术平方根是8,则这个数的相反数的立方根是( )A .4B .-4C .±4D .±8 2.16的平方根为( )A. 4±B. 4C. 2D. 2± 3.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 4.下列说法中不正确的是( ) ①.-1的立方根是-1,-1的平方是1;②.两个有理数之间必定存在着无数个无理数,③.在1和2之间的有理数有无数个,但无理数却没有;④.如果x 2=6,则x 一定不是有理数 A.②③ B.①④ C.③ D.③④ 5.如果b a ,表示两个实数,那么下列式子正确的是( )A .若b a =,则b a =B .若b a <,则22b a <C .若33b a =,则b a =D .若b a >,则33b a >6.如果642=x ,那么=3x ( )A. 4±B. 2±C.2D. 2-7.一个正奇数的算术平方根是a ,那么与这个正奇数相邻的下一个正奇数的算术平方根是( ) A .2+aB .22+a C.22+aD .2+±a8.已知35.703.54=,则005403.0的算术平方根是( ) A .0.735B .0.0735C .0.00735D .0.0007359.已知实数139-的整数部分为a ,小数部分为b ,则=-b a 32( )A. 39343-B.3937-C.39343+D.3937+10.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是( )A .点CB .点DC .点AD .点B二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.已知一个正数的两个平方根分别为62-m 和m +3,则()2018m -的值为_________12.如果15=3.873,5.1=1.225,那么______00015.0= 13.在一次数字竞猜游戏中,大屏幕上出现的一列有规律的数是,21,52,103,174,265,376,507…则第100个数为14.按如图所示的程序计算:若开始输入的x 值为64时,输出的y 值是_______15.如图所示的方格中,每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是_______________16.在草稿纸上计算:①31;②3321+;③333321++;④33334321+++......观察你计算的结果,用你发现的规律直接写出下面式子的值:________2018...432133333=+++++三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)计算下列各式:(1)()()()33332312521442--⎪⎭⎫⎝⎛-⨯-+-⨯-(2)()()[]3233253831512812116912-⨯++⨯⎪⎭⎫⎝⎛-÷+-⨯-18(本题8分)请将图中数轴上的各点与下列实数对应起来,并把它们按从小到大的顺序排列,用“<”连接:0.3,3-,2,3.14,π-,0,27.19.(本题8分)已知实数a ,b ,c 在数轴上的对应点如图所示,化简:()()233c a c b b a --+--.20(本题10分)如图1.纸上有5个边长为1的小正方形组成的纸片,可把它剪拼成一个正方形(图2)(图3)(1)拼成的正方体的面积与边长分别是多少?(2)你能把这十个小正方体组成的图形纸(图3),剪拼成一个大正方形吗?若能,则请画出剪拼成的大正方形,并求出其边长为多少?21(本题10分).若实数a ,b ,c 在数轴上所对应点分别为A ,B ,C ,a 为2的算术平方根,b=3,C 点是A 点关于B 点的对称点, (1)求C 点所对应的数;(2)a 的整数部分为x ,c 的小数部分为y ,求2x 3+2y 的值.22(本题12分)(1)已知43=x ,且()212+-z y 与3-z 互为相反数,求333z y x ++的值.(2)现用篱笆材料在空地上围成一个绿化场地,使面积为48 m 2,现有两种设计方案:一种是围成正方形场地;另一种是围成圆形场地,试问选用哪一种方案围成的场地所需的材料少,并说明理由.(π取3)23(本题12分)有一台单一功能的计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x 1,只显示不运算,接着再输入整数x 2后则显示|x 1﹣x 2|的结果,比如依次输入1,2,则输出的结果是|1﹣2|=1.此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是(2)若小明将1到2018这2018个整数随意地一个一个地输入,全部输入完毕后显示的最后结果设为m ,求m 的最大值试题答案一.选择题:1.答案:B解析:∵一个正数的算术平方根是8,∴这个正数为64, ∴64的相反数的立方根为4643-=-,故选择B2.答案:D解析:∵416=,∴16的平方根为2±,故选择D3.答案:B解析:∵正方形的面积是15,∴边长为15, ∵4153<<,故选择B4.答案:C解析:∵-1的立方根是-1,-1的平方是1,故①正确; ∵两个有理数之间必定存在着无数个无理数,故②正确;∵在1和2之间的有理数有无数个,无理数也有无数个,故③错误; ∵x 2=6,∴x 一定不是有理数,故④正确,故选择C5.答案:D解析:如果b a =,则a 不一定等于b ,故A 选项错误; 如果b a <,例如1,5=-=b a 时,22b a >,故B 选项错误; 如果33b a =,当b a ,为负数时,负数没有平方根,故C 选项错误; 若b a >,则33b a >,故D 选项正确,故选择D6.