1.1 整式(含答案)

合集下载

整式乘法计算40道(含答案)

整式乘法计算40道(含答案)

整式乘法计算题40道(含答案)一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7 3.计算:a3•a4•a+(﹣2a4)2.4.计算:n2•n4+4(n2)3﹣5n3•n25.计算:3a(2﹣a)+3(a﹣3)(a+3).6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)27.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.8.计算a2•a4+(a3)2﹣32a610.计算:(x+3)(x﹣4)﹣x(x+2)﹣511.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2 12.计算:(a+b(a﹣b)+(2a﹣b)213.化简:(m+2)(m﹣2)−m3×3m.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)418.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)221.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)23.计算:(2m2n)2+(﹣mn)(−13m3n).24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).27.计算:(2x﹣1)2﹣x(4x﹣1)28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)233.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 34.计算:(x+y)2﹣y(2x+y)﹣8x35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.38.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.40.4(x+1)2﹣(2x+5)(2x﹣5)参考答案与试题解析一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.【解答】解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7【解答】解:(1)原式=4a2b(﹣8a3b3)=﹣32a5b4;(2)原式=9﹣m2﹣m2+6m﹣7=﹣2m2+6m+2.3.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.4.计算:n2•n4+4(n2)3﹣5n3•n2【解答】解:n2•n4+4(n2)3﹣5n3•n2=n6+4n6﹣5n5=5n6﹣5n5.5.计算:3a(2﹣a)+3(a﹣3)(a+3).【解答】解:原式=6a﹣3a2+3(a2﹣9)=6a﹣3a2+3a2﹣27=6a﹣27.6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)2【解答】解:原式=m4n2+2m6+m6﹣m4n2,=3m6.7.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.【解答】解:(1)原式=﹣t12+t12=0;(2)原式=m8+m6﹣m8=m6.8.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.9.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.10.计算:(x+3)(x﹣4)﹣x(x+2)﹣5【解答】解:(x+3)(x﹣4)﹣x(x+2)﹣5=x2﹣4x+3x﹣12﹣x2﹣2x﹣5=﹣3x﹣17.11.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2【解答】解:①原式=(a+1)2﹣(2b)2=a2+2a+1﹣4b2②原式=[(x+2y)﹣1]2=(x+2y)2﹣2(x+2y)+1=x2+4xy+4y2﹣2x﹣4y+1=x2+4y2+4xy﹣2x﹣4y+1.12.计算:(a+b(a﹣b)+(2a﹣b)2【解答】解:原式=a2﹣b2+4a2﹣4ab+b2=5a2﹣4ab13.化简:(m+2)(m﹣2)−m3×3m.【解答】解:原式=m2﹣4﹣m2=﹣4.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【解答】解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)【解答】解:原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)4【解答】解:(1)原式=−18x6y9;(2)原式=m2•4m6+m8=5m8.17.计算:(x+y)2﹣(x+2y)(2x﹣y).【解答】解:原式=x2+2xy+y2﹣(2x2+3xy﹣2y2)=x2+2xy+y2﹣2x2﹣3xy+2y2=﹣x2﹣xy+3y2.18.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)【解答】解:(1)x2(x﹣1)﹣x(x2+x﹣1)=x3﹣x2﹣x3﹣x2+x=﹣2x2+x;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)=y2﹣4﹣(y2+4y﹣5)=y2﹣4﹣y2﹣4y+5=﹣4y+1.19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)【解答】解:原式=﹣4(a2+2a+1)﹣(25﹣4a2)=﹣4a2﹣8a﹣4﹣25+4a2=﹣8a﹣29.20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)2【解答】解:(1)原式=﹣27a6b3﹣4a6(﹣b3)+3 a6b3=﹣20a6b3;(2)原式=4a2﹣b2﹣(a2﹣2ab+b2)=3a2+2ab﹣2b2.21.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).【解答】解:(1)原式=﹣8x6+12x6=4x6;(2)原式=a2+2a+1+(9﹣a2)=a2+2a+1+9﹣a2=2a+10.22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)【解答】解:(2a+b)(2a﹣b)﹣2a(a﹣2b)=4a2﹣b2﹣2a2+4ab=2a2﹣b2+4ab.23.计算:(2m2n)2+(﹣mn)(−13m3n).【解答】解:原式=4m4n2+13m4n2=(4+13)m4n2=133m4n2.24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).【解答】解:(1)原式=x2﹣5x+3x﹣15=x2﹣2x﹣15;(2)原式=x2﹣4xy+4y2+x2﹣y2=2x2﹣4xy+3y2.25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).【解答】解:(1)原式=9x2y2•4x2=36x4y2;(2)解:原式=2x2﹣3x+4x﹣6=2x2+x﹣6.27.计算:(2x﹣1)2﹣x(4x﹣1)【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).=m2+2mn+n2﹣4﹣m2﹣4mn,=n2﹣2mn﹣4.29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.【解答】解:(1)原式=6x2+9x﹣4x﹣6﹣x2+2x﹣1=5x2+7x﹣7;(2)原式=x2﹣4y2﹣2xy+4y2+2xy=x2.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).【解答】解:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y)=4x2﹣4xy+y2﹣y2+4xy﹣(2x2﹣3xy﹣2y2)=4x2﹣2x2+3xy+2y2=2x2+3xy+2y2.31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).【解答】解:(1)原式=−8x3(2x3−12x−1)−(4x4+8x3)=−16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)2=x2﹣4x+5.33.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.34.计算:(x+y)2﹣y(2x+y)﹣8x【解答】解:原式=x2+2xy+y2﹣2xy﹣y2﹣8x=x2﹣8x.35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).【解答】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+17.36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)【解答】解:4(x﹣y)2﹣(2x﹣y)(2x+y)=4(x2﹣2xy+y2)﹣(4x2﹣y2)=4x2﹣8xy+4y2﹣4x2+y2=5y2﹣8xy.37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.【解答】解:(1)3a3b•(﹣2ab)+(﹣3a2b)2=﹣6a4b2+9a4b2=3a4b2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣538.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.【解答】解:(a+1)(a﹣3)﹣(a﹣2)2.=a2﹣2a﹣3﹣(a2﹣4a+4)=2a﹣7.40.4(x+1)2﹣(2x+5)(2x﹣5)【解答】解:原式=4x2+8x+4﹣4x2+25=8x+29.。

