北师大版数学八年级下册《期末考试卷》(带答案)

合集下载

北师大版八年级下册数学期末考试试卷及答案

北师大版八年级下册数学期末考试试卷及答案

北师大版八年级下册数学期末考试试题一、单选题1.下列图案中,不是中心对称图形的是()A .B .C .D .2.不等式32x -<-的解集是()A .23x >B .23x <-C .23x <D .23x >-3.若分式+-x yx y中的x 、y 的值都变为原来的3倍,则此分式的值()A .不变B .是原来的3倍C .是原来的13D .是原来的164.多项式223634xy x y x yz +-各项的公因式是()A .xyB .2xzC .3xyD .3yz5.如图,在四边形ABCD 中,AB=CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,若∠MPN=130°,则∠NMP 的度数为()A .10°B .15°C .25°D .40°6.如图,ABC ∆中,AB 的垂直平分线DE 交AC 于D ,如果5AC cm =,4BC cm =,那么DBC ∆的周长是()A .6cmB .7cmC .8cmD .9cm7.一个多边形的每个内角均为108º,则这个多边形是()A .七边形B .六边形C .五边形D .四边形8.若解分式方程144x mx x -=++产生增根,则m=()A .1B .0C .﹣4D .﹣59.下列命题中是真命题的是()A .若a b >,则33a b->-B .有两个角为60︒的三角形是等边三角形C .一组对边相等,另一组对边平行的四边形是平行四边形D .如果0ab =,那么0a =,0b =10.如图,在Rt ABC 中,90ABC ∠=︒,AB BC ==ABC 绕点A 逆时针旋转60︒,得到ADE ,连接BE ,则BE 的长是()A .2+B .3+C .2+D .3+二、填空题11.分解因式:22a 4a 2-+=_____.12.关于x 的不等式组22x b a x a b ->⎧⎨-<⎩,的解集为-3<x<3,则a ,b 的值分别为_______.13.对分式12x,14y ,218xy 进行通分时,最简公分母是_____14.等边三角形的两条中线所夹的锐角的度数为__________15.如图,在 ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6, ABCD 的周长为40,则S ABCD 四边形为______.16.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =____度.17.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为_____.三、解答题18.先化简,再求值:22211a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭.其中21a =,21b =+.19.解分式方程:241244x x x x -=--+.20.解不等式组1123(1)213x x x -⎧<⎪⎨⎪-≤+⎩,把解集表示在数轴上并写出该不等式组的所有整数解.21.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2.(1)在网格中画出△A 1B 1C 1和△A 1B 2C 2;(2)计算线段AC 从开始变换到A 1C 2的过程中扫过区域的面积(重叠部分不重复计算)23.如图,在ABC ∆中,AD 平分BAC ∠,BE AD ⊥,BE 交AD 的延长线于点E ,点F 在AB 上,且//EF AC ,求证:点F 是AB 的中点.24.如图,在四边形ABCD 中,AD ∥BC ,AD =12cm ,BC =15cm ,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为t (s ).(1)用含t 的代数式表示:AP =________cm ;DP =________cm ;BQ =________cm ;CQ =________cm .(2)当t 为何值时,四边形APQB 是平行四边形?(3)当t 为何值时,四边形PDCQ 是平行四边形?25.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A B ,两种型号的沼气池共20个,以解决该村所有农户的燃料问题,两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(2m/个)使用农户数(户/个)造价(万元/个)A15182B20303365m,该村农户共有492户.已知可供建造沼气池的占地面积不超过2(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱.26.已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.参考答案1.C【详解】解:A、是中心对称图形,故A错误;B 、是中心对称图形,故B 错误;C 、不是中心对称图形,故C 正确;D 、是中心对称图形,故D 错误;故选:C .2.A 【详解】−3x <−2,不等式两边同除以−3,得23x >,故选:A .3.A 【详解】解:∵分式+-x yx y中的x 、y 的值都变为原来的3倍∴()()333333x y x y x yx y x y x y+++==---∴此分式的值不变.故应选A 【点睛】本题主要考查了分式的基本性质,解题的关键是把x 、y 的值都变为原来的3倍后代入.4.A 【解析】【分析】根据公因式的定义可求解.【详解】解:()2233=634634xy x y x yz xy x xz+-+-故多项式223634xy x y x yz +-各项的公因式是xy .故选A .【点睛】本题主要考查公因式,掌握公因式的定义是解题的关键.5.C 【解析】【详解】分析:根据中位线定理和已知,易证明△PMN 是等腰三角形,根据等腰三角形的性质和三角形内角和定理即可求出∠PMN 的度数.详解:∵在四边形ABCD 中,M 、N 、P 分别是AD 、BC 、BD 的中点,∴PN ,PM 分别是△CDB 与△DAB 的中位线,∴PM=12AB ,PN=12DC ,PM ∥AB ,PN ∥DC .∵AB=CD ,∴PM=PN ,∴△PMN 是等腰三角形.∵∠MPN=130°,∴∠PMN=1801302︒-︒=25°.故选C .点睛:本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.6.D 【详解】DE 垂直平分AB ,549DBC AD BD C DB DC BC AC BC ∴=∴=++=+=+= 故选D 【点睛】本题考查垂直平分线的性质,是重要常见考点,难度易,掌握相关知识是解题关键.7.C 【详解】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.8.D 【详解】解:方程两边都乘()4x +,得1x m-=原方程增根为4x =-∴把4x =-代入整式方程,得5m =-故选D .【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.B 【解析】【分析】由不等式的基本性质判断A ,由等边三角形的判定判断B ,由平行四边形的判定判断C ,由两数之积为0,则两数中至少一个为0判断D .