答案:B解析:∵642=x ,∴8±=x ,∴283±=±,故选择B7.答案:C解析:∵一个正奇数的算术平方根是a ,∴这个正奇数是2a , ∴与这个正奇数相邻的下一个正奇数为22+a , ∴算术平方根是22+a ,故选择C8.答案:B解析:∵35.703.54=,∴0735.0005403.0= 故选择B9.答案:A 解析:∵61395<-<,∴639,5-==b a ,∴()39343183932563932532-=+-=--=-b a故选择A10.答案:D解析:当正方形在转动第一周的过程中,1所对应的点是A ,2所对应的点是B ,3所对应的点是C ,4所对应的点是D , ∴四次一循环, ∵2018÷4=504…2, ∴2018所对应的点是B . 故选:D .二.填空题:11.答案:1解析:∵一个正数的两个平方根分别为62-m 和m +3, ∴0362=++-m m ,解得:1=m ,∴()()1120182018=-=-m12.答案:01225.0解析:∵15=3.873,5.1=1.225,∴01225.000015.0=13.答案:10001100解析:∵111212+=,122522+=,1331032+=,1441742+=,…∴第100个数为1000110011001002=+14.答案:2解析:输入64,取算术平方根为8,是有理数,取立方根为2,是有理数,取算术平方根为2, 是无理数,输出2,15.答案:6 解析:∵624222122212=+=⨯⨯+⨯⨯⨯=阴影S , ∴把阴影部分剪拼成一个正方形的边长为616.答案:2036162解析:∵113=,32133=+,6321333=++,1043213333=+++,......∴20361622201920182018...43212018...432133333=⨯=+++++=+++++三.解答题:17.解析:(1)原式25352132581448-=++-=+⨯+⨯-=(2)原式=()()13601352829182141318-=-+=⨯-+⨯⨯+-⨯-18.解:各实数对应数轴上的点为:A :π-, B :3-, C :0, D :0.3, E :2, F :3.14, G :27, 从小到大排列为:π-<3-<0<0.3<2<3.14<2719.解析:根据数轴上点的位置得:a <b <0<c ,且|b|<|c|, ∴b+c >0,a ﹣c <0,则原式=a ﹣b ﹣b ﹣c+a ﹣c=2a ﹣2b ﹣2c .20.解析:(1)由图2得,正方形的面积为5,边长为5; (2)能,如图4所示:∵正方形的面积为10,∴边长为1021.解析:(1)设点A 关于点B 的对称点为点C , 则322=+m,解得26-=m ; 故C 点所对应的数为:26-;(2)∵1<2<2,∴a 的整数部分为x=1,4<26-<5,所以26-的整数部分是4,小数部分y=6﹣2﹣4=2﹣2, ∴2x 3+2y=2×13+2×(2﹣2)=6﹣22.22.解析:(1)∵43=x ,∴64=x ,∵()212+-z y 与3-z 互为相反数,∴()212+-z y 03=-+z∴⎩⎨⎧=-=+-03012z z y 解得:⎩⎨⎧==35z y∴6216271256433333==++=++z y x(2)方案1:设正方形的边长为x m ,则482=x ,解得,48±=x∵48-=x 不符合题意,舍去.∴正方形周长为484m .方案2:设圆的半径为x m ,则482=x π,解得4±=x ,4-=x 不符合题意,舍去.∴圆周长为8π≈24(m ),又∵24<484,故选用方案2围成圆形场地所需的篱笆材料较少.23.解析:(1)根据题意可以得出:||3﹣4|﹣5|=|1﹣5|=4; 故答案为:4.(2)对于任意两个正整数x 1,x 2,|x 1﹣x 2|一定不超过x 1和x 2中较大的一个,对于任意三个正整数x 1,x 2,x 3,||x 1﹣x 2|﹣x 3|一定不超过x 1,x 2和x 3中最大的一个,以此类推,设小明输入的n 个数的顺序为x 1,x 2,…x n ,则m=|||…|x 1﹣x 2|﹣x 3|﹣…|﹣x n |, m 一定不超过x 1,x 2,…x n ,中的最大数,所以0≤m ≤n ,易知m 与1+2+…+n 的奇偶性相同; 1,2,3可以通过这种方式得到0:||3﹣2|﹣1|=0;任意四个连续的正整数可以通过这种方式得到0:|||a ﹣(a+1)|﹣(a+3)|﹣(a+2)|=0(*);下面根据前面分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合指的是按(*)式结构计算.当n=4k时,1+2+…+n为偶数,则m为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n,则最大值为n;当n=4k+1时,1+2+…+n为奇数,则m为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n,则最大值为n;当n=4k+2时,1+2+…+n为奇数,则m为奇数,从1开始连续四个正整数结合得到0,仅剩下n和n ﹣1,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n,最大值为n﹣1;当n=4k+3时,1+2+…+n为偶数,则m为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n,则最大值为n﹣1.∴当n=2018时,m的最大值为2017,最小值为0,故答案为:2017.。