【人教版】七年级上册数学:2.1《整式》(含答案)

【人教版】七年级上册数学:2.1《整式》(含答案)

2.1整 式班级 学号 姓名 分数一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个 2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( ) A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、xa 523+D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。

A 、2b a + B 、b a s + C 、b s a s + D 、bs a s s +29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3y D.52x10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -1 13.下列说法正确的是( ) A .x(x +a)是单项式 B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1B .2C .3D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3C .-23,2D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式 18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ; 2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ; 6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式.8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有 10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次. 20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = .23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。

整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)【知识点1:合并同类项】1. 同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.1.1 判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.1.2 同类项与系数无关,与字母的排列顺序无关.1.3 一个项的同类项有无数个,其本身也是它的同类项.2. 合并同类项2.1 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.2 法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.2.3 合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项时,只把系数相加减,字母、指数不作运算,照抄即可.【知识点2:去括号与添括号】1. 去括号法则:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2. 去括号法则诠释:2.1 去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.2.2 去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.2.3 对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.2.4 去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.3. 添括号法则:(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.4. 添括号法则诠释:4.1 添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.4.2 去括号和添括号是两种相反的变形,因此可以相互检验正误:如:a +b −c 添括号→ a +(b −c) a −b +c 添括号→ a −(b −c)【知识点3:整式的加减运算法则】1. 运算顺序: 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式的加减运算法则诠释:2.1 整式加减的一般步骤是:①先去括号;②再合并同类项.2.2 两个整式相加减时,减数一定先要用括号括起来.2.3 整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【考点1:同类项的概念】1. 下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a)5与(-3)5⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥【答案】C【解析】所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.2. 判断下列各组是同类项的有 ( ) .①0.2x 2y 和0.2xy 2;②4abc 和4ac ;③-130和15;④-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组【答案】B【解析】 ①0.2x 2y 和0.2xy 2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.②4abc 和4ac 所含字母不同.③-130和15都是常数,是同类项.④-5m 3n 2和4n 2m 3所含字母相同,且相同字母的指数也相同,是同类项.3. 如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2【答案】C【解析】根据题意得:a+1=2,b=3,则a=1.4. 若﹣2a m b 4与3a 2b n+2是同类项,则m+n= .【答案】4.【解析】∵﹣2a m b 4与3a 2b n+2是同类项,∴{m =2n +2=4解得:{m =2n =2则m+n=4.故答案为:4.5. 如果单项式﹣xy b+1与12x a ﹣2y 3是同类项,那么(a ﹣b )2015= .【答案】1.【解析】由同类项的定义可知,a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.6. 指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)3x 2y 3与-y 3x 2;(2)2x 2yz 与2xyz 2;(3)5x 与xy ;(4)-5与8【答案】(1)(4)是同类项;(2)不是同类项,因为2x 2yz 与2xyz 2所含字母x ,z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【解析】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.7. 