(完整版)高中数学数列基础知识与典型例题

合集下载

高中数学数列知识点

高中数学数列知识点

高中数学数列知识点高中数学数列知识点11.定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。

同样为数列的等比数列的性质与等差数列也有相通之处。

2.数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).等差数列练习题3.性质1:公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.4.性质2:公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.5.性质3:当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.高中数学数列知识点2一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。

等差数列的性质:1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;3)m,n∈N*,则am=an+(m-n)d;4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,高一,有as+at=2ap;5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。

6)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即对等差数列定义的理解:①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那此数列不是等差数列,但可以说从第2项或某项开始是等差数列.②求公差d时,因为d是这个数列的'后一项与前一项的差,故有还有③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;④是证明或判断一个数列是否为等差数列的依据;⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

高中数学专题-数列

高中数学专题-数列

高中数学专题-数列一、基础知识1.等差数列的定义与性质定义:1n n a a d+-=(d 为常数),()11n a a n d=+-等差中项:x A y ,,成等差数列2A x y⇔=+前n 项和()()11122n n a a n n n S nad+-==+性质:{}n a 是等差数列(1)若m n p q+=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d-+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --=(5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)nS 的最值可求二次函数2n S an bn=+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S达到最大值时的n 值.当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S ndS S =-奇偶,1+=n na a S S 偶奇.(7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-na S S =-偶奇,1-=n n S S 偶奇.2.等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G xy =.前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q+=+,则m n p qa a a a =··(2)232n n n n n S S S S S --,,……仍为等比数列,公比为nq .注意:由nS 求na 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.二、等差数列和等比数列对比等差数列等比数列定义a n-a n-1=常数(n≥2)a na n-1=常数(n≥2)通项公式a n=a1+(n-1)d a n=a1q n-1(q≠0)判定方法(1)定义法(2)中项公式法:2a n+1=a n+a n+2(n≥1)⇔{a n}为等差数列(3)通项公式法:a n=pn+q(pq为常数)⇔{a n}为等差数列(4)前n项和公式法:S n=An2+Bn(A、B为常数)⇔{a n}为等差数列(5){a n}为等比数列,a n>0⇔{log a a n}为等差数列(1)定义法(2)中项公式法:a2n+1=a n·a n+2(n≥1)(a n≠0)⇔{a n}为等比数列(3)通项公式法:a n=c·q n(c、q均是不为0的常数,n∈N*)⇔{a n}为等比数列(4){a n}为等差数列⇔{a an}为等比数列(a>0且a≠1)性质(1)若m、n、p、q∈N*,且m+n=p+q,则a m+a n=a p+a q特别:若m+n=2p,则a m+a n=2a p.(2)a n=a m+(n-m)d(3)数列S m,S2m-S m,S3m-S2m,…也是等差数列,即2(S2m-S m)=S m+(S3m-S2m)(1)若m、n、p、q∈N*,且m+n=p+q,则a m·a n=a p·a q特别地,若m+n=2p,则a m·a n=a2p.(2)a n=a m q n-m(3)若等比数列前n项和为S n则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)2=S m(S3m-S2m)(m∈N*,公比q≠-1).前n 项和S n=n a1+a n2=na1+n n-12d(1)q≠1,S n=a11-q n1-q=a1-a n q1-q(2)q=1,S n=na1三、考点方法归纳考点一求数列的通项公式1.由a n与S n的关系求通项公式:由S n与a n的递推关系求a n的常用思路有:①利用S n-S n-1=a n(n≥2)转化为a n的递推关系,再求其通项公式;数列的通项a n与前n项和S n的关系是a n S1,n=1,S n-S n-1,n≥2.当n=1时,a1若适合S n-S n-1,则n=1的情况可并入n≥2时的通项a n;当n=1时,a1若不适合S n-S n-1,则用分段函数的形式表示。

(完整版)高中数学竞赛讲义(五)──数列

(完整版)高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五)──数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。

其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。

定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。

若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等比数列,若对任意的正整数n,都有,则{a n}称为等比数列,q叫做公比。