河北沧州一中七年级数学下册第六章【实数】经典题(培优练)

河北沧州一中七年级数学下册第六章【实数】经典题(培优练)

一、选择题1.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②2.在实数3-,-3.14,0,π,364中,无理数有( ) A .1个B .2个C .3个D .4个3.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+4.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间5.85 ) A .4 B .5C .6D .76.下列实数31,7π-,3.1438,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个7.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( ) A .3B .3-C .3±D .3±8.已知无理数m 55π-的整数部分相同,则m 为( ) A .5B .10C .51-D .5π-9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A .21n -B .22n -C .23n -D .24n -10.在0,3π,5,227,9-,6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个11.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个二、填空题12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________; (2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.13.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0327-,()2--,1--922-14.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.15.求下列各式中的x 的值. (1)4x 2=9; (2)(2x ﹣1)3=﹣27.16.用“<”连接2的平方根和2的立方根_________. 17.在实数π,8754,0中,无理数的个数是________个. 18.计算:2(3)216-- 19.计算:(1()2325273-.(2)()2411893⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦. 20.计算2020318|4-+-=_________.21.-64的立方根是____,9的平方根是_____,16的算术平方根是_____81_____.三、解答题22.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

初中数学数学第六章 实数的专项培优练习题(含答案

初中数学数学第六章 实数的专项培优练习题(含答案

初中数学数学第六章 实数的专项培优练习题(含答案一、选择题1.在有理数中,一个数的立方等于这个数本身,这种数的个数为( )A .1B .2C .3D .42.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 3.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17B .3C .13D .-17 4.280x y -+=,则x y +的值为( ) A .10 B .-10 C .-6 D .不能确定5.下列各组数中,互为相反数的是( )A .22B .2-与12-C .()23-与23-D 38-38-6.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个7.设n 为正整数,且n 65n+1,则n 的值为( ) A .5 B .6 C .7D .8 8.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A .4个B .3个C .2个D .1个9.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个 B .2个 C .3个 D .4个10.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.64的立方根是___________. 13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.14.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 15.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.17.31.35 1.105≈3135 5.130≈30.000135-≈________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.若x <0323x x ____________.20.若x 、y 分别是811-2x -y 的值为________.三、解答题21.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。

上海上师初级中学七年级数学下册第六单元《实数》经典习题(培优)

上海上师初级中学七年级数学下册第六单元《实数》经典习题(培优)