【详解】解:由a b >,所以a -<,b -所以:3a -<3,b -故A 错误;有两个角为60︒的三角形是等边三角形,此命题是真命题,故B 正确;一组对边相等,另一组对边平行的四边形不一定是平行四边形,这样的四边形可以是等腰梯形,故C 错误;如果0ab =,那么0a =或0b =,故D 错误.故选B .【点睛】本题考查的命题的真假的判断,同时考查了不等式的基本性质,等边三角形的判定,平行四边形的判定,两数之积为0,则两数中至少一个为0,掌握命题真假的判断方法是解题的关键.10.C 【解析】【分析】如图(见解析),先利用勾股定理、旋转的性质可得4,60AE AC CAE ==∠=︒,再根据等边三角形的判定与性质可得AE CE =,然后根据垂直平分线的判定与性质可得12,2OA AC OA BE ==⊥,最后利用勾股定理分别可得2,OB OE ==由此即可得出答案.【详解】如图,设AC 与BE 的交点为点O ,连接CE ,90,ABC AB BC ∠=︒==4AC ∴==,由旋转的性质得:4,60AE AC CAE ==∠=︒,ACE ∴ 是等边三角形,AE CE ∴=,BE ∴是线段AC 的垂直平分线,12,2OA AC OA BE ∴==⊥,在Rt AOB 中,2OB ==,在Rt AOE 中,OE =,则2BE OB OE =+=+,故选:C .【点睛】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、垂直平分线的判定与性质等知识点,通过作辅助线,构造等边三角形是解题关键.11.()22a 1-【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-.12.-3,3【解析】【详解】22x b a x a b ->⎧⎨-<⎩,,22x a bx b a >+⎧⎨<+⎩,所以2323a b b a +=-⎧⎨+=⎩,解得33a b =-⎧⎨=⎩.13.8xy 2【解析】【分析】由于几个分式的分母分别是2x 、4y 、8xy 2,首先确定2、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.【详解】根据最简公分母的求法得:分式12x,14y ,218xy 的最简公分母是8xy 2,故答案为8xy 2.【点睛】此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.14.60°【解析】【分析】如图,等边三角形ABC 中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=12∠ABC =30°,再根据三角形外角的性质即可得出结论.【详解】解:如图,∵等边三角形ABC ,AD 、BE 分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=12∠ABC=30°,∴∠3=∠1+∠2=60°.故答案为60°【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.15.48【解析】【分析】首先根据平行四边形的性质可得AB=CD,AD=BC,可得AB+BC=20,再利用其面积的求法S=BC×AE=CD×AF,可得4AE=6CD,列出方程组,求出平行四边形的各边长,再求其面积.【详解】解:设BC=x,CD=y,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵▱ABCD的周长为40,∴x+y=20,∵AE=4,AF=6,S ABCD四边形=BC×AE=CD×AF,∴4x=6y,得方程组:20 46x yx y+⎧⎨⎩==,解得:128x y =⎧⎨=⎩∴S 平行四边形ABCD =BC×AE =12×4=48.故答案为:48.【点睛】此题主要考查了平行四边形的性质与其面积公式,解题的关键是根据性质得到邻边的和,根据面积公式得到方程,再解方程组即可.16.36【解析】【分析】首先求得正五边形内角∠C 的度数,然后根据CD =CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【详解】解:∵正五边形的外角为360°÷5=72°,∴∠C =180°﹣72°=108°,∵CD =CB ,∴∠CDB =36°,∵AF ∥CD ,∴∠DFA =∠CDB =36°,故答案为36.【点睛】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.17.58【解析】【分析】根据矩形的性质求出△AOB 的面积等于矩形ABCD 的面积的14,求出△AOB 的面积,再分别求出1ABO ∆、2ABO ∆、3ABO ∆、4ABO ∆的面积,即可得出答案【详解】解:∵四边形ABCD 是矩形,∴AO=CO ,BO=DO ,DC ∥AB ,DC=AB ,∴11201022ADC ABC ABCD S S S ∆∆===⨯=矩形,∴1110522AOB BCO ABC S S S ∆∆===⨯=,∴11155222ABO AOB S S ∆∆==⨯=,∴21524ABO ABQ S S ∆∆==,321528ABO ABO S S ∆∆==,4315216ABO AB S S ∆∆==,∴4435522168ABO AO C B S S ==⨯= 平行四边形故答案为:58.【点睛】本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.18.ab ,1.【解析】【分析】根据分式的除法和减法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:22211a ab b a b ba -+⎛⎫÷- ⎪-⎝⎭2()a b a b a b ab--=÷-1a b ab a b -=⋅-ab =,当1a =,1b =+时,原式1)1)1=⨯=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.x=4【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,得到x 的值,经检验即可得到分式方程的解.【详解】解:241244x x x x -=--+,方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x=4,检验:当x=4时,220x ≠(﹣).所以原方程的解为x=4.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.﹣2、﹣1、0、1、2.【解析】【分析】根据不等式组的计算方法,首先单个计算不等式,在采用数轴的方法,求解不等式组即可.【详解】解:11(1)23(1)213(2)x x x -⎧<⎪⎨⎪-≤+⎩解不等式(1)得:x <3,解不等式(2)得:x≥﹣2,它的解集在数轴上表示为:∴原不等式组的解集为:﹣2≤x <3,∴不等式组的整数解为:﹣2、﹣1、0、1、2.【点睛】本题主要考查不等式组的整数解,关键在于数轴上等号的表示.21.