定理3 等比数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。

定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,只是等差数列2、等比数列通项公式:11n n a a q−=⋅,也可以为:n mn m a a q−=⋅3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有2a bb ac b c=⇒= (2)若{}n a 为等比数列,则n N *∀∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+⇔= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q−=−可变形为:()1111111n n n a q a aS q qq q −==−−−−,设11a k q =−,可得:n n S k q k =⋅−5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}na λ(λ为常数)为等比数列,特别的,当1λ=−时,即1n a ⎧⎫⎨⎬⎩⎭为等比数列③ 数列{}n n a b 为等比数列④ 数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关: 设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++,则有:()()212212k m n m m m m k mk n n n k nn a q q q S a a a a q T a a a a a q q q −++++++++++++====++++++ 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=−2122332,k k k k k a a a S S +++++=−,则232,,,k k k k k S S S S S −−成等比数列7、等比数列的判定:(假设{}n a 不是常数列) (1)定义法(递推公式):()1n na q n N a *+=∈ (2)通项公式:nn a k q =⋅(指数类函数) (3)前n 项和公式:nn S kq k =−注:若()n n S kq m m k =−≠,则{}n a 是从第二项开始成等比关系 (4)等比中项:对于n N *∀∈,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ⎧⎫⎨⎬⎩⎭前n 项和n T 的关系()111n n a q S q−=−,因为1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n nn n q a q q q T q a q q a qq−⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥−⎣⎦===−−−⋅ ()()1112111111n n n nn n a q a q q S a q T q q−−−−=⋅=−− 例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q == 答案:16例2:已知{}n a 为等比数列,且374,16a a =−=−,则5a =( ) A. 64 B. 64− C. 8 D. 8− 思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==−⋅=− 思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =− 答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。

高中数学涉及的统计学知识典型例题分析

高中数学涉及的统计学知识典型例题分析

高中数学涉及的统计学知识典型例题分析一、基础知识:(一)随机抽样:1、抽签法:把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到容量为n 的样本2、系统抽样:也称为等间隔抽样,大致分为以下几个步骤:(1)先将总体的N 个个体编号(2)确定分段间隔k ,设样本容量为n ,若N n 为整数,则N k n= (3)在第一段中用简单随机抽样确定第一个个体编号l ,则后面每段所确定的个体编号与前一段确定的个体编号差距为k ,例如:第2段所确定的个体编号为l k +,第m 段所确定的个体编号为()1l m k +−,直至完成样本注:(1)若N n不是整数,则先用简单随机抽样剔除若干个个体,使得剩下的个体数能被n 整除,再进行系统抽样。

例如501名学生所抽取的样本容量为10,则先随机抽去1个,剩下的500个个体参加系统抽样(2)利用系统抽样所抽出的个体编号排成等差数列,其公差为k3、分层抽样:也称为按比例抽样,是指在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本。

分层抽样后样本中各层的比例与总体中各个层次的比例相等,这条结论会经常用到(二)频率分布直方图:1、频数与频率(1)频数:指一组数据中个别数据重复出现的次数或一组数据在某个确定的范围内出现的数据的个数.(2)频率:是频数与数据组中所含数据的个数的比,即频率=频数/总数(3)各试验结果的频率之和等于12、频率分布直方图:若要统计每个小组数据在样本容量所占比例大小,则可通过频率分布表(表格形式)和频率分布直方图(图像形式)直观的列出(1)极差:一组数据中最大值与最小值的差(2)组距:将一组数据平均分成若干组(通常5-12组),则组内数据的极差称为组距,所以有组距=极差/组数(3)统计每组的频数,计算出每组的频率,便可根据频率作出频率分布直方图(4)在频率分布直方图中:横轴按组距分段,纵轴为“频率/组距”(5)频率分布直方图的特点:②因为各试验结果的频率之和等于1,所以可得在频率分布直方图中,各个矩形的面积和为1 (三)茎叶图:通常可用于统计和比较两组数据,其中茎是指中间的一列数,通常体现数据中除了末位数前面的其他数位,叶通常代表每个数据的末位数。

高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题数列是高中数学中的一个重要概念,它在许多数学问题中都起着至关重要的作用。