一、选择题1.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407D 解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.2.1的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C 解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.3.下列选项中,属于无理数的是( )A .πB .227-CD .0A解析:A【分析】根据无理数是无限不循环小数,可得答案.解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.4.,则571.34的平方根约为()A.239.03 B.±75.587 C.23.903 D.±23.903D解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D.【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.5.在下列各数中是无理数的有()0.111-43π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732A.3个B.4个C.5个D.6个B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.6.若3a=,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C.【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.7.和数轴上的点一一对应的数是()A.自然数B.有理数C.无理数D.实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D.【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.8.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n- Bn-D24n-C23n-B22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.9.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B 解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.10.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.已知31a +的算数平方根是4,421c b +-的立方根是3,c 22a b c +-的平方根.【分析】根据算术平方根的定义得到3a+1=16可解得a 值根据3<<4可得c=3再根据立方根的定义可得可解得b 然后将abc 的值代入计算即可【详解】解:根据题意可得:∴∵∴即的平方根为【点睛】本题考查了 解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据34,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =,3134<<,3c ∴=,∵34213c b +-=,∴8b =,3==±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键.12.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab = ab ,∵2a +∴,∴a+2=0,30b-=,解得:a=-2,3b=,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.13.(1)小明解方程2x1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x,y是有理数,且x,y满足等式2x2y17++=-x-y的值.(1)x=−13;(2)(2)x-y的值为9或-1【分析】(1)将错就错把x=2代入计算求出a的值即可确定出正确的解;(2)根据题意可以求得xy的值从而可以求得x−y的值【详解】(1)把x=2代入2解析:(1)x=−13;(2)(2)x-y的值为9或-1.【分析】(1)将错就错把x=2代入计算求出a的值,即可确定出正确的解;(2)根据题意可以求得x、y的值,从而可以求得x−y的值.【详解】(1)把x=2代入2(2x−1)=3(x+a)−3中得:6=6+3a−3,解得:a=1,代入方程得:2x1x13 32-+=-,去分母得:4x−2=3x+3−18,解得:x=−13;(2)∵x、y 是有理数,且 x,y 满足等式2x2y17++=-∴22174x yy⎧+=⎨=-⎩,解得,54xy=⎧⎨=-⎩或54xy=-⎧⎨=-⎩,∴当x=5,y=−4时,x−y=5−(−4)=9,当x=−5,y=−4时,原式=−5−(−4)=−1.故x-y的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数.14.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.15.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--(1)4;(2)【分析】(1)变减号为加号同时省略括号和加号先两个分数相加再和最后一个数相加;(2)先算乘方和开方再算乘除最后算加减【详解】(1)原式;(2)原式【点睛】此题考查有理数混合运算其关键解析:(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.16.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.(1)x=3或x=-1;(2)x=-3【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可【详解】(1)直接开平方得:解得:(2)两边同时除以3得:开立方得:【点睛】本题考查了平方解析:(1)x=3或x=-1;(2)x=-3.