高中数学试题:数列单元复习题(一)
精选高中数学单元测试试题-数列专题考核题库完整版(含标准答案)

2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.设等比数列{}n a 的公比q =2,前n 项和为S n ,则24a S =( ) A .2B .4C .215 D .217(2008宁夏理) 2.若n 项等比数列的首项为a 1=1,公比为q ,这n 项和为S (S ≠0),则此数列各项的倒数组成的新数列的和是A.S 1B.qS 1C.S qD.1-n q S3.等差数列{an}的首项a1=-5,它的前11项的平均值为5,若从中抽去一项,余下的10项的平均值为4.6,则抽去的是A.a6B.a8C.a10D.a11第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.数列{}n a 中,前n 项和23n S n =--,*n N ∈,则{}n a 的通项公式为n a = .5.已知2log 0()40x x x f x x >⎧=⎨≤⎩,则()14f f ⎡⎤⎢⎥⎣⎦= ▲ .6.已知等差数列}{n a 中,,60,3093==a a 则首项=1a .7.已知等差数列{},{}n n a b 的前n 项和分别为n S 和n T ,若7453n n S n T n +=+,且8n nab =,则n 的值为__________.8.已知等差数列{a n }满足:a 1 = 2,a 2 + a 3 = 13,则a 4 + a 5 + a 6 = ____.9.已知等比数列{}n a 的各均为正数,且21243723,4a a a a a +==,则数列{}n a 的通项公式为 。
10.已知数列{}n a 满足12a =,111n n na a a ++=-,*()n N ∈,则12320092010a a a a a ⋅⋅⋅⋅=__________.11.若数列}{n a 的前n 项和n S 满足:n n na S -=1,则2a =________12.设等差数列}{n a 前n 项和是n S ,若k S S S S a a ==≠78321,,,则k =_____13.等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且3417++=n n B A n n ,则使得nn b a 为整数的正整数n 的个数是________. 14.已知}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k = .15.等差数列{}n a 的前3项和为21,其前6项和为24,则其首项1a 为 16.已知n n n x x x x +==+211,31,则代数式111111200521++++++x x x 的值在哪两个相邻的整数之间?三、解答题17.(本小题满分16分)在等差数列{}n a 中,11a =,前n 项和n S 满足条件24,1,2,nnS n S ==,(1)求数列{}n a 的通项公式和n S ;(2)记12n n n b a -=⋅,求数列{}n b 的前n 项和n T .18.(本题满分16分) 在正数数列中,Sn 为的前n 项和,若点在函数的图象上,其中c 为正常数,且c ≠1。
精选高中数学单元测试试题-数列专题完整题库(含答案)

2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为_______ 2.已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的第n 项an 等于 A.2n-5 B.2n-3 C.2n-1D.2n+13.某大楼有20层,有19人在第一层上了电梯,他们分别要去第2层到20层,每层一人,而电梯只允许停一次,可只使一人满意,其余18人都要上楼或下楼。
假设乘客每向下走一层不满意度为1,每向上走一层不满意度为2。
所有人不满意之和为S ,为使S 最小,电梯应停在第( )层。
A,15 B,14 C,13 D,12第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4. 已知数列{}n a ,{}n b 满足11a =,22a =,12b =,且对任意的正整数,,,i j k l ,当i j k l +=+时,都有i j k l a b a b +=+,则201011()2010i i i a b =+∑的值是 ▲ .5.1、各校(园):请各单位对照本单位实际,按马校长的要求做好校园安全工作。
马校长强调:近期安全要关注之处1、学生上下学安全,和家长定接送安全责任状,上学的时候有人值班校干带班。
2、校内各个区域的安全值班,重要的是有人带班和检查一下值班情况。
3、食堂食品和学生饮用水情况。
4、传达室的物品摆放情况和值班情况,不可以让人员随意进出学校。
5、进行特异体质学生调查,统计,跟踪分析一下。
6、对学生的安全教育情况,7、带领全体职工学习安全职责。
8、学校的线路情况如何。
9、楼梯口的安全值班情况。
10、保安的管理情况,不可以有超过七十岁的安保人员。
高中数学专题一 数列试题

专题一 数列(试题)一、选择题1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .0C .2D .3 2.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52 B.5+12C.5-12D.5+12或5-123.已知数列{a n }满足a 1=1,a 2=1,a n +1=|a n -a n -1|(n ≥2),则该数列前2011项的和S 2011等于( )A .1341B .669C .1340D .13394.设{a n }是公比为q 的等比数列,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-43B .-32C .-23或-32D .-34或-435.若数列{a n }满足:a n +1=1-1a n且a 1=2,则a 2011等于( )A .1B .-12C .2 D.126.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则12310b b b b a a a a +++⋅⋅⋅+=( )A .1033B .1034C .2057D .2058 二、填空题7.已知1,x 1,x 2,7成等差数列,1,y 1,y 2,8成等比数列,点M (x 1,y 1),N (x 2,y 2),则线段MN 的中垂线方程是________.8.已知正项数列{a n }的首项a 1=1,前n 项和为S n ,若以(a n ,S n )为坐标的点在曲线y =12x (x +1)上,则数列{a n }的通项公式为________. 9.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a +b +c 的值为________.三、解答题10.已知数列{a n }的前n 项和S n =2n 2-2n ,数列{b n }的前n 项和T n =3-b n . ①求数列{a n }和{b n }的通项公式;②设c n =14a n ·13b n ,求数列{c n }的前n 项和R n 的表达式.11.已知数列{b n }前n 项和为S n ,且b 1=1,b n +1=13S n .(1)求b 2,b 3,b 4的值; (2)求{b n }的通项公式; (3)求b 2+b 4+b 6+…+b 2n 的值.12.已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n =1,2,3,…. (1)证明数列{lg(1+a n )}是等比数列;(2)设T n =(1+a 1)(1+a 2)…(1+a n ),求T n 及数列{a n }的通项.。
(常考题)人教版高中数学选修二第一单元《数列》检测题(答案解析)(1)

一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .113.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+ B .212n n -+C .221n n -+D .222n n -+4.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项5.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-6.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( )A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭7.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .458.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .51109.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511B .513C .1025D .102410.已知函数()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n *=∈N 得数列{}n a ,若数列{}n a 为递增数列,则实数a 的取值范围为( )A .()1,3B .()2,3C .9,34⎛⎫ ⎪⎝⎭D .92,4⎛⎫ ⎪⎝⎭11.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+12.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-二、填空题13.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.14.天干地支纪看法源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、已、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2020年为庚子年,那么到建国100年时,即2049年以天干地支纪年法为__________.15.已知:等比数列{}n a 的前n 项和23nn S a =⋅-,则5a =______.16.已知数列{}n a 的前n 项和22n S n =,*n N ∈.求数列{}n a 的通项公式为______.设2(1)n n n n b a a =+-,求数列{}n b 的前2n 项和n T =______.17.已知等差数列{}n a 的前n 项和为n S ,且2718a a =-,8S =__________. 18.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.19.数列{}n a 满足, 123231111212222n na a a a n ++++=+,写出数列{}n a 的通项公式__________.20.正项数列{}n a 满足222112n n n a a a -+=+,若11a =,22a =,则数列{}n a 的通项公式为______.三、解答题21.在等比数列{}n a 中,24a =,532a =. (1)求n a(2)设23log n n b a =,n n n c b a =⋅,求数列{}n c 的前n 项和n T . 22.若数列{}n a ,12,a =且132n n a a +=+. (1)证明{}1n a +是等比数列; (2)设()131n n n a b n n +=⋅+,n T 是其前n 项和,求n T .23.