若单项式13a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.【答案】8【解析】解:由13a 3b n+1和2a 2m ﹣1b 3是同类项,得{2m −1=3n +1=3, 解得{m =2n =2. 当m=2,n=2时,3m+n=3×2+2=6+2=8.8. 如果单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项.求(1)(7a ﹣22)2021的值;(2)若5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,求(5m ﹣5n )2022的值.【答案】(1)-1;(2)0【解析】(1)由单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项,得a=2a ﹣3,解得a=3;∴(7a ﹣22)2021=(7×3﹣22)2021=(﹣1)2021=﹣1;(2)由5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,得5m ﹣5n=0,解得m=n ;∴(5m ﹣5n )2022=02022=0.9. 如图所示,是一个正方体纸盒的平面展开图,其中的五个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所代表的单项式可能是( ).A.6 B.d C.c D.e【答案】D【解析】题中“?”所表示的单项式与“5e”是同类项,故“?”所代表的单项式可能是e,故选D.【考点2:“去括号”与“添括号”】1.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n【答案】C【解析】原式=m﹣n﹣m﹣n=﹣2n.故选C.2.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y);(3)8m-(3n+5);(4)n-4(3-2m);(5)2(a-2b)-3(2m-n).【答案】(1)d-6a+4b-6c;(2)xy+1-x+y【解析】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c;(2)-(-xy-1)+(-x+y)=xy+1-x+y.(3)8m-(3n+5)=8m-3n-5.(4)n-4(3-2m)=n-(12-8m)=n-12+8m.(5)2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.3.在各式的括号中填上适当的项,使等式成立.(1).2x+3y-4z+5t=-( )=+( )=2x-( )=2x+3y-( );(2).2x-3y+4z-5t=2x+( )=2x-( )=2x-3y-( )=4z-5t-( );(3).a-b+c-d=a-( );(4).x+2y-z=-( );(5)a2-b2+a-b=(a2-b2)+( );(6).a2-b2-a-b=a2-a-( ). 【答案】(1)-2x-3y+4z-5t,2x+3y-4z+5t,-3y+4z-5t,4z-5t(2)-3y+4z-5t,3y-4z+5t,-4z+5t,-2x+3y.(3)b-c+d (4)-x-2y+z (5)a-b (6)b2+b【解析】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.(1) 2x+3y-4z+5t=-(-2x-3y+4z-5t)=+( 2x+3y-4z+5t)=2x-(-3y+4z-5t)=2x+3y-(4z-5t)(2)2x-3y+4z-5t=2x+(-3y+4z-5t)=2x-(3y-4z+5t)=2x-3y-(-4z+5t)=4z-5t-(-2x+3y)(3)a-b+c-d=a-(b-c+d);(4)x+2y-z=-(-x-2y+z);(5)a2-b2+a-b=(a2-b2)+(a-b);(6)a2-b2-a-b=a2-a-(b2+b).4.按要求把多项式3a-2b+c-1添上括号:(1)把含a、b的项放到前面带有“+”号的括号里,不含a、b的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】(1) 3a-2b+c-1=(3a-2b)-(-c+1);(2) 3a-2b+c-1=(3a+c)-(2b+1).【考点3:整式加减】1.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. 3a2b﹣3ba2=0D. 5a2﹣4a2=1 【答案】C【解析】3a和2b不是同类项,不能合并,A错误;2a3和3a2不是同类项,不能合并,B错误;3a2b﹣3ba2=0,C正确;5a2﹣4a2=a2,D错误,故选:C.2.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是( ).A.十四次多项式 B.七次多项式C.不高于七次的多项式或单项式 D.六次多项式【答案】C【解析】根据多项式相加的特点,多项式次数不增加,项数增加或减少可得:A+B 一定是不高于七次的多项式或单项式.故选C.3.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( ) A.-5x-1 B.5x+1 C.-13x-1 D.13x+1【答案】A【解析】 (3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.4.设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=1x2+x﹣1,C=x2+2x,那么A﹣B=2()A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x【答案】C.x2+x﹣1)﹣(x2+2x)【解析】根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2A﹣C=2(12=x2+2x﹣2﹣x2﹣2x=﹣2,故选C.5.已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,则代数式|a|-|c-a|+|c-b|-|-b|的值为().A.-2c B .0 C.2c D.2a-2b+2c【答案】A【解析】由图可知:a<c<0<b,所以|a|-|c-a|+|c-b|-|-b|=-a-(c-a)+(b-c)-b=-2c.6.如图所示,阴影部分的面积是( ).A.112xy B.132xy C.6xy D.3xy【答案】A【解析】S阴=2x×3y-0.5y×x=6xy-12xy=112xy7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为( ) .A.60n厘米 B.50n厘米 C.(50n+10)厘米 D.(60n-10)厘米【答案】C.【解析】观察上图,可知n块石棉瓦重叠的部分有(n-1)处,则n块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.8.若23a2b m与−0.5a n b4的和是单项式,则m=,n=.