【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可.【详解】(1)()214x -=直接开平方得:12x -=±,解得:13x =,21x =-(2)3381x =-两边同时除以3得:327x =-,开立方得:3x =-.【点睛】本题考查了平方根和立方根的性质,解题的关键是利用平方根和立方根的性质求解方程.17.若|2|0a -=,则a b +=_________.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.18.0.5325===的值是______________________.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】1.147=,1.1471011.47===⨯=故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.19.若已知()2120a b -++=,则a b c -+=_____.6【分析】分别根据绝对值平方和算术平方根的非负性求得abc 的值代入即可【详解】解:因为所以解得故故答案为:6【点睛】本题考查非负数的性质主要考查绝对值平方和算术平方根的非负性理解几个非负数(式)的和解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.20.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.三、解答题21.已知31a +的算数平方根是4,421c b +-的立方根是3,c 是13的整数部分.求22a b c +-的平方根. 解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据3<13<4,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =, 3134<<,3c ∴=,∵34213c b +-=,∴8b =,22225833a b c ∴±+-=±⨯+-=±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键. 22.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.解析:(1)2;(2)±4【分析】(1)先求出m =22-,进而化简|m +1|+|m−1|,即可;(2)根据相反数和非负数的意义,列方程求出c 、d 的值,进而求出2c−3d 的值,再求出2c−3d 的平方根.【详解】(1)由题意得:m =22-,则m +1>0,m−1<0,∴|m +1|+|m−1|=m +1+1−m =2;(2)∵2c d +与4d +互为相反数,∴2c d ++4d +=0,∴|2c +d|=0且4d +=0,解得:c =2,d =−4,∴2c−3d =16,∴2c−3d 的平方根为±4. 【点睛】本题主要考查数轴、相反数的定义,求绝对值,掌握求绝对值的法则以及绝对值与算术平方根的非负性,是解题的关键.23.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------解析:(1)1117878=-⨯;(2)514;(3)()()11111=m m m m -++;(4)0 【分析】(1)因为56=7×8,所以根据题中规律1115678=-; (2)根据题意把每个单位分数变成两个单位分数的差,再对其进行加减运算;(3)根据上面规律可以写出拆分一个单位分数的规律:()11111m m m m =-++; (4)根据(3)中的规律把每个分数单位拆分成两个分数单位的差再计算即可得到解答 .【详解】解:(1)1111567878==-⨯ (2)11111612203040++++ 11111111112334455667++++=----- 1127514==- (3)()()11111=m m m m -++ (4)()()()()()()121231312x x x x x x -+------ =()()()()()()111111323121x x x x x x --++-------=0【点睛】本题考查与实数运算相关的规律题,通过观察与归纳总结出运算规律是解题关键. 24.计算:201()( 3.14)|22π---+-.【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4﹣1+.【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质,正确化简各数是解题关键.25.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =, 23x =; (2)解:313x -=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.26.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯-=2(4)132 48()243 -⨯-+-1248()43=-⨯-+54812=-⨯20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.27.求下列各式中的x的值.(1)4x2=9;(2)(2x﹣1)3=﹣27.解析:(1)x=32±;(2)x=﹣1.【分析】(1)先变形为x2=94,然后利用平方根的定义得到x的值;(2)先利用立方根的定义得到2x﹣1=﹣3,然后解一次方程即可.【详解】解:(1)4x2=9∴x2=94,∴x=±32;(2)(2x﹣1)3=﹣27,∴2x﹣1=﹣3,∴x=﹣1.【点睛】本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a28.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.解析:(1)3 3-;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34,∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.。