已知数列{}n a 的前n 项和n S ,21n n S a =-,数列{}n b 是等差数列,且11b a =,43b a =.(1)求数列{}n a 和{}n b 的通项公式; (2)若121n n n n c a b b +=-,求数列{}n c 的前n 项和n T . 24.设数列{}n a 的前n 项和为n S ,从条件①()11n n na n a +=+,②()12n n n a S +=,③22n n n a a S +=中任选一个,补充到下面问题中,并给出解答.已知各项都为正数的数列{}n a 的前n 项和为n S ,11a =,____. (1)求数列{}n a 的通项公式;(2)若2nn n b a =-,求数列{}n b 的前n 和n T .25.在数列{}n a 中,已知11a =,121n n a a n +=++. (1)求数列{}n a 的通项公式; (2)设141n n b a =-,求数列{}n b 的前20项和20T .26.已知()f x =. (1)设11a =,()11n n f a a +=,求n a . (2)设22212,n n S a a a =+++,1nn n b S S +=-,且1223341n n n T b b b b b b b b +=⋅+⋅+⋅++⋅,问是否存在最小正整数m ,使得对任意*n N ∈,都有25n mT <成立.若存在,请求出m 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n n a a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=, 将上式累加得:1121111222n n a a --=++⋅⋅⋅+,1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n⎛⎫=- ⎪⎝⎭. 故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.A解析:A 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案. 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选:A. 【点睛】关键点点睛:本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .3.D解析:D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】 解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (111)123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈,又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+.故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合.4.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.5.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n na a a ++=-,可得其周期性,进而得出结论.【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=. 故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.6.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 7.B解析:B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 由,,m k n a a a 成等比,即2k m n a a a =; 等差数列前n 项和公式1()2n n n a a S +=的应用. 8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值.【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.10.B解析:B 【分析】 由()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩,()()n a f n n N *=∈得数列{}n a ,根据数列{}n a 为递增数列,联立方程组,即可求得答案. 【详解】()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n N *=∈得数列{}n a∴()633,7,7n n a n n a a n -⎧--≤=⎨>⎩()n N *∈且数列{}na 为递增数列,得()230,1,733,a a a a ⎧->⎪>⎨⎪--<⎩解得23a <<. 即:()2,3a ∈ 故选:B. 【点睛】本题主要考查了根据递增数列求参数范围问题,解题关键是掌握递增数列的定义,考查了分析能力和计算能力,属于中档题.11.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.12.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.二、填空题13.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解. 【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.14.已巳【分析】本题由题意可得数列天干是10个为一个循环的循环数列地支是以12个一个循环的循环数列以2020年的天干和地支分别为首项即可求解【详解】由题意可知数列天干是10个为一个循环的循环数列地支是以解析:已巳 【分析】本题由题意可得数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,以2020年的天干和地支分别为首项,即可求解. 【详解】由题意可知数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,从2020年到2049年一共有30年,且2020年为庚子年, 则30103÷=,2049年的天干为已,30122÷=余6,2049年的地支为巳, 故2049年为已巳年, 故答案为:已巳. 【点睛】关键点点睛:本题主要考查了循环数列的实际应用,能否根据题意得出天干是10个为一个循环的循环数列以及地支是以12个一个循环的循环数列是解决本题的关键,着重考查了分析问题和解答问题的能力,是中档题.15.48【分析】由求出结合等比数列求得值从而可得【详解】由题意时又是等比数列所以解得所以故答案为:48【点睛】易错点睛:由前项和求时要注意中有不包括而解题时要注意否则易出错解析:48 【分析】由n S 求出n a ,结合等比数列求得a 值,从而可得5a . 【详解】由题意2n ≥时,11123(23)2n n n n n n a S S a a a ---=-=⋅--⋅-=⋅,又1123a S a ==-,{}n a 是等比数列,所以32222223a a aa a a ===-.解得3a =. 所以453248a =⨯=. 故答案为:48. 【点睛】易错点睛:由前n 项和n S 求n a 时,要注意1n n n a S S -=-中有2n ≥,不包括1a ,而11a S =,解题时要注意,否则易出错.16.【分析】根据写式子两式子相减整理得再验证时是否成立即可写出通项公式由已知可得运用分组求和即可得到答案【详解】∵①∴②由②﹣①可得:即又当时有满足∴;由已知可得:∴所以故答案为:;【点睛】本题考查已知 解析:42n a n =-2164n +n【分析】 根据()2*2n S nn N =∈写式子()2121n Sn++=,两式子相减整理得42n a n =-,再验证1n =时是否成立,即可写出通项公式.由已知可得()()422)24(1nn b n n =-+-⨯-,运用分组求和即可得到答案. 【详解】 ∵()2*2n S nn N =∈①,∴()2121n Sn++=②,由②﹣①可得:14+2n a n +=,即42n a n =-,又当1n =时,有2112111S a ==⨯⇒=满足42n a n =-,∴42n a n =-;由已知可得:()()422)24(1nn b n n =-+-⨯-,∴12322342112333n n n n b b b b ++++a T a a a a +a -==+++⋅+⋅⋅+()()32122143n n a a a a +++a +++a -=+()()28484316242n n n n+n +n -=+⨯=, 所以2641n T n +n =,故答案为:42n a n =-;2641n T n +n =.【点睛】本题考查已知数列前n 项和为n S 与n a 的关系求通项,注意验证1n =是否满足,考查分组求和,属于中档题.17.72【解析】因为所以故填解析:72 【解析】因为2718a a =-,所以182718a a a a +=+=,1888()722a a s +==,故填72. 18.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.19.【分析】当时有作差可求出再验证是否成立即可得出答案【详解】当时由所以—可得所以当时所以不满足上式所以故答案为:【点睛】本题主要考查数列通项公式的求法做题的关键是掌握属于中档题解析:16,12,2n n n a n +=⎧=⎨≥⎩【分析】当2n ≥时,有()12312311111211212222n n a a a a n n --+++=-+=+-,作差可求出12n n a +=,再验证1a 是否成立,即可得出答案.【详解】当2n ≥时,由123231111212222n na a a a n ++++=+, 所以()12312311111211212222n n a a a a n n --+++=-+=+-,—可得()1212122n n a n n =+--=,所以1222n n n a +⋅==, 当1n =时,112132a =+=,所以16a =,不满足上式,所以16,12,2n n n a n +=⎧=⎨≥⎩. 故答案为: 16,12,2n n n a n +=⎧=⎨≥⎩【点睛】本题主要考查数列通项公式的求法,做题的关键是掌握1n n n a S S -=-,属于中档题.20.【分析】由得出为等差数列进而求出首项和公差得出的通项公式即可得的通项公式【详解】由题得得为等差数列又因为则有所以是以首项为1公差的等差数列得又因为所以故答案为:【点睛】本题考查利用等差数列的定义法证 解析:32n a n -【分析】由222112n n n a a a -+=+得出{}2n a 为等差数列,进而求出首项和公差,得出{}2n a 的通项公式,即可得{}n a 的通项公式. 【详解】由题得222112n n n a a a -+=+,得{}2n a 为等差数列,又因为11a =,22a =则211a =,224a =,有22213a a -=所以{}2n a 是以首项为1,公差3d =的等差数列 得()211332n a n n =+-⨯=-又因为0n a >,所以32n a n =- 故答案为:32n a n =-【点睛】本题考查利用等差数列的定义法证明等差数列,以及考查等差数列的通项公式.三、解答题21.(1)2n n a =;(2)13(1)26n n T n +=-⋅+【分析】(1)利用等比数列的通项公式,结合已知条件24a =,532a =,可得1,a q ,即可求得n a ;(2)由(1)知3n b n =,23nn c n =⋅,利用错位相减法即可求数列{}n c 的前n 项和.