(1)每件甲种商品价格为70元,每件乙种商品价格为60元;(2)该商店最多可以购进20件甲种商品【分析】(1)分别设出甲、乙两种商品的价格,根据“用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同”列出方程,解方程即可得出答案;(2)分别设出购进甲、乙两种商品的件数,根据“投入的经费不超过3200元”列出不等式,解不等式即可得出答案.【详解】解:(1)设每件乙种商品价格为x 元,则每件甲种商品价格为(10x +)元,根据题意得:35030010x x=+解得:60x =.经检验,60x =是原方程的解,则1070x +=.答:每件甲种商品价格为70元,每件乙种商品价格为60元.(2)设购进甲种商品a 件,则购进乙种商品(50a -)件,根据题意得:7060(50)3200a a +-≤,解得:20a ≤.∴该商店最多可以购进20件甲种商品.【点睛】本题考查的是分式方程在实际生活中的应用,认真审题,根据题意列出方程和不等式是解决本题的关键.22.见解析【解析】【详解】试题分析:(1)根据图形平移及旋转的性质画出△A 1B 1C 1及△A 1B 2C 2即可;(2)根据图形平移及旋转的性质可知,将△ABC 向下平移4个单位AC 所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC 扫过的面积是以3为底以2为高的平行四边形的面积;当△A 1B 1C 1绕点A 1顺时针旋转90°到△A 1B 2C 2时,A 1C 1所扫过的面积是以A 1为圆心以以2为半径,圆心角为90°的扇形的面积,再减去重叠部分的面积,根据平行四边形的面积及扇形面积公式进行解答即可.解:(1)如图所示:(2)∵图中是边长为1个单位长度的小正方形组成的网格,∴AC==2,∵将△ABC向下平移4个单位AC所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC扫过的面积是以3为底以2为高的平行四边形的面积;当△A1B1C1绕点A1顺时针旋转90°到△A1B2C2时,A1C1所扫过的面积是以A1为圆心以2为半径,圆心角为90°的扇形的面积,重叠部分是以A1为圆心,以2为半径,圆心角为45°的扇形的面积,∴线段AC在变换到A1C2的过程中扫过区域的面积=4×2+3×2+﹣=14+π.点评:本题考查的是旋转变换及平移变换,扇形的面积公式,熟知图形旋转、平移不变性的特点是解答此题的关键.23.见解析【解析】【分析】由AD为角平分线,利用角平分线定义得到一对角相等,再由EF与AC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠AEF=∠BAE,利用等角对等边得到AF=EF,再由AE与AD垂直,利用垂直的定义及直角三角形的两锐角互余,得到两对角之和为90°,由∠AEF=∠BAE,利用等角的余角相等可得出∠BEF=∠ABE,利用等角对等边得到BF=EF,等量代换得到AF=BF,即F为AB的中点,得证.【详解】证明:∵AD平分∠BAC,∴∠BAE=∠CAE,∵EF∥AC,∴∠AEF=∠CAE,∴∠AEF=∠BAE,∴AF=EF,又∵BE⊥AD,∴∠BAE+∠ABE=90°,∠BEF+∠AEF=90°,又∠AEF=∠BAE,∴∠ABE=∠BEF,∴BF=EF,∴AF=BF,∴F为AB中点.【点睛】此题考查了等腰三角形的判定与性质,平行线的性质,利用了转化及等量代换的思想,其中等腰三角形的判定方法简称“等角对等边”;等腰三角形的性质简称“等边对等角”.24.(1)t,(12﹣t),(15﹣2t),2t;(2)当t=5为何值时,四边形APQB是平行四边形;(3)当t=4时,四边形PDCQ是平行四边形【解析】【分析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,DP,BQ,CQ 的长;(2)当AP=BQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当PD=CQ时,四边形PDCQ是平行四边形;建立关于t的一元一次方程方程,解方程求出符合题意的t值即可.【详解】解:(1)t,(12﹣t),(15﹣2t),2t;(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴当AP =BQ 时,四边形APQB 是平行四边形.∴t =15﹣2t ,解得t =5.∴t =5时四边形APQB 是平行四边形;(3)由AP =tcm ,CQ =2tcm ,∵AD =12cm ,BC =15cm ,∴PD =AD ﹣AP =12﹣t ,如图1,∵AD ∥BC ,∴当PD =QC 时,四边形PDCQ 是平行四边形.即:12﹣t =2t ,解得t =4,∴当t =4时,四边形PDCQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质的应用,题目是一道综合性比较强的题目,难度适中,解题的关键是把握“化动为静”的解题思想.25.(1)满足条件的方案有三种,方案一建造A 型沼气池7个,B 型沼气池13个;方案二建造A 型沼气池8个,B 型沼气池12个;方案三建造A 型沼气池9个,B 型沼气池11个,见解析;(2)方案三最省钱,见解析【解析】【分析】(1)关系式为:A 型沼气池占地面积+B 型沼气池占地面积≤365;A 型沼气池能用的户数+B 型沼气池能用的户数≥492;(2)由(1)得到情况进行分析.【详解】解(1)设建设A 型沼气池x 个,B 型沼气池()20x -个,根据题意列不等式组得()()152020365183020492x x x x ⎧+-≤⎪⎨+-≥⎪⎩解不等式组得:79x ≤≤∴满足条件的方案有三种,方案一建造A 型沼气池7个,B 型沼气池13个方案二建造A 型沼气池8个,B 型沼气池12个方案三建造A 型沼气池9个,B 型沼气池11个(2)方案一的造价为:2731353⨯+⨯=万元方案二的造价为2812352⨯+⨯=万元方案三的造价为:2×9+3×11=51万元所以选择方案三建造9个A ,11个B 最省钱【点睛】此题考查一元一次不等式的应用,解题关键在于根据题意列出不等式.26.(1)证明见解析;(2)证明见解析;(3)△CFH 是等边三角形,理由见解析.【解析】【分析】(1)利用等边三角形的性质得出条件,可证明:△BCE ≌△ACD ;(2)利用△BCE ≌△ACD 得出∠CBF=∠CAH ,再运用平角定义得出∠BCF=∠ACH 进而得出△BCF ≌△ACH 因此CF=CH .(3)由CF=CH 和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.【详解】解:(1)∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD .又BC=AC 、CE=CD ,∴△BCE ≌△ACD .(2)∵△BCE ≌△ACD ,∴∠CBF=∠CAH .∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH .又BC=AC ,∴△BCF≌△ACH.∴CF=CH.(3)∵CF=CH,∠ACH=60°,∴△CFH是等边三角形.【点睛】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.。