2021七年级下册数学《实数》培优精选

2021七年级下册数学《实数》培优精选

2021七年级下册数学《实数》培优精选一.选择题(共15小题)1.实数a,b在数轴上对应的点的位置如图所示,那么化简的结果()A.2a+b B.b C.2a﹣b D.3b2.如图,数轴上有O,A,B,C,D五点,根据图中各点所表示的数,表示数的点会落在()A.点O和A之间B.点A和B之间C.点B和C之间D.点C和D之间3.规定:一个数的平方等于﹣1,记作i2=﹣1,于是可知i3=i2×i=(﹣1)×i,i4=(i2)2=(﹣1)2=1……,按照这样的规律,i2019等于()A.1B.﹣1C.i D.﹣i4.实数a、b、c、d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|b﹣d|=|b|+|d|C.|a﹣c|=c﹣a D.|d﹣1|>|c﹣a| 5.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个6.如图,数轴上A、B、C三点所表示的数分别是a、6、c.已知AB=8,a+c=0,且c是关于x的方程mx﹣4x+16=0的一个解,则m的值为()A.﹣4B.2C.4D.67.如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是()A.0B.2C.4D.68.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.49.如图所示,数轴上点A所表示的数为a,则a的值是()A.+1B.C.﹣1D.﹣+110.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.3+B.15+C.3+3D.15+711.定义运算a⊗b=a(b﹣1),下面给出了关于这种运算的四个结论:①2⊗(﹣1)=﹣4;②a⊗b=b⊗a;③若a+b=1,则a⊗a=b⊗b;④若b⊗a=0,则a=0或b=1.其中正确结论的序号是()A.②④B.②③C.①④D.①③12.已知a>1,下列各式正确的是()A.>a B.>()2C.<D.a>13.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a 14.设.其中a,b,c,d是正实数,且满足a+b+c+d=1.则p满足()A.p>5B.p<5C.p<2D.p<315.设a,b,c为不为零的实数,那么的不同的取值共有()A.6种B.5种C.4种D.3种二.填空题(共10小题)16.,,,…,,其中n为正整数,则的值是.17.一个长方形ABCD在数轴上的位置如图所示,AB=3,AD=2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A所对应的数为1,求翻转2018次后,点B所对应的数.18.对于实数x,规定[x]表示不大于x的最大整数,如[4]=4,[]=1,如[﹣2.5]=﹣3,现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是.19.已知a,b为实数,下列说法:①若ab<0,且a,b互为相反数,则=﹣1;②若a+b <0,ab>0,则|2a+3b|=﹣2a﹣3b;③若|a﹣b|+a﹣b=0,则b>a;④若|a|>|b|,则(a+b)×(a﹣b)是正数;⑤若a<b,ab<0且|a﹣3|<|b﹣3|,则a+b>6,其中正确的是.20.已知,实数x满足x=20202+20212,求代数式的值等于.21.我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)=;(2)若,则x的取值范围是.22.比较3,,的大小,其从小到大的顺序是.23.已知a6m=8,则a2m的算术平方根为.24.若m的两个平方根为a﹣1和a﹣5,则代数式3m﹣2的值是.25.定义“如果一个数的平方等于﹣1,记为i2=﹣1,数i叫做虚数单位,我们把形如a+bi (a,b为有理数或无理数)的数称为复数,它们的加,减,乘法运算与整式的加,减,乘法类似,例如:计算(2+3i)(3﹣2i)=6﹣4i+9i﹣6i2=6+5i+6=12+5i,计算(﹣3+4i)(3+4i)=.三.解答题(共9小题)26.已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是的整数部分.(1)求a,b,c的值;(2)求2a﹣b+的平方根.27.(1)已知:(x+5)2=49,求x;(2)计算:+|1﹣|﹣+(﹣)2.28.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E 在数轴上表示的数是5.且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,求当x多少秒时,OM=ON.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,当两个长方形重叠部分的面积为6时,求长方形ABCD运动的时间.29.如图,数轴上从左到右依次有A、B、C、D四个点,A、B之间的距离为a+b,B、C之间的距离为2a﹣b,B、D之间的距离为5a+2b,将直径为1的圆形纸片按如图所示的方式放置在点A处,并沿数轴水平方向向右滚动.(1)若圆形纸片从点A处滚到点C处,恰好滚动了n(n为正整数)圈,则a=(用含n的代数式表示),a是(填“有理数”或“无理数”);(2)若圆形纸片从点A处滚动1圈后,恰好到达点B处,求C、D之间的距离(结果保留π);(3)若点A表示的数为π,圆形纸片从点A处滚动到点B、C、D处的圈数均为整数,其中圆形纸片从点A处滚动3圈后,恰好到达点C处,求点D表示的数.30.(1)如图,每个小正方形的边长是1,在图中画出①一个面积是2的直角三角形;②一个面积是2的正方形;(两个面积部分涂上阴影)(2)请在同一个数轴上用尺规作出和的对应的点.31.解方程:(1)(x+1)2=16;(2)125(x﹣1)3=﹣64.32.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.33.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.34.根据数学研究对象本质属性的共同点和差异点,将事物分类,然后对划分的每一类进行研究的方法叫做“分类讨论”方法.(1)在探究“有理数加法法则”的过程中,我们根据加数的符号和绝对值的大小将法则分类归纳.下列给出的算式中:①3+(﹣1);②4+3;③(﹣3)+(﹣2);④5+(﹣5);⑤﹣3+0;⑥6+(﹣4);⑦4+(﹣7);⑧.可以代表有理数加法法则的不同种类的算式组合是.A.①②③④⑤⑥B.②③④⑤⑥⑦C.①③④⑤⑥⑧D.①②④⑤⑦⑧(2)若|a+b|=|a|+|b|,请说明a、b需要满足的条件.(3)在数轴上有A、B两点,分别表示实数a、b,若a的绝对值是b的绝对值的6倍,且A、B两点的距离是15,求a、b的值.。