通过学习数列的定义、性质和求解方法,可以帮助我们更好地理解和应用数学知识。

本文将对高中数列知识点进行归纳总结,并附上相关例题供读者练习。

1. 数列的定义与性质数列是按照一定顺序排列的一组数。

其中,每一个数称为数列的项,位置称为项数,用字母a表示数列的通项。

数列的性质包括等差数列和等比数列两种常见情况:1.1 等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列为{an},公差为d,则有如下性质:(1)通项公式:an = a1 + (n-1)d(2)前n项和公式:Sn = (a1 + an) * n / 2(3)项数公式:n = (an - a1) / d + 1例题1:已知等差数列{an}的首项是3,公差是4,求第10项的值。

解析:根据等差数列的通项公式,代入a1 = 3,d = 4,n = 10,求得a10 = 3 + (10-1) * 4 = 39。

1.2 等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列为{an},公比为q,则有如下性质:(1)通项公式:an = a1 * q^(n-1)(2)前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)(3)项数公式:n = logq(an / a1) + 1例题2:已知等比数列{an}的首项是2,公比是3,求第5项的值。

解析:根据等比数列的通项公式,代入a1 = 2,q = 3,n = 5,求得a5 = 2 * 3^(5-1) = 162。

2. 数列的求和数列的求和是数学中常见的问题之一,通过找到数列的规律和应用对应的公式,可以快速求解数列的和。

下面分别介绍等差数列和等比数列的求和公式。

2.1 等差数列的求和对于等差数列{an},前n项和的计算公式为Sn = (a1 + an) * n / 2。

其中,a1为首项,an为末项,n为项数。

高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。

2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。

通项公式可以是一个数学式子,也可以是一个算法。

3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。

递推公式是数列中相邻两项之间的关系式。

4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。

- 奇数列:数列中的每一项都是奇数。

- 偶数列:数列中的每一项都是偶数。

- 单调递增数列:数列中的每一项都比前一项大。

- 单调递减数列:数列中的每一项都比前一项小。

- 正项数列:数列中的每一项都是正数。

- 负项数列:数列中的每一项都是负数。

3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。

- 利用数列的性质,进行数学推理和证明。

- 利用数列的规律,设计算法解决问题。

典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。

解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。

(完整版)高考数学专题《数列》超经典

(完整版)高考数学专题《数列》超经典

高考复习序列-----高中数学数列一、数列的通项公式与前n 项的和的关系①11,1,2n n n s n a s s n -=⎧=⎨-≥⎩(注:该公式对任意数列都适用)②1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) ③12n n S a a a =+++L (注:该公式对任意数列都适用) ④s n+1−s n−1=a n+1+a n (注:该公式对任意数列都适用) 二、等差与等比数列的基本知识 1、等差数列⑴ 通项公式与公差:定义式:d a a n n =--1一般式:()q pn a d n a a n n +=⇔-+=11 推广形式: ()n m a a n m d =+-ma a d mn --=⇔;⑵ 前n 项和与通项n a 的关系:前n 项和公式:1()n n n a a s +=1(1)n n na d -=+211()2d n a d n =+-.前n 项和公式的一般式:应用:若已知()n n n f +=22,即可判断为某个等差数列n 的前n 项和,并可求出首项及公差的值。