【最新】北师大版八年级下册数学《期末考试试卷》含答案

【最新】北师大版八年级下册数学《期末考试试卷》含答案

2019-2020学年度第二学期期末测试北师大版八年级数学试题时间:120分钟 总分:120分7•下列命题的逆命题是真命题的是 (8•已知等腰△ ABC 的两边长分别为 2和3,则等腰△ ABC 的周长为( )A. 7B. 8C. 6 或 8D. 7 或 89•如图,△ ABC 以点C 为旋转中心,旋转后得到△ EDC ,已知AB = 1.5,BC = 4,AC = 5,贝U DE =()1.下面四个多项式中,能进行因式分解的是( )2 [ 2A. X +yB. X 2- yC. X 2- 1X 2.要使分式一 X 11有意义,则X 的取值应满足(2)A X 2 B. X 1 C. X 2D. x 2+χ+1D. X 1∠ BAD = ∠ BCDC. AO = COD. AC ⊥ BD4•若x>y ,则下■子 A. X — 3>y — 3中错误的是( )C. x+3>y+3D. —3x> — 3y5•下列图形中,不是中心对称图形的是(6•若一个多边形的每一个外角都是 ,则这个多边形是A.七边形B. A 边形C. 九边形D. 十边形A.对顶角相等B. 全等三角形的面积相等C.两直线平行,内错角相等D.等边三角形是等腰三角形、选择题(本大题共10小题,每小题3分,共30分)中,下列结论中错误的是A. ∠ 1 = ∠ B A. B 40C. D.15. 已知 a+b = 3, ab =— 4,贝y a 2b+ab 2的值为 ___________ .16. 如图,在△ ABC 中,∠ C = 90°, AB = 10, AD 是厶ABC 的一条角平分线.若 CD = 3,则厶ABD 的面积A. 1.5B. 3C. 4D. 510.直线l ι : y k 1x b 与直线J : y k 2X 在同一平面直角坐标系中的图象如图所示,则关于X 的不等式C. X v — 2D.无法确定、填空题(本大题共6小题,每小题3分,共18分)11.计算:P'的坐标)B. X v — 12.不等式2x+8 ≥ 3(x+2)的解集为 ______________ 度.4个单位长度得到点是 ______为 ______三、解答题17.分解因式:2x 2- 12x+18.19.如图,在平行四边形 ABCD 中,AE ⊥ BD , CF 丄BD ,垂足分别 E , F .(1) 写出图中所有全等的三角形; (2) 选择(1)中的任意一对进行证明.20.解方程:3—X X 121.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ ABC 的顶点均在格点上,点 C 的坐标为(4 , - 1). ① 把△ ABC 向上平移5个单位后得到对应△ A 1B 1C 1,画出△ A 1B 1C 1;② 以原点O 为对称中心,再画出与△ ABC 关于原点对称的厶A 2B 2C 2,并写出点C 2的坐标.22.如图,在? ABCD 中,点O 是对角线 AC 、BD f 且CF =18.解不等式组3x 2 2x 26x13x11BC,求证:四边形OCFE是平行四边形.63)÷23.化简求值: (1+-X 2x 6,其中X=- 1. 6x 924.女口图,在梯形ABCD中,AD // BC, DE = CE,连接AE、BE, BE丄AE,延长AE交BC 延长线于点F .求25.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成•已知甲队完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过元,至少应安排甲队工作多少天?冃能甲队8万答案与解析、选择题(本大题共10小题,每小题3分,共30分)1•下面四个多项式中,能进行因式分解的是()A、x2+y2 B. x2- y C. x2- 1 D. x2+χ+1【答案】C【解析】【分析】根据因式分解的定义对各选项分析后利用排除法求解.【详解】A、X2+y2不能进行因式分解,故本选项错误;B、χ2-y不能进行因式分解,故本选项错误;C、X2-I能利用平方差公式进行因式分解,故本选项正确;D、x2+x+1不能进行因式分解,故本选项错误.故选C.【点睛】本题主要考查了因式分解定义,因式分解就是把一个多项式写成几个整式积的形式,是基础题,比较简单.X 12.要使分式有意义,则X的取值应满足()X 2A. x 2B. X 1C. X 2D. X 1【答案】A【解析】X 12 .故选A. 试题分析:根据分式分母不为O的条件,要使D在实数范围内有意义,必须x 2 0 XX 2考点:分式有意义的条件.【此处有视频,请去附件查看】3.如图,在平行四边形ABCD中,下列结论中错误的是()【解析】 【分析】根据平行四边形的对边平行和平行线的性质可对 A 进行判断;根据平行四边形的对角相等可对 B 进行判断;根据平行四边形的对边相等可对A 进行判断;根据平行四边形的对角线互相平分可对D 进行判断.【详解】A 、在? ABCD 中,∙∙∙ AB // CD ,.∙.∠ 1 = ∠ 2,所以A 选项结论正确;B 、 在? ABCD 中,∠ BAD= ∠ BCD ,所以B 选项结论正确;C 、 在? ABCD 中,AO=CO ,所以C 选项的结论正确; D 、 在? ABCD 中,OA=OC , OB=OD ,所以D 选项结论错误.故选D .【点睛】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的 对角线互相平分.4•若χ>y ,则下列式子中错误.的是()X yA. X — 3>y — 3B.C. x+3>y+3D. — 3x> — 3y3 3【答案】D 【解析】A. 不等式两边都加3 ,不等号的方向不变,正确;B. 不等式两边都除以一个正数,不等号的方向不变,正确;C. 不等式两边都减 3,不等号的方向不变,正确;D. 乘以一个负数,不等号的方向改变,错误。