【详解】(1)设等比数列{}n a 的首项为1a ,公比为q ,由已知24a =,532a =,可得141432a q a q =⎧⎨=⎩,解得122a q =⎧⎨=⎩, 所以112n nn a a q -== (2)由(1)知223log 3log 23nn n b a n ===,23n n c n =⋅12336222293n n T n =+++⨯+∴⨯⋅⨯ ① 2341236922223n n T n +=++++⋅⨯⨯⨯ ②①-②得:12312223333232n n n T n +=++++-⨯⨯⋅-⨯⨯()111231122222223331232n nn n n n +++-=++++-⋅=-⋅⨯⨯-()11122332n n n ++=--⋅⨯()13126n n +=⨯-⋅-13(1)26n n T n +∴=-⋅+【点睛】方法点睛:本题考查求等比数列的通项公式及数列求和,求数列和常用的方法: (1)等差+等比数列:分组求和法;(2)倒序相加法; (3)11n n n b a a +=(数列{}n a 为等差数列):裂项相消法; (4)等差⨯等比数列:错位相减法. 22.(1)证明见解析;(2)1n n T n =+. 【分析】(1)已知等式变形为113(1)n n a a ++=+,再计算出1130a +=≠,可证结论; (2)由(1)求出1n a +后可得n b ,然后用裂项相消法求和. 【详解】(1)∵132n n a a +=+,∴113(1)n n a a ++=+,又1130a +=≠, ∴{1}n a +是等比数列,公比为3,首项为3.(2)由(1)13nn a +=,∴3113(1)1n n n b n n n n ==-⋅++,∴11111111223111n n T n n n n =-+-++-=-=+++. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 23.(1)12n n a ;n b n = (2)211321n n --++ 【分析】(1) 当1n =时11a =,由1n n n a S S -=-可得122n n n a a a -=-,可求出n a ,根据111b a ==,434b a ==,可求出n b(2)由条件()11121212112121n n n n n n n n c a b b n n -+-+⎛⎫=-=-=-- ⎪+⎝⎭,由等比数列的求和公式和裂项相消法可求和. 【详解】(1)当1n =时,11121S a a ==-,得11a = 当2n ≥时,21n n S a =- ……①1121n n S a --=- ……②由①-② 得122n n n a a a -=-,即12n n a a -=所以数列{}n a 是以1为首项,2为公比的等比数列,所以12n na所以111b a ==,434b a ==.则等差数列{}n b 的公差为1d = 所以n b n = (2)()11121212112121n n n n n n n n c a b b n n -+-+⎛⎫=-=-=-- ⎪+⎝⎭21111111112112222231n n T n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++--+-++- ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2111112213112112nn n n -⎛⎫- ⎪⎛⎫⎝⎭=⨯--=-+ ⎪++⎝⎭- 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式和利用公式法以及裂项相消法求和,解答本题的关键是由()11n n n a S S n -=->求通项公式,和将n c 化为121121n n c n n -⎛⎫=-- ⎪+⎝⎭用等比数列的求和公式和裂项相消法求和,属于中档题. 24.(1)()*n a n n N =∈;(2)()1122n nT n +=-⋅-.【分析】 (1)若选①可得n a n ⎧⎫⎨⎬⎩⎭为常数数列,即可求出n a ;若选②利用1n n n a S S -=-可得()11n n n a na --=,即可得n a n ⎧⎫⎨⎬⎩⎭为常数数列,即可求出n a ;若选③利用1n n n a S S -=-可得11n n a a --=,即可得到数列{}n a 是以1为首项,1为公差的等差数列,从而得解;(2)利用错位相减法求和; 【详解】 选条件①时,(1)()11n n na n a +=+时,整理得11111n n a a a n n +===+,所以n a n =. (2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅ ①, 231212222n n C n +=⨯+⨯++⋅ ②,①-②得:()()12112212222221n nn n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.选条件②时, (1)由于()12n n n a S +=,所以()21nn Sn a =+①,当2n ≥时,112n n S na --=②,①-②得:()121n n n a n a na -=+-,()11n n n a na --=,整理得1111n n na a a n n -===-,所以n a n =. (2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅ ①,231212222n n C n +=⨯+⨯++⋅ ②,①-②得:()()12112212222221n n n n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.选条件③时,由于22n n n a a S +=, ①21112n n n a a S ---+= ②①-②时,2211n n n n a a a a ---=+,整理得11n n a a --=(常数),所以数列{}n a 是以1为首项,1为公差的等差数列. 所以n a n =.(2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅①, 231212222n n C n +=⨯+⨯++⋅②,①-②得:()()12112212222221n nn n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 25.(1)()2*n a n n =∈N ;(2)202041=T. 【分析】(1)由累加法结合等差数列的前n 项和公式即可得解; (2)转化条件为11122121n b n n ⎛⎫=- ⎪-+⎝⎭,利用裂项相消法运算即可得解. 【详解】(1)因为121n n a a n +=++,所以121n n a a n +-=+, 所以213a a -=,325a a -=,⋅⋅⋅,()1212n n a a n n --=-≥, 以上各式相加可得()()211321352112n n n a a n n -+--=++⋅⋅⋅+-==-,又11a =,所以()22n a n n =≥,显然11a =符合上式, 所以()2*n a nn =∈N ;(2)由(1)知2n a n =,所以()()21111141212122121n b n n n n n ⎛⎫===- ⎪--+-+⎝⎭.所以12111111123352121n n T b b b n n ⎛⎫=++⋅⋅⋅+=⨯-+-+⋅⋅⋅+- ⎪-+⎝⎭11122121nn n ⎛⎫=⨯-= ⎪++⎝⎭, 所以202020220141T ==⨯+.【点睛】关键点点睛:解决本题的关键是要注意裂项相消法的适用条件及用法. 26.(1)n a =;(2)存在,2m =. 【分析】(1)先证明出21n a ⎧⎫⎨⎬⎩⎭是等差数列,进而求出n a ;(2)利用裂项相消法求出n T ,解不等式得出m 的范围,进而求值即可. 【详解】(1)由()11n n f a a +=得:11n a +=221114n n a a +-=, 故21n a ⎧⎫⎨⎬⎩⎭是以2111a =为首项,4为公差的等差数列,2143n n a ∴=-,由()0f x =>可得0n a >,故n a =. (2)211141n n n n b S S a n ++=-==+, 111111414544145n n b b n n n n +⎛⎫∴=⨯=- ⎪++++⎝⎭, 1223341n n n T b b b b b b b b +∴=⋅+⋅+⋅++⋅11111111111145949134131744145n n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11111111145991313174145n n ⎛⎫=⨯-+-+-++- ⎪++⎝⎭1114545n ⎛⎫=⨯- ⎪+⎝⎭, 由题干对任意*n N ∈,都有25n m T <成立得()max 25n m T <, 由1114545n T n ⎛⎫=- ⎪+⎝⎭得120nT <, 12520m ∴≥,解得:54m ≥, 又m 为正整数, 2m ∴=,综上,存在2m =,使得对任意*n N ∈,都有25n mT <成立. 【点睛】方法点睛:本题考查等差数列的通项公式,考查数列的求和,数列求和的方法总结如下: 公式法,利用等差数列和等比数列的求和公式进行计算即可;裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.。
人教版高中数学选修二第一单元《数列》测试(答案解析)(1)

一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+3.已知数列{}n a 的前n 项和为n S ,且11a =,1n n a S +=,若(0,2020)n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1111433⨯- B .1211433⨯- C .1012433⨯+D .1112433⨯+4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项6.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201827.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4) 8.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=A .40B .60C .32D .509.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .156010.已知数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =.数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对一切n ∈+N 都有21n m T +>恒成立,则m 能取到的最小整数为( )A .1-B .0C .1D .211.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+B .2n n ⋅C .31n -D .123n n -⋅12.在公差不为零的等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( ) A .nB .1n +C .21n -D .21n二、填空题13.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.14.