n a 与n S 的关系:1(2)n n n a S S n -=-≥(注:该公式对任意数列都适用)例:等差数列12-=n S n ,=--1n n a a (直接利用通项公式作差求解) ⑶ 常用性质:①若m+n=p+q ,则有 m n p q a a a a +=+ ;特别地:若,m n p a a a 是的等差中项,则有2m n p a a a =+⇔n 、m 、p 成等差数列;②等差数列的“间隔相等的连续等长片断和序列”(如123,a a a ++456,a a a ++789a a a ++,⋅⋅⋅)仍是等差数列;③{}n a 为公差为d 等差数列,n S 为其前.n .项和..,则232,,m m m m m S S S S S --,43m m S S -,...也成等差数列, A 、 构成的新数列公差为D=m 2d ,即m 2d=(S 2m -S m )- S m ;B 、 对于任意已知S m ,S n ,等差数列{}n a ⎭⎬⎫⎩⎨⎧n S n 也构成一个公差为2d 等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学基础知识例题
数学基础知识与典型例题(第三章数列)答案
例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12
211
=---n n n n S S 设n
n n S b 2
= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2
3
22111===
a S
b , ∴
21
2
+=n S n
n ,∴12)12(-+=n n n S ,∴当2n ≥时 212)32(--+=-=n n n n n S S a ∴⎩⎨⎧⋅+=-2
2
)32(3n n n a (1)(2)n n =≥,1
2)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11
1
-+-=n n a n n a
∵11=a ,∴312=a ,31423⨯=a ,3142534⨯⨯=a ,3
1
4253645⨯⨯⨯=a ,
∴)1(234)1()1(123)2)(1(+=⨯⨯⋅-+⨯⨯⨯⋅--=n n n n n n n a n ΛΛ,∴122+==n n
a n S n n .
例4.解:)111(2)1(23211+-=+=++++=
n n n n n a n Λ∴12)111(2)111()3
1
21()211(2+=
+-=⎥⎦⎤⎢⎣⎡+-++-+-=n n n n n S n Λ 例5.A
例6. 解:1324321-+++++=n n nx x x x S ΛΛ①()n n n nx x n x x x xS +-++++=-132132ΛΛ② ①-②()n n n nx x x x S x -++++=--1211ΛΛ,
当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n
n n -++-=-+--=---=-++1111111111∴()()
21111x nx x n S n n n -++-=+; 当1=x 时,()2
14321n n n S n +=++++=ΛΛ 例7.C 例8.192 例9.C
例10. 解:14582
54
54255358-=-⨯
=⋅==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-⨯=a ∴14588-=a
例11.D 例12.C
例13.解:12311=-==S a ,
当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n
例14. 解一:设首项为1a ,公差为d
则⎪⎪⎪⎩
⎪⎪⎪⎨⎧
=
⨯⨯+⨯⨯++=⨯+1732225662256)(635421112121
11d
a d d a d a 5=⇒d
解二:⎪⎩⎪
⎨⎧==+2732354
奇偶偶奇S S S S ⎩⎨⎧==⇒162192奇偶S S 由 d S S 6=-奇偶5=⇒d
例15. 解:∵109181a a a a =,∴205
100
110918===
a a a a 例16. 解题思路分析:
法一:利用基本元素分析法
设{a n }首项为a 1,公差为d ,则71151
76772
151415752
S a d S a d ⨯⎧
=+=⎪⎪⎨⨯⎪=+=⎪⎩∴ 121a d =-⎧⎨=⎩
∴ (1)22n n n S -=-+∴ 15
2222
n S n n n -=-+=-此式为n 的一次函数
∴ {n S n
}为等差数列∴ 21944n T n n =-
法二:{a n }为等差数列,设S n =An 2
+Bn ∴ 2
72
157********
S A B S A B ⎧=⨯+=⎪⎨=⨯+=⎪⎩ 解之得:12
5
2
A B ⎧=⎪⎪⎨⎪=-⎪⎩∴ 21522n S n n =-,下略
注:法二利用了等差数列前n 项和的性质
例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ②
由①: a a q 24+=代入②得:2=a 或9
5
=a 从而5=q 或13
∴原来三个数为2,10,50或9
338
,926,92
例18.70
例19. 解题思路分析:
∵ {a n }为等差数列∴ {b n }为等比数列
∴ b 1b 3=b 22,∴ b 23=81,∴ b 2=21,∴ 1312178
14
b b b b ⎧
+=⎪⎪⎨⎪=⎪⎩,∴ 13218b b =⎧⎪⎨=⎪⎩或 12182b b ⎧=⎪⎨
⎪=⎩ ∴ 13212()24n n n b --== 或 1251
428n n n b --=⋅=
∵ 1
()2n a n b =,∴ 12
log n n a b =,∴ a n =2n -3 或 a n =-2n +5
例20. 2392
n n
+。

相关文档
最新文档