【北师大版】数学八年级下册《期末测试题》含答案

【北师大版】数学八年级下册《期末测试题》含答案
8.如图,已知四边形ABCD是平行四边形,若AF、BE分别是 、 的平分线, , ,则EF的长是
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
由四边形ABCD是平行四边形,若AF、BE分别是 、 的平分线,易得 与 是等腰三角形,继而求得 ,则可求得答案.
【详解】 四边形ABCD是平行四边形,
, , ,
3.下列分式中,最简分式是
A B. C. D.
4.如图, 沿直线边BC所在的直线向右平移得到 ,下列结论中不一定正确的是
A. B.
C. D.
5.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则
∠CBE的度数为
A.80°B.70°C.40°D.30°
【详解】∵AB=AC,∠A=40°,
∴∠ABC=∠C=(180°−∠A)÷2=70°,
∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∴∠CBE=∠ABC-∠ABE=30°,
故选D.
【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.
如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
在 的前提下,求EF的最小值和此时 的面积;
当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则 大小是否变化?请说明理由.
30.如图, 中, , ,在AB的同侧作正 、正 和正 ,求四边形PCDE面积的最大值.
25.如图,平面直角坐标系中,已知点 , 若对于平面内一点C,当 是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。

北师大版八年级数学下册期末考试及答案【全面】

北师大版八年级数学下册期末考试及答案【全面】

北师大版八年级数学下册期末考试及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( ) A .2019B .-2019C .12019D .12019-2.将9.52变形正确的是( ) A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=--- B .()1122x x -=-- C .()1122x x -+=+-D .()1122x x -=---4.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( ) A .6,(﹣3,5) B .10,(3,﹣5) C .1,(3,4) D .3,(3,2)5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A . B . C .D .6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( ) A .m=3B .m >3C .m <3D .m ≥37.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.32B.3 C.1 D.439.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.若m20161-m3﹣m2﹣2017m+2015=________.4.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为________m.5.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于__________.6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(1﹣11a-)÷2244a aa a-+-,其中23.已知关于x的一元二次方程22240x x k++-=有两个不相等的实数根(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.5.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m). (1)求k 、m 的值;(2)已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=> 的图象于点N. ①当n=1时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、A6、D7、D8、A9、C 10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、-153、40304、15、206、4三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、原式=2aa -=.3、(1)k <52(2)24、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.5、(1) k 的值为3,m 的值为1;(2)0<n ≤1或n ≥3.6、(1)A 种纪念品需要100元,购进一件B 种纪念品需要50元(2)共有4种进货方案(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元。

八年级数学下册期末考试卷附答案(北师大版)

八年级数学下册期末考试卷附答案(北师大版)

八年级数学下册期末考试卷附答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。

(每小题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.若x >y ,则下列不等式一定成立的是( )A.x+4>y+6B.x -8<y -8C.x9>y9 D.﹣a >﹣b 3.下列各式:①3x ;②a+b 4;③y 3y ;④xyπ+2,其中是分式的是( )A.①③B.③④C.①②D.①②③④ 4.关于x 的方程5x x -2=ax -2+1有增根,则a 的值是( )A.0B.2或3C.2D.3 5.如果把5a a+b中的a ,b 同时扩大10倍,那么这个代数式的值( )A.不变B.扩大50倍C.扩大10倍D.缩小大原来的1106.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列添加的条件不正确的是( )A.AB=CDB.BC=ADC.∠A=∠CD.BC ∥AD(第6题图) (第7题图) (第8题图) 7.如图,正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( ) A.30° B.36° C.54° D.72°8.如图,一个长为2,宽为1的长方形以所示姿态从直线l的左侧水平平移至右侧(图中的虚线是水平线),其中,平移的距离是()A.1B.2C.3D.2√29.若不等式组{x<1x<a的解集是x<a,则a的取值范围是()A.a≤1B.a=1C.a≥1D.a<1二.填空题。

(每小题4分,共24分)11.因式分解:a2-6a= .12.若分式x+1x-1的值为0,则x的值是 .13.如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE等于 .(第13题图)(第15题图)(第16题图)14.若不等式(a-4)x>1的解集是x<1a-4,则m的取值范围是 .15.如图,在平行四边形ABCD中,CE平分∠BCD,若CD=5,BC=3,则AE的长是 .16.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 .三.解答题。

北师大版八年级数学下册《期末试卷》(附答案)

北师大版八年级数学下册《期末试卷》(附答案)