【答案】4,2.【解析】23a2b m与−0.5a n b4的和是单项式,∴23a2b m与−0.5a n b4是同类项,即可得:m=4,n=29.若5a|x|b3与-0.2a3b|y|可以合并,则x= ,y= .【答案】±3;±3【解析】∵5a|x|b3与-0.2a3b|y|可以合并∴5a|x|b3与-0.2a3b|y|为同类项即可得|x|=3.|y|=3解得:x=±3,y=±310.如图所示,长方形内有两个相邻的正方形,面积分别为9和a2(a>0).那么阴影部分的面积为________.【答案】3a-a2【解析】由图形可知阴影部分面积=长方形面积-a2-9,而长方形的长为3+a,宽为3,∴S阴=3(3+a)-9-a2=3a-a211.任意一个三位数,减去它的三个数字之和所得的差一定能被______整除. 【答案】9【解析】设任意一个的三位数为a×102+b×10+c.其中a是1~9的正整数,b,c分别是0~9的自然数.∵(a×102+b×10+c)-(a+b+c)=99a+9b=9(11a+b)=9m. (用m表示整数11a+b) . ∴任意一个三位数,减去它的三个数字之和所得的差一定能被9整除.12.合并下列各式中的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5【答案】(1)-7x2-4y2-6xy ;(2)8x2y-2xy2+2【解析】①所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;②在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+213.合并同类项:(1)3x-2x2+4+3x2-2x-5(2)6a2-5b2+2ab+5b2-6a2(3)-5yx2+4xy2-2xy+6x2y+2xy+5(4)3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3(注:将“x-1”或“1-x”看作整体)【答案与解析】(1)原式=(3-2)x+(-2+3)x2+(4-5)=x+x2-1(2)原式=(6-6)a2+(-5+5)b2+2ab=2ab(3)原式=(-5+6)x2y+(-2+2)xy+4xy2+5=x2y+4xy2+5(4)原式=(3-5)(x-1)2+(-2-4)(x-1)3=-2(x-1)2-6(x-1)314.一个多项式加上4x3-x2+5得3x4-4x3-x2+x-8,求这个多项式.【答案】3x4-8x3+x-13【解析】在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.(3x4-4x3-x2+x-8)-(4x3-x2+5)=3x4-4x3-x2+x-8-4x3+x2-5=3x4-8x3+x-1315.已知2a3+m b5-pa4b n+1=-7a4b5,求m+n-p的值.【答案】-4【解析】两个单项式的和仍是单项式,这就意味着2a3+m b5与pa4b n+1是同类项.可得3+m=4,n+1=5,2-p=-7解这三个方程得:m=1,n=4,p=9,∴ m+n-p=1+4-9=-4.【考点4:化简求值】1.若m2-2m=1则2m2-4m+2020的值是________.【答案】2024【解析】2m2-4m+2008=2(m2-2m)+2008=2×1+2022=20242.已知a=-(-2)2,b=-(-3)3,c=-(-42),则-[a-(b-c)]的值是________.【答案】15【解析】因为a=-(-2)2=-4,b=-(-3)3=27,c=-(-42)=16,所以-[a-(b-c)]=-a+b-c=15.3.有理数a,-b在数轴上的位置如图所示,化简|1-3b|-2|2+b|+|2-3a|= .【答案】b+3a-7【解析】-b<-3,b>3,所以原式=3b-1-2(2+b)+(3a-2)=b+3a-7.4.当p=2,q=1时,分别求出下列各式的值.(1)(p−q)2+2(p−q)−13(q−p)2−3(p−q);(2)8p2−3q+5q−6p2−9【答案】(1)−123;(2)1【解析】(1)把(p−q)当作一个整体,先化简再求值:(p−q)2+2(p−q)−13(q−p)2−3(p−q)=(1−13)(p−q)2+(2−3)(p−q)=−23(p−q)2−(p−q)又p−q=2−1=1;∴原式=−23(p−q)2−(p−q)=−23×12−1=−123(2)先合并同类项,再代入求值.8p2−3q+5q−6p2−9=(8−6)p2+(−3+5)q−9=2p2+2q−9当p=2,q=1时,原式=2p2+2q−9=2×22+2×1−9=1 5.先化简,再求值:(1)3x2-8x+x3-12x2-3x3+1,其中x=2;(2)4x2+2xy+9y2-2x2-3xy+y2,其中x-2,y=1.【答案】(1)-67;(2)16【解析】(1)原式=-2x3-9x2-8x+1,当x=2时,原式=-2×23-9×22-8×2+1=-67.(2)原式=2x2-xy+10y2,当x=2,y=1时,原式=2×22-2×1+10×12=16.6. 先化简,再求各式的值:12x +(−32x +13y 2)−(2x −23y 2),其中x =−2,y =23; 【答案与解析】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?原式=12x −32x +13y 2−2x −23y 2=−3x +y 2当x =−2,y =23时,原式=−3×(−2)+(23)2=6+49=649.7. 先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案与解析】(-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.8. 化简:a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2.【答案】-a 2-3b 2【解析】a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2=(a 2﹣2a 2)+(﹣2ab+2ab )+(b 2﹣4b 2)=﹣a 2﹣3b 2.9. 化简求值:(1)当a =1,b =−2时,求多项式5ab −92a 3b 2−94ab +12a 3b 2−114ab −a 3b −5的值.(2)若|4a +3b |+(3b +2)2=0,求多项式2(2a+3b)2-3(2a+3b)+8(3a+3b)2-7(2a+3b)的值.【答案与解析】(1)先合并同类项,再代入求值:原式=(−92+12)a 3b 2+(5−94−114)ab −a 3b −5=−4a 3b 2−a 3b −5 将a =1,b =−2代入,得:−4a 3b 2−a 3b −5=-4×13-(-2)2-13×(-2)-5=-19(2)把(2a+3b )当作一个整体,先化简再求值:原式=(2+8)(2a+3b)2+(-3-7)(2a+3b )=10(2a+3b)2-10(2a+3b )由|4a +3b |+(3b +2)2=0可得:4a +3b =0,3b +2=0两式相加可得:4a +6b =−2,所以有2a +3b =−1代入可得:原式=10×(-1)2-10×(-1)=2010. 已知3x a+3y 4与-2xy b-2是同类项,求代数式3b 2-6a 3b-2b 2+2a 3b 的值.