已知、、A B C 三点共线 (O 在该直线外),数列{}n a 是等差数列,S n 是数列{}n a 的前n 项和.若12012OA a OB a OC =⋅+⋅,则2012S =____________.15.在数列{}n a 中,11a =,22a =,()*212n n n a a a n ++=+∈N ,记()321nn n n c a λ=-⨯-,若对任意的*n ∈N ,1n n c c +>恒成立,则实数λ的取值范围为______.16.数列{}n a 的前n 项和()*23n n S a n =-∈N,则4a=__________.17.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{}n a ,已知11a =,22a=,且()*21(1)nn n a a n N +-=+-∈,则这30天因病请假的人数共有人______.18.已知数列{}n a 满足11a = 132n n a a +=+,则{}n a 的通项公式为__________________.19.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32:27,则公差d 为_________.20.设等差数列{}n a 的前n 项和为n S ,且10a >,149S S =,则满足0n S >的最大自然数n 的值为_____________.三、解答题21.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,数列{}n b ,11b =,点()1,n n P b b +直线20x y -+=上.(1)求1a 值;(2)求数列{}{},n n a b 的通项公式; (3)设n n n c a b =,求数列{}n c 的前n 项和n T .22.已知数列{}n a 为等差数列,12a =,3522a a +=, (1)求数列{}n a 的通项公式; (2)设+14n n n b a a =,求数列{}n b 的前n 项和n T . 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}{},n n a b 满足1231112,1,2,,n n n n na a ab b b a n N a ++++===-=∈ (1)求数列{}n b 的通项公式;(2)求证:1211111,6n n N b b b ++++<∈. 25.已知数列{}n a 的前n 项和为n S ,当2n ,*n N ∈时,112n n S a -=-,且112a =. (1)求数列{}n a 的通项公式;(2)设n n b na =,数列{}n b 的前n 项和n T ,求使得158n T <成立的n 的最大值. 26.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-.(1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n n a a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=, 将上式累加得:1121111222n n a a --=++⋅⋅⋅+,1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n⎛⎫=- ⎪⎝⎭. 故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.D解析:D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (111)123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+. 故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合.3.D解析:D 【分析】 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,得到12n n a a +=,求得22,2n n a n -=≥,得到数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,结合等比数列的求和公式,即可求解. 【详解】由11a =,1n n a S +=,可得1211a S a ===, 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,可得11n n n n n a a S S a +--=-=,即12n n a a +=,即12n na a +=, 则数列{}n a 从第二项起是公比为2的等比数列,即22,2n n a n -=≥,又由(0,2020)n a ∈,即222020n -<,可得13,n n N +<∈,所以“和谐项”共有12项,则数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,可得数列{}n a 的所有“和谐项”的平方和为111110(11244)11416413431-+++++=+=⨯+-.故选:D. 【点睛】与数列的新定义有关的问题的求解策略:通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解. 【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.D解析:D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.6.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】 由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列,则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.7.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可. 【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+ (242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A . 【点睛】本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.8.B解析:B 【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .9.C解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+, 所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.10.B解析:B 【分析】根据25a =,535S =求出数列的通项公式,再利用裂项相消法求出数列的和,然后由21n m T +>恒成立求解.【详解】因为数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =. 设首项为1a ,公差为d ,所以115545352a d a d +=⎧⎪⎨⨯+=⎪⎩,解得132a d =⎧⎨=⎩,故32(1)21n a n n =+-=+,所以111111()·(21)(23)22123n n a a n n n n +==-++++, 所以11111111111()()23557212323236n T n n n =-+-+⋯+-=-<+++. 因为对于一切n ∈+N 都有21n m T +>恒成立,所以1216+m ,解得512≥-m , 故m 的最小整数为0. 故选:B . 【点睛】本题主要考查数列的通项公式,裂项相消法求数列的和,还考查了运算和求解的能力,属于中档题.11.A解析:A 【分析】先由已知数列递推公式可得1221n n a a n n +=⋅++,得到1n a n ⎧⎫⎨⎬+⎩⎭是以1为首项,以2为公比的等比数列,求出该等比数列的通项公式,即能求得n a . 【详解】 解:∵()*12n n n a S n N n++=∈,∴12n n n a S n +=+,① 当2n ≥时,111n n n a S n --=+,② ①-②有1121n n n n n a a a n n +--=++,化简得1221n n a a n n +=⋅++()2n ≥, 另外,n =1时21113261a S a =+==,故21232a a =⋅,也符合上式, 故1n a n ⎧⎫⎨⎬+⎩⎭是以112a =为首项,以2为公比的等比数列,∴121n na n -=+,故()112n n a n -=+⋅. 故选:A. 【点睛】本题考查了数列的递推公式,考查了数列通项公式的求法,属于中档题.12.B解析:B 【分析】根据等差数列以及等比数列的性质求出首项和公差,从而求出通项公式. 【详解】由题意得,等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,故2317a a a =,则()()211126a d a a d +=+, 故12a d =,① 又数列7项和为35, 则1767352da ⨯+=,②, 联立①②解得:1d =,12a =, 故()211n a n n =+-=+, 故选:B. 【点睛】本题考查等差数列和等比数列的性质,公式,重点考查计算能力,属于基础题型.二、填空题13.【分析】先根据题意得由于数列是以为首项为公比的等比数列进而利用分组求和法求和即可得答案【详解】解:由等比数列的前项和公式得由于数列是以为首项为公比的等比数列设的前项和则故答案为:【点睛】本题考查等比 解析:3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n nn n a q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-,由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382n n S -=-,再结合数列{}32n -是以4为首项,12为公比的等比数列,再次求和即可. 14.1006【分析】先根据条件将表示成的形式由此确定出的关系再根据等差数列的前项和公式求解出的值【详解】因为三点共线(O 在该直线外)所以所以所以所以所以所以故答案为:【点睛】结论点睛:已知平面中三点共线解析:1006 【分析】先根据条件将OA 表示成xOB yOC +的形式,由此确定出12012,a a 的关系,再根据等差数列的前n 项和公式求解出2012S 的值. 【详解】因为、、A B C 三点共线 (O 在该直线外),所以()1AB AC λλ=≠, 所以AO OB AO OC λλ+=+,所以()1OA OB OC λλ-=-+,所以111OA OB OC λλλ-=+--, 所以120121111a a λλλ-+=+=--,所以()120122012201210062a a S +⨯==,故答案为:1006. 【点睛】结论点睛:已知平面中、、A B C 三点共线 (O 在该直线外),若OA xOB yOC =+,则必有1x y +=.15.