学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题(毎小题3分,共30分)1.(3分)下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A .B .C .D .2.(3分)下面四个多项式中,能进行因式分解的是()A.x2+y2B.x2﹣y C.x2﹣1 D.x2+x+13.(3分)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6 或8 D.7或84.(3分)如果分式有意义,那么x的取值范围是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣35.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+16.(3分)如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为()A.16 B.15 C.14 D.137.(3分)如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE=()A.4 B.3 C.2 D.58.(3分)如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)9.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y10.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定二、填空题(毎小题4分,共24分)11.(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为.12.(4分)如图,在△ABC中,D,E,F,分别时AB,BC,AC,的中点,若平移△ADF平移,则图中能与它重合的三角形是.(写出一个即可)13.(4分)化简:=.14.(4分)若关于x的分式方程=1的解为正数,那么字母a的取值范围是.15.(4分)点P(﹣4,5)关于x轴对称的点P′的坐标是.16.(4分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为.三、解答题(每小题6分,共18分)17.(6分)解不等式组:,并将解集在数轴上表示出来.18.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=,y=.19.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.四、解答题(毎小题7分,共21分)20.(7分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF,EF、BD相交于点O,求证:OE=OF.21.(7分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.22.(7分)阅读下列解题过程:已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为:;(2)错误的原因为:;(3)请你将正确的解答过程写下来.五、解答题(每小题9分,共27分)23.(9分)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形.(2)连结BE,若BE=EF,求证:AE=AD.24.(9分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.(9分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC 于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.2017-2018学年广东省茂名市高州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(毎小题3分,共30分)1.(3分)下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、既是中心对称图形,又是轴对称图形,故本选项符合题意;D、是中心对称图形,不是轴对称图形,故本选项不符合题意.故选:C.2.(3分)下面四个多项式中,能进行因式分解的是()A.x2+y2B.x2﹣y C.x2﹣1 D.x2+x+1【解答】解:A、x2+y2不能进行因式分解,故本选项错误;B、x2﹣y不能进行因式分解,故本选项错误;C、x2﹣1能利用平方差公式进行因式分解,故本选项正确;D、x2+x+1不能进行因式分解,故本选项错误.故选:C.3.(3分)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6 或8 D.7或8【解答】解:当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;当3为底时,三角形的三边为3,2、2可以构成三角形,周长为7.4.(3分)如果分式有意义,那么x的取值范围是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣3【解答】解:由题意得:x+3≠0,解得:x≠3,故选:D.5.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.6.(3分)如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为()A.16 B.15 C.14 D.13【解答】解:连接AE,∵在Rt△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∵DE是AB边的垂直平分线,∴AE=BE,∴△ACE的周长为:AE+EC+AC=BE+CE+AC=BC+AC=10+6=16.7.(3分)如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE=()A.4 B.3 C.2 D.5【解答】解:∵AD=BD,AE=EC,∴DE是△ABC的中位线,∴BC=2DE,∴DE=3,故选:B.8.(3分)如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)【解答】解:在▱MNEF中,点F和N关于原点对称,∵点F的坐标是(3,2),∴点N的坐标是(﹣3,﹣2).9.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.10.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定【解答】解:能使函数y=k1x+b的图象在函数y=k2x的上方时的自变量的取值范围是x<﹣1.故关于x的不等式k1x+b>k2x的解集为:x<﹣1.故选:B.二、填空题(毎小题4分,共24分)11.(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为﹣12.【解答】解:∵a+b=3,ab=﹣3,∴a2b+ab2=ab(a+b)=4×(﹣3)=﹣12.故答案为:﹣1212.(4分)如图,在△ABC中,D,E,F,分别时AB,BC,AC,的中点,若平移△ADF平移,则图中能与它重合的三角形是△DBE(或△FEC).(写出一个即可)【解答】解:△DBE形状和大小没有变化,属于平移得到;△DEF方向发生了变化,不属于平移得到;△FEC形状和大小没有变化,属于平移得到.∴图中能与它重合的三角形是△DBE(或△FEC).13.(4分)化简:=1.【解答】解:原式==1.故答案为:1.14.(4分)若关于x的分式方程=1的解为正数,那么字母a的取值范围是a>1且a≠2.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.15.(4分)点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5).【解答】解:点P(﹣4,5)关于x轴对称的点P′的坐标是(﹣4,﹣5),故答案为:(﹣4,﹣5).16.(4分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.【解答】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.三、解答题(每小题6分,共18分)17.(6分)解不等式组:,并将解集在数轴上表示出来.【解答】解:,由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:18.(6分)先化简,再求值:(﹣x﹣1)÷,其中x=,y=.【解答】解:(﹣x﹣1)÷=×==﹣1∵x=,y=∴﹣1=﹣1=﹣1=﹣119.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.【解答】解:(1)如图所示:△A1B1C1是所求的三角形.(2)如图所示:△A2B2C1为所求作的三角形.四、解答题(毎小题7分,共21分)20.(7分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF,EF、BD相交于点O,求证:OE=OF.【解答】证明:方法1,连接BE、DF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OF=OE.方法2,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵∠ODE=∠OBF,AE=CF,∴DE=BF,在△DOE和△BOF中,,∴△DOE≌△BOF(AAS),∴OE=OF.21.(7分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【解答】(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.22.(7分)阅读下列解题过程:已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为:③;(2)错误的原因为:除式可能为零;(3)请你将正确的解答过程写下来.【解答】解:(1)③;(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案是③,除式可能为零.五、解答题(每小题9分,共27分)23.(9分)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形.(2)连结BE,若BE=EF,求证:AE=AD.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)连接BE∵BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴EB=EF,∠EBF=60°∵DC=EF,∴EB=DC,∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.24.(9分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.25.(9分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC 于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.【解答】证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(2)由①得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;(3)成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC﹣∠FAE,∠DAC=∠FAD﹣∠FAE,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。