北师大版八年级数学上册第2章-实数(培优试题)

北师大版八年级数学上册第2章-实数(培优试题)

第二章实数专题无理数近似值的确定1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数 B.x取0和1之间的实数C.x不存在 D.x取1和2之间的实数2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.答案:1.D 【解析】 ∵面积为3的正方形的边长为x ,∴x 2=3,而12=1,22=4,∴1<x 2<4,∴1<x <2,故选D.2.解:(1)边长为5cm. (2)设大正方形的边长为x ,∵大正方形的面积=32+32=18,而42=16,52=25,∴16<x 2<25,∴4<x <5,故正方形的边长不是整数,它的值在4和5之间.3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.专题一 非负数问题1. 若2(a +与1+b 互为相反数,则a b -的值为( )A B1C1-D.1-2.设a,b,c都是实数,且满足(2-a)2,ax2+bx+c=0,求式子x2+2x的算术平方根.3.若实数x,y,z= 14(x+y+z+9),求xyz的值.专题二探究题4.研究下列算式,你会发现有什么规律?=2=5;…请你找出规律,并用公式表示出来.5.先观察下列等式,再回答下列问题:答案:(a+与|b+1|互为相反数,1.D 【解析】∵2(a++|b+1|=0,∴2a=0且b+1=0,∴+-=1 D.∴a=2,b=﹣1,a b2.解:由题意,得2-a=0,a2+b+c=0,c+8=0.∴a=2,c=-8,b=4.∴2x2+4x-8=0.∴x2+2x=4.∴式子x2+2x的算术平方根为2.3.解:将题中等式移项并将等号两边同乘以4得+9=0,∴+4)=0,∴-2)2-2)2-2)2=0,-2=0-2=0,=2,∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.∴xyz=120.专题立方根探究性问题专题比较无理数大小2. 观察下列一组等式,然后解答后面的问题:(121++132++143++…+ 120132012+)•( 2013+1). (2)利用上面的规律,试比较1211-与1312-的大小.3. 先填写下表,通过观察后再回答问题.问: (1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?(3)试比较a 与a 的大小.答案:1.D 【解析】 ∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1 000 000-9=999 991,1001×999=1 000 000-1=999 999,10022=1 004 004. ∴c >b >a .故选D .2.解:(1)由上面的解题规律可直接写出111n n n n=+-++, 则(121++132++143++…+ 120132012+)•( 2013+1)=[(2-1)+ (3- 2)+(4-3)+…+(2013-2012)](2013+1)=( 2013-1) ( 2013+1)=2012.(2)∵11211-=1211+,11312-=1312+, 又1211+<1312+,∴11211-<11312-, ∴1211->1312-. 3.解:依次填:0.001,0.01,0.1,1,10,100,1000.(1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值小数点向右移动6位,即a=3240000;(3)当0<a <1时,a >a ;当a=1或0时,a =a ;当a >1时,a <a .专题 实数与数轴1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .2B .22C .12D .122.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处3. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .(1)化简:|a-b|+|c-b|+|c-a|;(2)若a=4x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.答案:1.B 【解析】 由勾股定理得:正方形的对角线为2,设点A 表示的数为x ,则2-x=2,解得x=2-2.故选B .2.B 【解析】 根据题意,数轴上刻度15,18的位置分别对准A ,B 两点,而AB 两点间距离157-140=17(公里),即数轴上的3个刻度对应实际17公里的距离.又有数轴上刻度0与15之间有15个刻度,故刻度0的位置对准地图上公路的位置距A 点有15×173=85(公里), 140-85=55,故刻度0的位置对准地图上公路的55公里处.故选B .3.3+22 【解析】 在直角△ABC 中,AC=CB=2,根据勾股定理可以得到AB=22,则当顶点C下一次落在数轴上时,所在的位置表示的实数是4+22-1=3+22.故答案为:3+22.4.解:(1)由数轴可知:a-b>0,c-b<0,c-a<0,所以原式=(a-b)-(c-b)-(c-a)=a-b-c+b-c+a=2a-2c.(2)由题意可知:x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4,∴98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7、3,它们的和为-4.专题一与二次根式有关的规律探究题1.将1、2、3、6按如图所示的方式排列.若规定(m,n)表示第m排从左到右第n个数,则(4,2)与(21,2)表示的两数之积是()A.1B.2C.232. 观察下列各式及其验证过程:322322=+=======. (1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: +=( +2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简4. 化简二次根式22a a a 的结果是( ) A. 2a B. 2a C. 2a D. 2a5.如图,实数a .b 在数轴上的位置,化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2)所表示的数是6.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、2、3、6的顺序循环出现,212÷4=53,∴(21,2)表示的数是6.∴(4,2)与(21,2)表示的两数之积是666⨯=.2.解:(14441515+=24644444415151515⨯+===. (22211a a a a a +=--(a 为任意自然数,且2a ≥). 3322221111a a a a a a a a a a a a -++===---- (3)333311-=-+a a a a a a (a 为任意自然数,且2a ≥).验证:a === =2a a =2a .故选 5.解:由图知,a <0,b >0,∴a ﹣b <0,222)(b a b -+-=|a |。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数培优题
【知识点精讲】
1,有关平方根、立方根的概念及运算中稍加综合的题目。