【答案】228【解析】∵3x a+3y 4与-2xy b-2是同类项∴a+3=1,b-2=4.∴a=-2,b=6.∵3b 2-6a 3b-2b 2+2a 3b=(3-2)b 2+(-6+2)a 3b=b 2-4a 3b∴当a=-2,b=6时,原式=62-4×(-2)3×6=22811. 先化简,再求值:3(y+2x )-[3x-(x-y )]-2x ,其中x ,y 互为相反数.【答案与解析】3(y+2x )-[3x-(x-y )]-2x=3y+6x-3x+x-y-2x=2(x+y) 因为x ,y 互为相反数,所以x+y=0所以3(y+2x )-[3x-(x-y )]-2x=2(x+y)=2×0=012. 已知代数式3y 2-2y+6的值为8,求32y 2-y+1的值.【答案】2【解析】∵3y 2-2y+6=8,∴3y 2-2y=2.当3y 2-2y=2时,原式=12(3y 2-2y )+1=12×2+1=2 13. 已知xy=-2,x+y=3,求整式(3xy+10y )+[5x-(2xy+2y-3x )]的值.【答案】22【解析】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看 成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.原式=3xy+10y+(5x-2xy-2y+3x )=3xy+10y+5x-2xy-2y+3x=8x+8y+xy=8(x+y )+xy 把xy=-2,x+y=3代入得,原式=8×3+(-2)=24-2=2214. 先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=12,且xy <0.【答案与解析】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=12,且xy <0,∴x=﹣2,y=12,则原式=﹣52﹣8=﹣212.15. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案】(1)-45;(2)-10【解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【考点5:“无关”与“不含”型问题】1. 代数式-3x 2y-10x 3+6x 3y+3x 2y-6x 3y+7x 3-2的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关【答案】B【解析】合并同类项后的结果为-3x 3-2,故它的值只与x 有关.2. 多项式x 2﹣3kxy ﹣3y 2+xy ﹣8化简后不含xy 项,则k 为( )A .0B .−13C .13D .3【答案】C【解析】原式=x 2+(1﹣3k )xy ﹣3y 2﹣8,因为不含xy 项,故1﹣3k=0,解得:k=13.故选C .3. 如果对于某一个特定范围内x 的任意允许值,P=|1-2x|+|1-3x|+…+|1-10x|的值恒为一个常数,则此值为 ( ).A. 2B. 3C. 4D. 5【答案】B【解析】P 值恒为一常数,说明原式去绝对值后不含x 项,由此得:P =(1-2x )+(1-3x )+…+(1-7x )+(8x-1)+(9x-1)+(10x-1)=34. 当k = 时,代数式x 2−3kxy −3y 2−13xy −8中不含xy 项. 【答案】−19【解析】合并同类项得:x 2+(−3k −13)xy −3y 2−8.由题意得−3k −13=0. 故k =−19.5. 李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y-4x 3+2x 3y-2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案与解析】解:6x 3-2x 3y-4x 3+2x 3y-2x 3+15=(6-4-2)x 3+(-2+2)x 3y+15=15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.6. 已知关于x ,y 的代数式x 2−3kxy −3y 2−13xy −8中不含xy 项,求k 的值.【答案】k =−19【解析】x 2−3kxy −3y 2−13xy −8=x 2+(−3k −13)xy −3y 2−8 因为不含xy 项,所以此项的系数应为0,即有:−3k −13=0,解得:k =−19.7. 试说明多项式x 3y 3-12x 2y+y 2-2x 3y 3+0.5x 2y+y 2+x 3y 3-2y-3的值与字母x 的取值无关.【答案】5【解析】根据题意得:m﹣1=2,n=2,则m=3,n=2.故m+n=3+2=5.8.要使关于x,y的多项式mx3+3nxy2+2x3-xy2+y不含三次项,求2m+3n的值.【答案】-3【解析】原式=(m+2)x3+(3n-1)xy2+y要使原式不含三次项,则三次项的系数都应为0,所以有:m+2=0,3n-1=0,即有:m=-2,n=13所以2m+3n=2×(-2)+3×13= -3.9.已知:ax2+2xy-x与2x2-3bxy+3y的差中不含2次项,求a2-15ab+9b2的值. 【答案】28【解析】(ax2+2xy-x)-(2x2-3bxy+3y)=ax2+2xy-x-2x2+3bxy-3y=(a-2)x2+(2+3b)xy-x-3y. ∵此差中不含二次项,∴a-2=0,2+3b=0解得:a=2,3b=-2当a=2且3b= -2时,a2-15ab+9b2=a2-5a(3b)+(3b)2=22-5×2×(-2)+(-2)2=4+20+4=28.10.若多项式-2+8x+(b-1)x2+ax3与多项式2x3-7x2-2(c+1)x+3d+7恒等,求ab-cd. 【答案】-27【解析】由已知 ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴{a=2b−1=−78=−2(c+1)−2=3a+7解得:{a=2b=−6c=−5d=−3∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.11.若关于x的多项式-2x2+mx+nx2+5x-1的值与x的值无关,求(x-m)2+n的最小值.【答案】2【解析】 -2x2+mx+nx2+5x-1=(n-2)x2+(m+5)x-1∵此多项式的值与x的值无关,∴{n−2=0m+5=0解得:{n=2m=−5当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2.∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n有最小值为2.12.若关于x,y的多项式:x m-2y2+mx m-2y+nx3y m-3-2x m-3y+m+n,化简后是四次三项式,求m+n的值.【答案】4【解析】分别计算出各项的次数,找出该多项式的最高此项:因为x m-2y2的次数是m,mx m-2y的次数为m-1,nx3y m-3的次数为m,-2x m-3y的次数为m-2,又因为是三项式 ,所以前四项必有两项为同类项,显然x m-2y2与nx3y m-3是同类项,且合并后为0,所以有m=5,1+n=0 m+n=5+(-1)=4.13.有一道题目:当a=2,b=-2时,求多项式:3a3b3-2a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