最新北师大版数学八年级下册期末考试真题附答案解析

最新北师大版数学八年级下册期末考试真题附答案解析

北师大版数学八年级下册期末考试真题姓名:得分:一、选择题1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz) B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z)D.a2b+5ab﹣b=b(a2+5a)3.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm4.如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.5.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则下列方程正确的是()A.B.C.D.6.如果x>y,那么下列各式中正确的是()A.x﹣2<y﹣2 B.<C.﹣2x<﹣2y D.﹣x>﹣y7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.两个等腰三角形全等的条件是()A.有两条边对应相等B.有两个角对应相等C.有一腰和一底角对应相等D.有一腰和一角对应相等9.如图,△ABC沿BC边所在的直线向左平移得到△DEF,下列错误的是()A.AC=DF B.EB=FC C.DE∥AB D.∠D=∠DEF10.下列各式从左到右的变形中,是因式分解的为()A.x(a+2b)=ax+2bx B.x2﹣1+4y2=(x﹣1)(x+1)+4y2C.x2﹣4y2=(x+2y)(x﹣2y)D.ax+bx﹣c=x(a+b)﹣c二、填空题11.已知一等腰三角形两边为2,4,则它的周长.12.x与3的和不小于6,用不等式表示为.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.14.若x2+px+q=(x+2)(x﹣4),则p=,q=.15.若9x2+(m﹣1)x+4是完全平方式,那么m=.三、解答题16.解不等式组,并把解集在数轴上表示出来..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八年级下学期期末测试卷时间:120分钟总分:120分1.如图,在中,已知,点D、E分别在AC、AB上,且,,那么的度数是A.B.C.D.2.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC3.以下列各组数为边长,能构成直角三角形的是( )A.1,2,3B.4,5,6C.,,D.32,42,52 4.已知点P关于x轴的对称点P1的坐标是(4,3),那么点P关于原点的对称点P2的坐标是A.(-3,-4)B.(-4,3)C.(-4,-3)D.(4,-3)5.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°6.若a<b,则ac>bc成立,那么c应该满足的条件是()A.c>0B.c<0C.c≥0D.c≤07.下列图形既是轴对称图形,又是中心对称图形的代号是A.①③④B.②③④C.③④⑤D.①③⑤8.一直角三角形的三边分别为2,3,x,那么以x为边长的正方形的面积为()A.13B.5C.4D.13或59.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2B.x<2C.x≥2D.x≤210.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6B.5<a≤6C.5≤a<6D.5≤a≤62212.有一块土地的形状如图所示,∠B=∠D=90°,AB=20m,BC=15m,CD=7m,则这块土地的面积为_____.13.如图,将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC、CD相交于点P、Q,则BP:PQ:QR=_____.14.一个等边三角形,一个直角三角形以及一个等腰三角形如图放置,等腰三角形的底角∠3=80°,则∠1+∠2=_____.15.下列式子属于不等式的是_______________.①②③④⑤⑥⑦⑧⑨16.如图,吴伯伯家有一块等边三角形的空地ABC,已知E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是__米. 17.E,F,G,H分别为□ABCD四边的中点,则四边形EFGH为_______.18.已知关于x的不等式组的解集为x>1,则a的取值范围是_____.19.已知等腰直角三角形ABC中,∠C=90°.AC=BC=4,点D在直线AC上,且CD=2,连接BD,作BD的垂直平分线交三角形的两边于E.F,则EF的长为________.20.不等式组的解集为______.21.如图,在半径为R cm的圆形钢板上,除去半径为r cm的四个小圆,利用因式分解计算当R=7.8,r=1.1时剩余部分的面积.(π取3.14,结果精确到个位)22.A.B两地相距120 km,汽车货运公司与铁路货运公司都开办运输业务,所需费用如下表所示(注:“元/t· km”表示1 t货物运送1 km所需的费用).其客户有一批货物需从A地运到B地,根据他所运货物的质量,采取铁路运货的方式运输所需费用较少,你知道这批货物的质量在多少吨以上吗?23.阅读材料:对于多项式x2.2ax.a2可以直接用公式法分解为(x.a)2的形式.但对于多项式x2.2ax.3a2就不能直接用公式法了.我们可以根据多项式的特点.在x2.2ax.3a2中先加上一项a2.再减去a2这项.使整个式子的值不变.解题过程如下:x2.2ax.3a2.x2.2ax.3a2.a2.a2(第一步).x2.2ax.a2.a2.3a2(第二步).(x.a)2.(2a)2(第三步).(x.3a)(x.a).(第四步)参照上述材料.回答下列问题:(1)上述因式分解的过程.从第二步到第三步.用到了哪种因式分解的方法()A.提公因式法B.平方差公式法C.完全平方公式法D.没有因式分解(2)从第三步到第四步用到的是哪种因式分解的方法:__________.(3)请你参照上述方法把m2.6mn.8n2因式分解.24.华联商厦进货员在苏州发现一种应季衬衫,预料能畅销市场,就用80000元购进所有衬衫,还急需2倍这种衬衫,经人介绍又在上海用了176000元购进所需衬衫,只是很快销售完,问商厦这笔生意赢利多少元?25.解不等式,并把解集在数轴上表示出来.(1)3x﹣5<2(2+3x)(2)﹣1≤ ,26.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向左平移2个单位,再向上平移3个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是:;(3)画出△ABC中BC边上的中线AD;(4)△ACD的面积为27.