【分析】先由题意求得数列的前几项进而猜想然后利用数学归纳法证明猜想再求得再根据恒成立对分奇数偶数两种情况讨论求得实数的取值范围【详解】解:由题意得……故猜想:下面用数学归纳法证明:(1)当时显然成立解析:3,12⎛⎫- ⎪⎝⎭【分析】先由题意求得数列{}n a 的前几项,进而猜想12n na ,然后利用数学归纳法证明猜想,再求得n c ,再根据1n n c c +>恒成立对n 分奇数、偶数两种情况讨论求得实数λ的取值范围【详解】解:由题意得11a =,22a =,342214,4228a a =+⨯==+⨯=,…… 故猜想:12n na ,下面用数学归纳法证明:(1)当1,2,3,4n =时,显然成立; (2)假设当(3)n k k =≥时有12k ka ,那么当1n k =+时,12(1)11122222k k k k k k a a a --+-+-=+=+⨯=所以当1n k =+时,也成立, 由(1),(2)得12n na ,所以32(1)3(2)n n n nn n c a λλ=-⨯-=--,因为对任意的*n ∈N ,1n n c c +>恒成立, 所以113(2)3(2)n n n n λλ++-->--对任意的*n ∈N 恒成立,即13(1)()2nn λ-->-对任意的*n ∈N 恒成立,当n 为偶数时,有1max33()22n λ-⎛⎫>-=- ⎪⎝⎭, 当n 为奇数时,有1min3()12n λ-⎛⎫<= ⎪⎝⎭,所以312λ-<< 所以实数λ的取值范围为3,12⎛⎫- ⎪⎝⎭, 故答案为:3,12⎛⎫- ⎪⎝⎭【点睛】关键点点睛:此题考查由递推式求数列的通项公式,考查不等式恒成立问题,解题的关键是归纳出数列的通项公式,并用数学归纳法证明,以及由1n n c c +>得13(1)()2n n λ-->-,然后分类讨论可得结果,考查转化思想,属于中档题16.24【分析】根据可得两式作差可证明为等比数列并求解出通项公式从而可求【详解】因为所以所以所以所以且所以所以为首项为公比为的等比数列所以所以故答案为:【点睛】思路点睛:已知之间的线性关系求解通项公式的解析:24 【分析】根据23n n S a =-可得1123n n S a ++=-,两式作差可证明{}n a 为等比数列并求解出通项公式,从而4a 可求. 【详解】因为23n n S a =-,所以1123n n S a ++=-,所以1122n n n n a S a S ++--=, 所以1122n n n a a a ++=-,所以12n n a a +=,且11123S a a ==-,所以130a =≠, 所以{}n a 为首项为3,公比为2的等比数列,所以132n n a -=⋅,所以4143224a -=⋅=,故答案为:24. 【点睛】思路点睛:已知,n n S a 之间的线性关系,求解{}n a 通项公式的思路: (1)根据已知条件再写一个关于+1+1,n n S a 或()11,2n n S a n --≥的等式;(2)将新式子与原式作差,利用11n n n a S S ++=-或()12n n n a S S n -=-≥求解出{}n a 的一个递推公式;(3)证明{}n a 为等比数列,并求解出通项公式.17.255【分析】根据题目所给递推关系找到数列的规律由此求得前天的请假人数之和【详解】依题意且所以以此类推数列的奇数项均为偶数项是首项为公差为的等差数列所以前项的和故答案为:【点睛】本小题主要考查分组求解析:255 【分析】根据题目所给递推关系找到数列{}n a 的规律,由此求得前30天的请假人数之和30S . 【详解】依题意11a =,22a =,且()*21(1)n n n a a n N +-=+-∈,所以31311101a a a a -=-=⇒==,4241124a a a -=+=⇒=, 53531101a a a a -=-=⇒==, 6461126a a a -=+=⇒=,以此类推,数列{}n a 的奇数项均为1,偶数项是首项为2、公差为2的等差数列, 所以前30项的和()()301112430S =+++++++23015151516152552+=+⨯=+⨯=. 故答案为:255 【点睛】本小题主要考查分组求和法,考查等差数列前n 项和公式,属于中档题.18.【分析】由递推公式可得即以为首项为公比的等比数列根据等比数列的通项公式求出的通项公式即可得解;【详解】解:因为所以即所以以为首项为公比的等比数列所以所以故答案为:【点睛】本题考查由递推公式求数列的通 解析:1231n -⨯-【分析】由递推公式可得()1131n n a a ++=+,即{}1n a +以2为首项,3为公比的等比数列,根据等比数列的通项公式求出{}1n a +的通项公式,即可得解; 【详解】解:因为132n n a a +=+,11a =, 所以()113331n n n a a a ++=+=+,即1131n n a a ++=+ 所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯ 所以1231n n a -=⨯-故答案为:1231n -⨯- 【点睛】本题考查由递推公式求数列的通项公式,属于中档题.19.5【分析】设偶数项和为则奇数项和为由可得的值根据公差求得结果【详解】设偶数项和为则奇数项和为由可得故公差故答案为:5【点睛】本题考查等差数列的定义和性质得到公差是解题的关键解析:5 【分析】设偶数项和为32k ,则奇数项和为27k ,由3227354k k += 可得k 的值,根据 公差32276k kd -=求得结果. 【详解】 设偶数项和为32k ,则奇数项和为27k ,由322759354k k k +== 可得6k =,故公差32275566k k kd -===, 故答案为:5. 【点睛】本题考查等差数列的定义和性质,得到6k =,公差32276k kd -=,是解题的关键. 20.22【分析】由等差数列的前项和的公式求解解出、的关系式再求出的临界条件最后得解【详解】解:等差数列的前项和为所以所以其中所以当时解得所以的最大自然数的值为22故答案为:22【点睛】本题应用公式等差数解析:22 【分析】由等差数列{}n a 的前n 项和的公式求解149S S =,解出1a 、d 的关系式,再求出0n S =的临界条件,最后得解. 【详解】解:等差数列{}n a 的前n 项和为n S ,149S S =,所以()114579a a a +=,1117(13)9(4)a a d a d ++=+,111a d =-, 所以()12n a n d =-,其中10a >,所以0d <,当0n a =时,解得12n =,()2312312232302S a a a =+==, 1222222()1102a a S d +==->, 所以0n S >的最大自然数n 的值为22.故答案为:22. 【点睛】 本题应用公式()12n n n a a S +=,等差数列的性质:若m n p q +=+,则m n p q a a a a +=+.对数列的公式要灵活应用是快速解题的关键,解出1a 、d 的关系式,再求出0n S =的临界条件,判断满足0n S >的最大自然数n 的值.三、解答题21.(1)12a =;(2)2nn a =,21n b n =-;(3)1(23)26n nT n +=-⋅+.【分析】(1)由题意得出22n n a S =+,令1n =可求得1a 的值;(2)当2n ≥时,由22n n a S =+可得出1122n n a S --=+,两式作差可得出12nn a a -=,可得出数列{}n a 是等比数列,确定该数列的首项和公比,可求得数列{}n a 的通项公式,由题意可推导出数列{}n b 为等差数列,确定该数列的首项和公差,可求得数列{}n b 的通项公式;(3)求得12n n c n +=⋅,然后利用错位相减法可求得n T . 【详解】(1)由22n n a S =+得:1122a S =+ 即1122a a =+解得12a = (2)由22n n S a =-1122(2)n n S a n --=-≥①-②1122n n n n n a S S a a --=-=-12(2)nn a n a -=≥ 所以数列{}n a 是以2为首项,以2为公比的等比数列,则2nn a =又由数列{}bn 中,12b =,点()1,n n P b b +在直线20x y -+=上 得1:20n n b b +-+=且11b = 所以:12(1)21n b n n =+-=- (2)(21)2nn n n c a b n ==-数列{}n C 的前n 项和23412325272(21)2nTn n =⨯+⨯+⨯+⨯+⋯+-⋅23451212325272(21)2n n T n +=⨯+⨯+⨯+⨯+⋯+-⋅()23411222222222(21)2n n n T n +∴-=⨯+⨯+⨯+⨯+⋯+⋅--⋅可得:1(23)26n n T n +=-⋅+【点睛】解答特殊数列(等差数列与等比数列)的问题时,根据已知条件构造关于基本量的方程,解方程求出基本量,再根据定义确定数列的通项公式,当数列表示为等差和等比数列之积时,利用错位相减法求其前n 项和. 22.(1) 31n a n =-;(2) ()24333+2n T n =-. 【分析】(1)设数列{}n a 的公差为d ,由已知求得411a =,再由等差数列的通项公式可求得答案;(2)运用裂项求和法,可求得答案. 【详解】(1)设数列{}n a 的公差为d ,由已知得354222a a a +==,所以411a =, 所以141123413a a d --===-,所以()()1+12+1331n n d n a a n -⨯=-⨯=-=, 所以31n a n =-; (2)由(1)得()()+144411313+23313+2n n n b a a n n n n ⎛⎫===- ⎪--⎝⎭,所以 411111111++++32558811313+2n n n T ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()41124323+2333+2n n ⎛⎫=⨯-=- ⎪⎝⎭. 所以()24333+2n T n =-.数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析. 【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+; (2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立. 【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩,从而22n a n =-,2(1)(1)2n n nS n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列 所以()()()212n n n n n n S b S b S b +++=++, 从而()211222n n n n n n n n S S b S S b S S +++++=++,所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n n n n n S S S n n n n n n n n b n n S S S n n n n n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)21nn b =-;(2)证明见解析.(1)由题可知数列{}n a 为等比数列,公比2q,进一步求出n a 的通项公式,所以112n n n b b ---=,利用累加法求出数列{}n b 的通项公式;(2)利用111212n n -<-对数列进行放缩 ,化简求出答案. 【详解】 (1)12n na a +=,所以数列{}n a 为等比数列,公比2112,12q a q a q =+=,所以12a =,2n n a ∴=所以11211211222,22222n n n n n n b b b b b b ----=⋯-==-=+++=-21n n b ∴=-(2)证明:222112111111114111112121322322n n n n b b b --⎛⎫⎛⎫+++=+++<++++=+- ⎪ ⎪ ⎪--⎝⎭⎝⎭111111626n -⎛⎫=-<⎪⎝⎭【点睛】放缩法的注意事项: (1)放缩的方向要一致。
高中数学数列题(含答案)

,都有 Tn
3.