完整版)整式的除法练习题(含答案)

完整版)整式的除法练习题(含答案)

完整版)整式的除法练习题(含答案) 整理后:题一、选择题1.下列计算正确的是()A。

a6÷a2=a3B。

a+a4=a5C。

(ab3)2=a2b6D。

a-(3b-a)=-3b2.计算:(-3b3)2÷b2的结果是()A。

-9b4B。

6b4C。

9b3D。

9b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是()A。

(ab)2=ab2B。

(a3)2=a6C。

a6÷a3=a2D。

a3•a4=a124.下列计算结果为x3y4的式子是()A。

(x3y4)÷(xy)B。

(x2y3)•(xy)C。

(x3y2)•(xy2)D。

(-x3y3)÷(x3y2)5.已知(a3b6)÷(a2b2)=3,则a2b8的值等于() A。

6B。

9C。

12D。

816.下列等式成立的是()A。

(3a2+a)÷a=3aB。

(2ax2+a2x)÷4ax=2x+4aC。

(15a2-10a)÷(-5)=3a+2D。

(a3+a2)÷a=a2+a7.下列各式是完全平方式的是() A。

x-x+2B。

1+4x/4XXXD。

x+2x-12/38.下列计算正确的是()A。

(x-2y)(x+2y)=x2-4y2B。

(3x-y)(3x+y)=9x2-y2C。

(-4-5n)(4-5n)=25n2+16D。

(-m-n)(-m+n)=n2-m2题二、填空题9.计算:(a2b3-a2b2)÷(ab)2=ab-1.10.七年级二班教室后墙上的“研究园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“研究园地”的另一边长为2a-3b。

11.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是x2+2x+1.12.计算:(6x5y-3x2)÷(-3x2)=-2y-2.13.若5x=18,5y=3,则5=3xy。

整式的加减练习100题(有答案)

整式的加减练习100题(有答案)