因式分解:28.阅读下面的解题过程:已知,求代数式的值.解:由,取倒数得,=4,即2y2+3y=1.所以4y2+6y﹣1=2(2y2+3y)﹣1=2×1﹣1=1,则可得=1.该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知,求的值.答案与解析1.B解:设,,∵,,,在中,,解得..故选:B.2.D解:根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.3.C解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;C、∵∴该三角形是直角三角形,故此选项符合题意;D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.故选:C.4.B解:∵点P关于x轴的对称点P1的坐标是(4,3),∴P点坐标为(4,-3),∴点P(4,-3)关于原点的对称点P2的坐标是(-4,3).故选B.5.D解:∵∠BAC..DAE.90°...BAC+.CAD..DAE+.CAD.即∠BAD..CAE.在△BAD和△CAE中,∵...BAD..CAE.SAS...BD.CE.故A正确...ABC为等腰直角三角形...ABC..ACB.45°...ABD+.DBC.45°...BAD..CAE...ABD..ACE...ACE+.DBC.45°.故B正确...ABD+.DBC.45°...ACE+.DBC.45°...DBC+.DCB..DBC+.ACE+.ACB.90°.则BD.CE.故C正确...BAC..DAE.90°...BAE+.DAC.360°.90°.90°.180°.故D错误.故选D.6.B解:若a.b,则ac.bc成立,那么c应该满足的条件是c.0.故选:B.7.D解:如图所示:,既是轴对称图形,又是中心对称图形的代号是:①③⑤.故选:D.8.D解:当2和3是直角边,x是斜边时,则x2=4+9=13;当2和x是直角边,3是斜边,则x2=9-4=5.故选D.9.B解:由一次函数图象可知关于x的不等式kx+3>0的解集是x<2故选B.10.C解:解不等式组得:2.x≤a.∵不等式组的整数解共有3个,∴这3个是3.4.5,因而5≤a.6.故选C.11.直角三角形解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故答案为: 直角12.234m2解:连接AC,在Rt△ABC中,AC为斜边,则AC===25(m),在Rt△ACD中,AC为斜边,则AD==═24(m),四边形ABCD面积S=AB×BC+AD×CD=×20×15+×7×24=234(m2).故答案为:234m2.13.2:1:1解:由平移的性质可知,AC∥DE.BC=CE.∴△BPC∽△BRE.∴.∴PC=RE.BP=PR.∵DR.RE=1.2.∴PC=DR.∵AC∥DE.∴△PQC∽△RQD.∴=1.∴PQ=QR.∴BP.PQ.QR=2.1.1.故答案为:2.1.1.14.130°.解:如图,由等边三角形和直角三角形可得∠1+α=120°,∠2+β=90°,∴∠1+∠2+α+β=90°+120°=210°,且∠3=α+β,∴α+β=80°,∴∠1+∠2=210°-80°=130°,故答案为:130°.15.①③④⑤⑦⑧⑨解:∵不等式要求用不等号连接∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨16.25解:∵点E,F分别是边AB,AC的中点,EF=5米,∴BC=2EF=10米,∵△ABC是等边三角形,∴AB=BC=AC,∴BE=CF=BC=5米,∴篱笆的长=BE+BC+CF+EF=5+10+5+5=25米.故答案为:25.17.平行四边形解:证明:连接BD,∵点E. F.G、H分别是边AB、BC、CD、DA的中点,∴EH为△ABD的中位线,∴EH∥BD,EH=BD.同理:FG∥BD,FG=BD,∴EH∥FG.EH=FG∴...EFGH..................18.a≤1.解:由关于x的不等式组的解集为x>1,得a≤1,故答案为:a≤1.19.解:如图.过点D作DG.AE于点G...C.90°.AC.BC.4....A.45°...ADG.90°.45°.45°...A..ADG.AG.DG(设为λ..由勾股定理得.λ2+λ2.AD2.而AD.AC.2.2.λ.BG.3.由勾股定理得.BD.2..EF.BD.且平分BD..DE.BE(设为μ..DF.BF(设为γ...GE.3μ.CF.4.γ.在△DGE中.由勾股定理得..解得.μ.在△DCF中.同理可求.γ.2.5..S四边形BEDF.S△BED+S△BFD....解得.EF.故答案为:.20.x≤1.解:∵解不等式①得:x≤1,解不等式②得:x<4,∴不等式组的解集为x≤1,故答案为:x≤1.21.剩余部分的面积约为176cm2. 解:........(πR2.4πr2)cm2..R.7.8.r.1.1..πR2.4πr2.π(R2.4r2).π(R.2r)(R.2r).π(7.8.2×1.1)(7.8.2×1.1).π×10×5.6≈56×3.14≈176. .........176 cm2.22.这批货物的质量在50 t以上.解:设这批货物的质量为x t.根据题意,得2×120x.200.1.8×120x.1400.解得x.50.答:这批货物的质量在50 t以上.23.(1)C.(2)平方差公式法;(3)(m.2n)(m.4n).解:(1)C.(2)平方差公式法.(3)m2.6mn.8n2.m2.6mn.8n2.n2.n2.m2.6mn.9n2.n2.(m.3n)2.n2.(m.2n)(m.4n).24.商厦这笔生意赢利90260元解:设从苏州购进x件衬衫,根据题意,得:解得:x=2000.经检验:x=2000是原方程的解..2000+4000-150.×58+150×58×0.8-.80000+176000.=90260(元).答:这笔生意赢利90260元.25.(1)-3;(2) 4解:(1)去括号,得3x-5<4+6x.移项,得3x-6x<4+5.合并同类项,得-3x<9.两边同除以-3,得x>-3.这个不等式的解表示在数轴上如图所示:(2)去分母,得去括号,得移项,得合并同类项,得两边同除以5,得4这个不等式的解表示在数轴上如图所示:26.(1);(2)平行且相等;(3);(4)4解(1) 图中.A1B1C1即为所求;(2) AC与A1C1的关系是:平行且相等;(3)图中AD即为所求;(4)S △ACD=4×6-×4×6-×4×4=24-12-8=4.27.;.解:原式;原式.28.解:原式===-,∵,∴,∴,∴,∴原式=.。

相关文档
最新文档