9.设数列{ an }满足 a1 3, an1 2an n 1
(1)求{ an }的通项公式;
(2)若 c1
1, bn
cn1
cn
1 an n , dn
1 cn
1 cn1
求证:数列{ bn
dn }的前 n 项和
sn
1 3
10.已知等比数列 an 的各项均为正数,2a5 ,a4 ,4a6 成等差数列,且满足 a4 4a32 ,
Mn
2
mn
,称数列 bn
是数列 an 的“中程数数列”.
试卷第 4 页,总 7 页
①求“中程数数列”bn的前 n 项和 Sn ; ②若 bm ak ( m, k N* 且 m k ),求所有满足条件的实数对 m, k . 18.给定正整数 m,(t m t ),若数列 A:a1, a2,, an, 满足:ai 0,1 ,ai ait , a1 a2 at m,则称数列 A 具有性质 E t, m .
你得到的关系式猜测出 f (n) 的表达式;
(3)求 1 1 1 1
f (1) f (2) 1 f (3) 1
f (n) 1
( n 2 )的值.
16.已知数列an的奇数项是首项为 1,公差为 d 的等差数列,偶数项是首项为 2,公 比为 q 的等比数列.数列 an 的前 n 项和为 Sn ,且满足 S3 a4 , a3 a5 2 a4 · (1)求数列 an 的通项公式;
,且对任意 n N*
,都有 an
2
,则
a1 的取值范围为______.
四、解答题
8.已知数列 an 的前 n 项和为 Sn ,满足 a1 2 , Sn Sn1 n2 2 n N* .
(必考题)高中数学选修二第一单元《数列》检测卷(有答案解析)(1)

一、选择题1.在各项为正的递增等比数列{}n a 中,12664a a a =,13521a a a ++=,则n a =( ) A .12n +B .12n -C .132n -⨯D .123n -⨯2.数列{}n a 中,112a =,()*,m n m n a a a m n +=∀∈N ,则6a =( ) A .116B .132C .164D .11283.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩4.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项5.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 6.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1627.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=(n N +∈,d 为常数),称{}n a 为“等差比数列”。
已知在“等差比数列”{}n a 中,1231,3a a a ===则20152013a a =( ) A .2420151⨯- B .2420141⨯- C .2420131⨯-D .242013⨯8.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a a b b ++的值为( ) A .14924B .7914C .165D .51109.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]10.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞11.在等差数列{}n a 中,若12336a a a ++=,11121384a a a ++=,则59a a +=( ) A .30B .35C .40D .4512.已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2-B .1-C .1D .2二、填空题13.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.14.已知正项数列{}n a ,满足()*12nn n a a n N +⋅=∈,且()20201232020321a a a a ++++<-,则首项1a 的取值范围是______.15.有一个数阵排列如下: 1 2 4 7 11 16 22…… 3 5 8 12 17 23………… 6 9 13 18 24……………… 10 14 19 25…………………… 15 20 26………………………… 21 27……………………………… 28…………………………………… ………………………………………则第40行从左至右第6个数字为______.16.定义:称12nnp p p +++为n 个正数p 1,p 2,…,p n 的“均倒数”,若数列{a n }的前n项的“均倒数”为121n -,则数列{a n }的通项公式为a n =_________. 17.已知数列{}n a 满足11a = 132n n a a +=+,则{}n a 的通项公式为__________________.18.已知数列{}n a 的前n 项和为n S ,11a =,当n *∈N 时,13nn n a a +=,则2n S =______.19.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.20.给出下列命题:① 1y =是幂函数;② 函数2()2log xf x x =-的零点有且只有1个;1(2)0x x --≥的解集为[2,)+∞;④“1x <”是“2x <”的充分非必要条件;⑤ 数列{}n a 的前n 项和为n S ,且1n n S a =-()a R ∈,则{}n a 为等差或等比数列;其中真命题的序号是________.三、解答题21.已知定义在R 上的函数()f x ,对任意实数1x ,2x 都有()()()12121f x x f x f x +=++,且()11f =.(1)若对任意正整数n ,有112n n a f ⎛⎫=+⎪⎝⎭,求{}n a 的通项公式; (2)若31n b n =+,求数列{}n n a b 前n 项和n S . 22.若数列{}n a ,12,a =且132n n a a +=+. (1)证明{}1n a +是等比数列; (2)设()131n n n a b n n +=⋅+,n T 是其前n 项和,求n T .23.已知等差数列{}n a 的前n 项和为n S ,若2512a a +=,424S S =. (1)求数列{}n a 的通项公式n a 及n S ; (2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .24.等差数列{}n a 满足:12a =、2315a a a +=.数列{}n b 满足()22n n b n a =+.(1)求等差数列{}n a 的通项n a ;(2)若数列{}n b 的前n 项和为n S ,证明:对于任意的n ∈N *,都有34n S <. 25.对于任意的*n N ∈,数列{}n a 满足1212121212121n na n a a n ---++⋅⋅⋅+=++++. (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求n S26.设数列{}n a 的前n 项和为n S ,从条件①()11n n na n a +=+,②()12n n n a S +=,③22n n n a a S +=中任选一个,补充到下面问题中,并给出解答.已知各项都为正数的数列{}n a 的前n 项和为n S ,11a =,____. (1)求数列{}n a 的通项公式;(2)若2nn n b a =-,求数列{}n b 的前n 和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设其公比为q ,由等比数列通项公式得34a =,进而得2333221a a a q q++=,解得2q =±或12q =±,再根据数列单调性即可得2q ,进而得12n na【详解】{}n a 为等比数列,设其公比为q ,()3362312611364a a a a q a qa ∴====,则34a =,13521a a a ∴++=,2333221a a a q q∴++=, 即2244421q q++=, 解得2q =±或12q =±, 又{}n a 各项为正且递增,2q ∴=,3313422n n n n a a q ---∴==⨯=.故选:B . 【点睛】本题解题的关键是先根据题意得34a =,进而将13521a a a ++=转化为2333221a a a q q++=求q ,考查运算求解能力,是中档题. 2.C解析:C 【分析】由,m n 的任意性,令1m =,可得112n n a a +=,即数列{}n a 是首项为12,公比为12得等比数列,即可求出答案. 【详解】由于*,m n ∀∈N ,有m n m n a a a +=,且112a = 令1m =,则1112n n n a a a a +==,即数列{}n a 是首项为12,公比为12得等比数列,所以111111222n n n n a a q --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭,故6611264a ⎛⎫==⎪⎝⎭ 故选:C. 【点睛】关键点点睛:本题考查等比数列,解题的关键是特殊值取法,由,m n 的任意性,令1m =,即可知数列{}n a 是等比数列,考查学生的分析解题能力与运算能力,属于一般题.3.B解析:B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.4.B解析:B【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.5.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =,所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.6.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.7.C解析:C 【分析】利用定义,可得1n n a a +⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,从而121n na n a +=-,利用201520152014201320142013a a a a a a =⋅,可得结论. 【详解】121a a ==,33a =,32212a a a a ∴-=, 1n n a a +⎧⎫∴⎨⎬⎩⎭是以1为首项,2为公差的等差数列, 121n na n a +∴=-, ()()20152015201420132014201322014122013140274025a a a a a a ∴=⋅=⨯-⨯-=⨯ 22(40261)(40261)40261420131=+-=-=⨯-.故选:C. 【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.10.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.11.C解析:C 【分析】利用等差数列性质,若++m n p q =,则++m n p q a a a a =及等差中项公式可求. 【详解】因为 12336a a a ++=,由等差中项公式,得2336a =, 同理11121384a a a ++=,得12384a =,2123+3=81036+42a a ∴=.212+=40a a ∴ 21529+=40a a a a ∴+=故选:C . 【点睛】本题考查等差数列性质与等差中项公式.(1)如果{}n a 为等差数列,若++m n p q =,则++m n p q a a a a = ()*m n p q N ∈,,,. (2){}n a 为等差数列,则有11n n n a a a =2-++.12.C解析:C 【分析】分别求出等比数列的前三项,利用等比数列的性质能求出入的值. 