2,一些较为简单的关于平方根、立方根的应用问题。

【解题方法指导】 例1,已知|a −b +1|+√2a −3b −4=0,求4a +b 2的立方根。

例2,计算:(−2)3×√(−4)2+√(−4)33×(−12)2
−√81
例3,求10×11×12×13+1的平方根。

【典型例题分析】
例1,已知M =
√a +32a−b+4是a +3的算术平方根,N =√b −3b−3a+2是b −3的立方根,试
求M-N 的值。

例2,一个自然数的一个平方根是m,求比它大1的自然数的平方根。

例3,已知3x+16的立方根是4,求2x+4的平方根。

例4,已知√10404=102,√x=0.102。

则x等于()
A 10.404
B 1.0404
C 0.10404
D 0.010404
例5,(1)已知a是m(m≠0)的平方根,求m的算术平方根。

3=n2,那么√x有意义吗?如果有意义,数值等于多少?(2)如果√x
(3)已知√−90x是一个正整数,那么x可取的最大整数值是多少?
例6,求5−√−x2+4的最大值和最小值。

【综合测试】
A 卷
1,等式√(a+3)2
a+3=−1成立的条件是 。

2,当x 为 时,它的算术平方根比x 大。

3,计算:|√−183|−(√0.25)3+(−√2.89)2−|√1
64−13|
4,代数式1−√a 在实数范围内有意义的条件是 。

5,如果a 是非零实数,则下列格式中一定有意义的是( )
A √a
B 2√−a
C √−a 2
D √1
a 2
6,若√(x −12)2+√(5−x )2=x −12+x −5,则x 的取值范围是 。

7,一个等腰三角形的两条边长分别为5√3和3√2,则此等腰三角形的周长是多少? B 卷 1,下列说法错误的是( )
A a 2和(−a )2相等
B √a 2和√(−a )2互为相反数
C √a 3和√−a 3是互为相反数
D |a |和|−a |互为相反数 2,若√a 2=−a ,则实数a 在数轴上的对应点一定在( )
A 原点左侧
B 原点右侧
C 原点或原点左侧
D 原点或原点右侧
3,一个正方形的面积变为原来的m 倍,则边长变成原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍。

4,已知a ,b 满足√2a +8+|b −√3|=0,解关于x 的方程(a +2)x +b 2=a −1. 5,已知y =√−x 2+1.求xy 的平方根。

6,(1)当a<0时,化简:
√a 2−a a 的结果是 。

(2)化简(m −1)√−1m−1的结果是 。

7,当x<2时,√x 2−4x +4= ;若x>1时,√1x 2+x 2−2= 。

相关文档
最新文档