【详解】∵等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),∴()1123246a S λλλ==+-⨯=-,()()222123223226a S S λλλλλ=-=+-⋅-+-⋅=-⎡⎤⎣⎦()()32332232232412a S S λλλλλ⎡⎤=-=+-⋅-+-⋅=-⎣⎦,123,,a a a 成等比数列,∴()()()22646412λλλ-=--,解得1λ=或3λ= ∵3λ=时,2n S λ=是常数,不成立,故舍去3λ=.1λ∴=故选:C 【点睛】本题主要考查等比数列的性质等基础知识,求和公式与通项的关系,考查运算求解能力,属于中档题.二、填空题13.【分析】首先判断出数列与项的特征从而判断出两个数列公共项所构成新数列的首项以及公差利用等差数列的求和公式求得结果【详解】因为数列是以2为首项以2为公差的等差数列数列是以1首项以3为公差的等差数列所以 解析:23n n +【分析】首先判断出数列{2}n 与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{2}n 是以2为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以4为首项,以6为公差的等差数列, 所以{}n a 的前n 项和2(1)4632n n n S n n n -=⋅+⋅=+, 故答案为:23n n +. 【点睛】关键点点睛:该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于中档题.14.【分析】根据利用递推得到则数列的奇数项和偶数项分别为公比为2的等比数列然后利用等比数列前n 项和公式分别求和再根据条件得到求解【详解】因为所以所以所以数列的奇数项和偶数项分别为公比为2的等比数列所以所 解析:(1,2)【分析】 根据()*12nn n a a n N +⋅=∈,利用递推得到22n na a +=,则数列{}n a 的奇数项和偶数项分别为公比为2的等比数列,然后利用等比数列前n 项和公式分别求和,再根据条件得到123a a +<求解.【详解】 因为()*12nn n a a n N +⋅=∈, 所以()1*212n n n a a n N +++⋅=∈,所以22n na a += 所以数列{}n a 的奇数项和偶数项分别为公比为2的等比数列, 所以()()1010101012132019242020,12121122a a a a a a a a =--+++++=--+所以()()()2020202012320212021321a a a a a a =+++++-<-,所以123a a +<, 因为()*12nn n a a n N +⋅=∈,所以212a a ⋅=,即212a a =, 所以1123a a +<,即211320a a -+<, 解得112a <<, 故答案为:(1,2) 【点睛】方法点睛:证明数列{a n }是等比数列常用的方法:一是定义法,证明()*12,nn a q n n a -=≥∈N ;二是等比中项法,证明211n n n a a a -+=⋅.若判断一个数列不是等比数列,则只需举出反例即可.15.1030【分析】利用观察法和累加法得到进而求解即可【详解】第1行从左至右第6个数字:第2行从左至右第6个数字:;第3行从左至右第6个数字:;第4行从左至右第6个数字:;第5行从左至右第6个数字:;…解析:1030 【分析】利用观察法和累加法得到()17895n a a n -=+++++,进而求解即可【详解】第1行从左至右第6个数字:116a = 第2行从左至右第6个数字:223a =; 第3行从左至右第6个数字:331a =; 第4行从左至右第6个数字:440a =; 第5行从左至右第6个数字:550a =; ……………………………………;第n 行从左至右第6个数字:n a ; 利用累加法得:21324311()()()()(2316)(3123)()n n n n a a a a a a a a a a ---+-+-++-=-+-++-,()17895n a a n -=+++++,()()175162n n n a -++⎡⎤⎣⎦=+得,4039521639261610302a ⨯=+=⨯+= 故答案为:1030 【点睛】关键点睛:解题的关键在于观察得到,21324311()()()()(2316)(3123)()n n n n a a a a a a a a a a ---+-+-++-=-+-++-最后,使用累加法求出数列的通项n a ,属于中档题16.4n -3【解析】分析:由题意结合新定义得到数列的前n 项和公式然后求解数列的通项公式即可详解:设数列的前n 项和为由题中的新定义可知:则:当时当时且时则数列的通项公式为:点睛:新定义主要是指即时定义新概解析:4n -3. 【解析】分析:由题意结合新定义得到数列的前n 项和公式, 然后求解数列的通项公式即可. 详解:设数列{}n a 的前n 项和为n S ,由题中的新定义可知:121n n S n =-, 则:()2212n S n n n n =-=-,当1n =时,111a S ==,当2n ≥时,()()()221221143n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦,且1n =时,1431n a -==,则数列{}n a 的通项公式为:43n a n =-.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.17.【分析】由递推公式可得即以为首项为公比的等比数列根据等比数列的通项公式求出的通项公式即可得解;【详解】解:因为所以即所以以为首项为公比的等比数列所以所以故答案为:【点睛】本题考查由递推公式求数列的通 解析:1231n -⨯-【分析】由递推公式可得()1131n n a a ++=+,即{}1n a +以2为首项,3为公比的等比数列,根据等比数列的通项公式求出{}1n a +的通项公式,即可得解; 【详解】解:因为132n n a a +=+,11a =,所以()113331n n n a a a ++=+=+,即1131n n a a ++=+ 所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯ 所以1231n n a -=⨯-故答案为:1231n -⨯- 【点睛】本题考查由递推公式求数列的通项公式,属于中档题.18.【分析】由递推关系可以得出数列的奇数项和偶数项分别是一个等比数列所以求数列的前项和可转化为奇数项的和加上偶数项的和即可通过等比数列的求和公式求解【详解】是首项为公比为3的等比数列是首项为公比为3的等 解析:232n ⨯-【分析】由递推关系13nn n a a +=可以得出数列{}n a 的奇数项和偶数项分别是一个等比数列,所以求数列的前2n 项和可转化为奇数项的和加上偶数项的和,即可通过等比数列的求和公式求解. 【详解】13n n n a a +=,11a =,23a ∴=,2122212222221333n n n n n n n n a a a a a a +++++===, 2n a 是首项为23a =,公比为3的等比数列,2122121212n n n n n n a a a a a a ++--=221333nn -==, {}21n a -∴是首项为11a =,公比为3的等比数列,()()21321242n n n S a a a a a a -∴+++++++=()313131313nn --=+--()231232nn =-=⨯-.故答案为:232n ⨯-.【点睛】本题考查等比数列的判断,以及等比数列求和公式的运用,是一道中档题.19.【分析】观察图中点数增加规律是依次增加5可得求解【详解】第一图点数是1;第二图点数;第三图是;第四图是则第个图点数故答案为:【点睛】本题考查由数列的前几项求通项公式数列的前几项求通项公式的思路方法: 解析:54n -【分析】观察图中点数增加规律是依次增加5,可得求解。
高中数学数列复习试题

若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( A ) A .3 B .4 C .5 D .6等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B ) A .12 B .10 C .8 D .6等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B ) A .12 B .10 C .8 D .6等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B ) A .12 B .10 C .8 D .6已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( B ) A .9 B .8 C. 7 D .6 在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( B ) A .4122-B .2122-C .10122-D .11122- 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n nab 为整数的正整数n 的个数是( D ) A .2 B .3 C .4 D .5已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B ) A.3 B.2 C.1 D.2-已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( D )A.23- B.13- C.13 D.23等差数列{a n }的前n 项和为S n ,若2462,10,S S S ==则等于( C ) A .12 B .18 C .24 D .42等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( B )A .9B .10C .11D .12数列{}n a 中,22211100010012n n n a n n n n⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( B ) A.等于0 B.等于1 C.等于0或1 D.不存在各项均为正数的等比数列{}n a 的前n 项和为S n ,若S n =2,S 30=14,则S 40等于( C ) A .80 B .30 C .26 D .16设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( B ) A.2 B.4 C.6 D.8设{n a }为公比q>1的等比数列,若2004a 和2005a 是方程03842=+x x 的两根,则=+20072006a a _____.18已知数列的通项52n a n =-+,则其前n 项和n S = .(51)2n n +-等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .13已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = .12已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.7已知数列{n a }的前n 项和29n S n n =-,则其通项n a = ;若它的第k 项满足58k a <<,则k = . 2n-10 ; 8若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.211n -3已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320k k x k x k -++= 的两个根,且212(123)k k a a k -= ≤,,,. (I )求1a ,2a ,3a ,7a ;(II )求数列{}n a 的前2n 项和2n S ;(I )解:方程2(32)320k k x k x k -++= 的两个根为13x k =,22k x =, 当1k =时,1232x x ==,, 所以12a =;当2k =时,16x =,24x =, 所以34a =;当3k =时,19x =,28x =, 所以58a =时;当4k =时,112x =,216x =, 所以712a =.(II )解:2122n n S a a a =+++2(363)(222)n n =+++++++2133222n n n ++=+-.19已知数列{n a }中的相邻两项21k a -、2k a 是关于x 的方程2(32)320k k x k x k -++⋅= 的两个根,且21k a -≤2k a (k =1,2,3,…). (I)求1357,,,a a a a 及2n a (n ≥4)(不必证明); (Ⅱ)求数列{n a }的前2n 项和S 2n .本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分14分. (I)解:方程2(32)320k k x k x k -++⋅=的两个根为123, 2k x k x ==. 当k =1时,123,2x x ==,所以12a =; 当k =2时,126,4x x ==,所以34a =; 当k =3时,129,8x x ==,所以58a =; 当k =4时,1212,16x x ==,所以712a =; 因为n ≥4时,23n n >,所以22 (4)n n a n =≥(Ⅱ)22122(363)(222)nn n S a a a n =+++=+++++++ =2133222n n n +++-.在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立.本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.满分12分. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N .又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列. (Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32n n n n S -+=+. (Ⅲ)证明:对任意的n ∈*N ,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n ∈*N 皆成立.上海理20若有穷数列12,...n a a a (n 是正整数),满足1211,....n n n a a a a a a -===即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列单元复习题(一)
一、选择题(本大题共10小题,每小题5分,共50分)
1.在正整数100至500之间能被11整除的个数为 ( )
A.34
B.35
C.36
D.37
2.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于 ( )
A.-1
B.1
C.0
D.2
3.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是 ( )
A.24
B.27
C.30
D.33
4.设函数f (x )满足f (n +1)=2 f (n )+n 2
(n ∈N *)且f (1)=2,则f (20)为 ( ) A.95 B.97 C.105 D.192
5.等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为 ( )
A.5
B.6
C.7
D.8
6.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大 ( )
A.第10项
B.第11项
C.第10项或11项
D.第12项
7.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为 ( )
A.180
B.-180
C.90
D.-90
8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩
余钢管的根数为 ( )
A.9
B.10
C.19
D.29
9.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4,a 2+a 5,a 3+a 6,…是( )
A.公差为d 的等差数列
B.公差为2d 的等差数列
C.公差为3d 的等差数列
D.非等差数列
10.在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n 的值为 ( )
A.14
B.15
C.16
D.17
二、填空题(本大题共6小题,每小题5分,共30分)
11.已知f (n +1)=f (n )-14
(n ∈N *)且f (2)=2,则f (101)=_______. 12.在首项为31,公差为-4的等差数列中,与零最接近的项是_______.
13.在等差数列{a n }中,已知S 100=10,S 10=100,则S 110=_________.
14.在-9和3之间插入n 个数,使这n +2个数组成和为-21的等差数列,则n =_____.
15.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项后余下的10项
的平均值仍为5,则抽取的是第_________项.
16.在等差数列{a n }中,满足3a 4=7a 7且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,
则n =_______.
三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在等差数列{a n}中,a1=-60,a17=-12.
(1)求通项a n;(2)求此数列前30项的绝对值的和.
18.(本小题满分14分)在等差数列{a n}中,若a1=25且S9=S17,求数列前多少项和最大.
19.(本小题满分14分)数列通项公式为a n=n2-5n+4,问
(1)数列中有多少项是负数?(2)n为何值时,a n有最小值?并求出最小值.
20.(本小题满分15分)甲、乙两物体分别从相距70 m的两处同时相向运动,甲第一分钟走
2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.
(1)甲、乙开始运动后,几分钟相遇;(2)如果甲、乙到达对方起点后立即折返,甲继续
每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?
21.(本小题满分15分)已知数列{a n}的前n项和为S n,且满足a n+2S n·S n-1=0(n≥2),a1
=1
2. (1)求证:{
1
S n}是等差数列;(2)求a n表达式;
(3)若b n=2(1-n)a n(n≥2),求证:b22+b32+…+b n2<1.
数列单元复习题(一)答案
一、选择题(本大题共10小题,每小题5分,共50分)
1.C 2.A 3.D 4.B 5.C 6.C 7.A 8.B 9.B 10.B
二、填空题(本大题共6小题,每小题5分,共30分)
11.-914
12.-1 13.-110 14.5 15.6 16.9 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)在等差数列{a n }中,a 1=-60,a 17=-12.
(1)求通项a n ;(2)求此数列前30项的绝对值的和.
考查等差数列的通项及求和.
【解】 (1)a 17=a 1+16d ,即-12=-60+16d ,∴d =3
∴a n =-60+3(n -1)=3n -63.
(2)由a n ≤0,则3n -63≤0 n ≤21,
∴|a 1|+|a 2|+…+|a 30|=-(a 1+a 2+…+a 21)+(a 22+a 23+…+a 30)
=(3+6+9+…+60)+(3+6+…+27)=(3+60)2 ×20+(3+27)2
×9=765. 18.(本小题满分14分)在等差数列{a n }中,若a 1=25且S 9=S 17,求数列前多少项和最大.
考查等差数列的前n 项和公式的应用.
【解】 ∵S 9=S 17,a 1=25,∴9×25+9×(9-1)2 d =17×25+17×(17-1)2
d 解得d =-2,∴S n =25n +n (n -1)2
(-2)=-(n -13)2+169. 由二次函数性质,故前13项和最大.
注:本题还有多种解法.这里仅再列一种.由d =-2,数列a n 为递减数列.
a n =25+(n -1)(-2)≥0,即n ≤13.5
∴数列前13项和最大.
19.(本小题满分14分)数列通项公式为a n =n 2-5n +4,问
(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值. 考查数列通项及二次函数性质.
【解】 (1)由a n 为负数,得n 2-5n +4<0,解得1<n <4.
∵n ∈N *,故n =2或3,即数列有2项为负数,分别是第2项和第3项.
(2)∵a n =n 2-5n +4=(n -52 )2-94 ,∴对称轴为n =52
=2.5 又∵n ∈N *,故当n =2或n =3时,a n 有最小值,最小值为22-5×2+4=-2.
2 m ,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.
(1)甲、乙开始运动后,几分钟相遇;(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇? 考查等差数列求和及分析解决问题的能力.
【解】 (1)设n 分钟后第1次相遇,依题意得2n +n (n -1)2
+5n =70 整理得:n 2+13n -140=0,解得:n =7,n =-20(舍去)
∴第1次相遇在开始运动后7分钟.
(2)设n 分钟后第2次相遇,依题意有:2n +n (n -1)2
+5n =3×70 整理得:n 2
+13n -6×70=0,解得:n =15或n =-28(舍去)
第2次相遇在开始运动后15分钟.
21.(本小题满分15分)已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1
=12 . (1)求证:{1S n
}是等差数列;(2)求a n 表达式; (3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.
考查数列求和及分析解决问题的能力.
【解】 (1)∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2)
S n ≠0,∴1S n -1S n -1 =2,又1S 1 =1a 1
=2 ∴{1S n
}是以2为首项,公差为2的等差数列. (2)由(1)1S n =2+(n -1)2=2n ,∴S n =12n
当n ≥2时,a n =S n -S n -1=-12n (n -1) n =1时,a 1=S 1=12 ,∴a n =⎩⎨⎧12 (n =1)-12n (n -1) (n ≥2) (3)由(2)知b n =2(1-n )a n =1n
∴b 22+b 32+…+b n 2=122 +132 +…+1n 2 <11×2 +12×3 +…+1(n -1) n
=(1-12 )+(12 -13 )+…+(1n -1 -1n
)=1-1n <1.。