整式的加减练习100题(有答案)整式的加减专项练习100题1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x y-7xy)-(xy -3x y);31、(3a2-3ab+2b2)+(a2+2ab-2b2);22、3(-3a -2a)-[a -2(5a-4a +1)-3a]. 32、2a2b+2ab2-[2(a2b-1)+2ab2+2].2 2 2 22 2 223、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2-12+3x)-4(x-x2+12 );29、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].35、-23 ab+34 a2b+ab+(-34 a2b)-136、(8xy-x2+y2)+(-y2+x2-8xy);37、2x-(3x-2y+3)-(5y-2);38、-(3a+2b)+(4a-3b+1)-(2a-b-3)39、4x3-(-6x3)+(-9x3)40、3-2xy+2yx2+6xy-4x2y41、 1-3(2ab+a)十[1-2(2a-3ab)].42、 3x- [5x+ (3x- 2)];43、 (3a2b- ab2)- (ab2+ 3a2b)44、 2x ?3y ??3x ? 2?3x ? y45、 (- x2+ 5+ 4x3)+ (- x3+ 5x- 4)46、( 5a2-2a+3) -( 1-2a+a2) +3( -1+3a-a2).47、 5( 3a2b-ab2) -4( -ab2+3a2b).48、 4a2+2( 3ab-2a2) -( 7ab-1).49、 12 xy+( - 14 xy) -2xy2-( -3y2x)50、 5a2-[a2-( 5a2-2a) -2( a2-3a) ]51、 5m-7n-8p+5n-9m+8p52、( 5x2y-7xy2) -( xy2-3x2y)53、 3x2y-[2x2y-3( 2xy-x2y) -xy]54、 3x2-[5x-4( 12 x2-1)]+5x255、 2a3b- 1 3 22 a b-a2b+ 12 a b-ab2;56、( a2+4ab-4b2) -3( a2+b2) -7( b2-ab).57、 a2+2a3+( -2a3) +( -3a3) +3a258、 5ab+( -4a2b2) +8ab2-( -3ab) +( -a2b) +4a2b2;59、( 7y-3z) -( 8y-5z);60、 -3( 2x2-xy) +4( x2+xy-6).61、( x3+3x2y-5xy2+9y3) +( -2y3+2xy2+x2y-2x3) - ( 4x2y-x3-3xy2+7y3)62、 -3x2y+2x2y+3xy2-2xy2;63、 3( a2-2ab) -2( -3ab+b2);64、 5abc-{2a2b-[3abc-( 4a2b-ab2]}.65、 5m2-[m2+( 5m2-2m) -2( m2-3m) ].66、 -[2m-3( m-n+1) -2]-1.67、 13 a-( 12 a-4b-6c)+3(-2c+2b)68、 -5an-an-( -7an) +( -3an)69、 x2y-3xy2+2yx2-y2x70、 1 2 24 a b-0.4ab - 12 a2b+ 25 ab2;71、 3a-{2c-[6a-( c-b) +c+( a+8b-6) ]}72、 -3( xy-2x2) -[y2-( 5xy-4x2) +2xy];73、化简、求值 12 x2- 2- (12x2+ y2) - 3 22 (- 3 x2+1243 y ),其中 x=- 2, y=- 374、化简、求值 1 x- 2(x- 1 y2)+ (- 3 x+ 1 y22 3 2 3 ),其中 x=- 2, y=- 23 .75、 1 3 ? 33 x ? ??? 2 x2 ? 23 x3 ??? ? 12 x2 ? (4x ? 6) ? 5x其中 x=- 1 12 ;76、化简,求值( 4m+n) -[1-( m-4n) ], m= 25 n=-11377、化简、求值 2(a2b+ 2b3- ab3)+ 3a3- (2ba2- 3ab2+ 3a3)- 4b3,其中 a=- 3, b= 278、化简,求值:( 2x3-xyz) -2( x3-y3+xyz) +( xyz-2y3),其中 x=1, y=2, z=-79、化简,求值: 5x2-[3x-2( 2x-3) +7x2],其中 x=-2.80、若两个多项式的和是 2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若 2a2-4ab+b2与一个多项式的差是 -3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算 5y+3x+5z2与12y+7x-3z2的和85、计算8xy2 +3x2 y-2与-2x2 y+5xy2 -3的差86、多项式-x2 +3xy-12 y与多项式M的差是- 1 22 x-xy+y,求多项式M87、当x=- 12,y=-3时,求代数式3(x2-2xy)-[3x2-2y+2 (xy+y)]的值.88、化简再求值5abc-{2a 2 b-[3abc-(4ab2 -a2 b)]-2ab2 },其中a=-2,b=3,c=-1489、已知A=a2 -2ab+b2,B=a2 +2ab+b2 (1)求A+B;(2)求14 (B-A);90、小明同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.92、已知A ? 4x2 ?4xy? y2,B ? x2 ? xy?5y2,求3A-B93、已知A=x2+xy+y2,B=-3xy-x2,求2A-3B.94、已知a 2+(b+1)2=0,求5ab2-[2a2b-(4ab2 -2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+ (6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5] 的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a) +3,当a取任意有理数时,请比较A与B的大小.34、2(x -xy)-3(2x -3xy)-2[x(- 2x -xy+y)]=-2x +5xy-2y2 2 2 2 2 2 235、-答案:1、 3( a+5b) -2( b-a) =5a+13b2 3 3 1ab+ a2b+ ab+ (- a2b)- 1 = ab-1 3 4 4 336、 (8xy- x2+ y2)+ (- y2+ x2- 8xy)=037、 2x- (3x- 2y+ 3)- (5y- 2)=-x-3y-12、 3a-( 2b-a) +b=4a-b.3、 2( 2a2+9b) +3( -5a2-4b) =— 11a2 +6b 24、( x3-2y3-3x2y) -( 3x3-3y3-7x2y) = -2x3+y3+4x2y5、 3x2-[7x-( 4x-3) -2x2] = 5x2 -3x-36、( 2xy-y) -( -y+yx) = xy7、 5( a 2 2b-3ab 2 ) -2( a 2 b-7ab) = -a 2 b+11ab8、( -2ab+3a) -2( 2a-b) +2ab= -2a+b9、( 7m 2 n-5mn) -( 4m 2 n-5mn) = 3m2 n10、( 5a2+2a-1) -4( 3-8a+2a2) = -3a2+34a-1311、 -3x2 y+3xy 2 +2x 2 y-2xy 2 = -x 2 y+xy 212、 2( a-1) -( 2a-3) +3. =413、 -2( ab-3a 2 ) -[2b 2 -( 5ab+a 2 ) +2ab]= 7a2 +ab-2b 214、( x 2 -xy+y) -3( x 2 +xy-2y) = -2x 2 -4xy+7y15、 3x 2 -[7x-( 4x-3) -2x 2 ]=5x 2 -3x-316、 a2b-[2( a2b-2a2c) -( 2bc+a2c) ]= -a2b+2bc+6a2c17、 -2y3+( 3xy2-x2y) -2( xy2-y3) = xy2-x2y18、 2( 2x-3y) -( 3x+2y+1) =2x-8y-119、 -( 3a2-4ab) +[a2-2( 2a+2ab) ]=-2a 2 -4a20、 5m-7n-8p+5n-9m-p = -4m-2n-9p21、( 5x2y-7xy2) -( xy2-3x2y) =4xy2-4x2y22、 3( -3a2-2a) -[a2-2( 5a-4a2+1) -3a]=-18a2 +7a+223、 3a2-9a+5-( -7a2+10a-5) =10a2-19a+1024、 -3a2b-( 2ab2-a2b) -( 2a2b+4ab2) = -4a2b-64ab225、( 5a-3a2+1) -( 4a3-3a2) =5a-4a2+126、 -2( ab-3a2) -[2b2-( 5ab+a2) +2ab]=7a 2 +ab-2b227、 (8xy- x2+ y2)+ (- y2+ x2- 8xy)=028、 (2x2- 12 + 3x)- 4(x- x2+ 1 2 52 ) = 6x -x- 229、 3x2-[ 7x- (4x- 3)- 2x2] = 5x2- 3x- 330、 5a+( 4b-3a) -( -3a+b) = 5a+3b31、( 3a2 -3ab+2b 2 ) +( a 2 +2ab-2b 2 ) = 4a 2 -ab32、 2a 2 b+2ab2 -[2( a 2 b-1) +2ab 2 +2]. = -133、( 2a2-1+2a) -3( a-1+a2) = -a2-a+238、- (3a+ 2b)+ (4a- 3b+ 1)- (2a- b- 3)= -a-4b+439、 4x3- (- 6x3)+ (- 9x3)= x340、 3- 2xy+ 2yx2+ 6xy- 4x2y = -2 x2y+441、 1- 3(2ab+ a)十 [1- 2(2a- 3ab)]=2-7a42、 3x- [5x+ (3x- 2)]=-5x+243、 (3a2b- ab2)- (ab2+ 3a2b)= -2ab244、 2x 3y ??3x ? 2?3x ? y = 5x+y45、 (- x2+ 5+ 4x3)+ (- x3+ 5x- 4)= 3x3 - x2+ 5x+146、(5a2-2a+3)-(1-2a+a2)+3(-1+3a-a2)=a2+9a-147、 5( 3a2b-ab2) -4( -ab2+3a2b). =3a2b-ab248、 4a2+2( 3ab-2a2) -( 7ab-1) =1-ab49、 12 xy+( - 14 xy) -2xy2-( -3y2x) = 1 24 xy+xy50、 5a2-[a2-( 5a2-2a) -2( a2-3a) ]=11a2-8a51、 5m-7n-8p+5n-9m+8p=-4m-2n52、( 5x2y-7xy2) -( xy2-3x2y) =8x2y-6xy253、 3x2y-[2x2y-3( 2xy-x2y) -xy]=-2x2y+7xy54、 3x2-[5x-4( 1 x2-1)]+5x2 = 10x 22 -5x-455、 2a3b- 12 a3b-a2b+ 12 a2b-ab2 = 3 12 a3b- 2 a2b-ab256、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab)=-2a2+11ab-14b257、 a2+2a3+( -2a3) +( -3a3) +3a2 = -3a3+4a258、 5ab+( -4a2b2) +8ab2-( -3ab) +( -a2b)+4a2b2=8ab+8ab2-a2b59、( 7y-3z) -( 8y-5z) =-y+2z60、 -3( 2x2-xy) +4( x2+xy-6) =-2x2+7xy-2461、( x3+3x2y-5xy2+9y3) +( -2y3+2xy2+x2y-2x3) -( 4x2y-x3-3xy2+7y3) =062、 -3x2y+2x2y+3xy2-2xy2 = -x2y+xy263、 3( a2-2ab) -2( -3ab+b2) =3a2 -2b 264、 5abc-{2a2b-[3abc-( 4a2b-ab2]}=8abc-6a2b+ab265、 5m2-[m2+( 5m2-2m) -2( m2-3m) ]=m2-4m66、 -[2m-3( m-n+1) -2]-1=m-3n+467、 13 a-( 12 a-4b-6c)+3(-2c+2b)= - 16 a+10b68、 -5an-an-( -7an) +( -3an) = -2an69、 x2y-3xy2+2yx2-y2x=3x2y-4xy271、 1 1 2 4 a2b-0.4ab2- 2 a b+ 25 ab2 = - 14 a2b71、 3a-{2c-[6a-( c-b) +c+( a+8b-6) ]}= 10a+9b-2c-62 272、 -3( xy-2x) -[y-( 5xy-4x) +2xy]= 2x -y2 2 2( 5y+3x+5z2 ) +( 12y+7x-3z2 ) =17y+10x+2z2 85、计算 8xy2 +3x2 y-2 与 -2x2 y+5xy2 -3 的差 1 1 3 273、化简、求值 2 x2- 2- (2x2+ y2) - 2 (- 3 x2+13 y2),其中 x=- 2, y=-43原式 =2x2+ 12 y2- 2 =68974、化简、求值 12 x- 2(x- 1 3 13 y2)+ (- 2 x+ 3 y2),其中 x=- 2, y=- 23 .原式 =-3x+y2 =64975、 13 x3 ? ?? 3 2 2 3 ? 1 2?? 2 x ? 3 x ?? ? 2 x ? (4x ? 6) ?5x 其中 x=- 112 ;3原式 =x3+x2 -x+6=6876、化简,求值( 4m+n) -[1-( m-4n) ], m= 25 n=-113原式 =5m-3n-1=577、化简、求值 2(a2b+ 2b3- ab3)+ 3a3- (2ba2- 3ab2+ 3a3)- 4b3,其中 a=- 3, b= 2原式 =-2ab3+3ab2= 1278、化简,求值:( 2x3-xyz) -2( x3-y3+xyz) +( xyz-2y3),其中 x=1, y=2, z=-3.原式 =-2xyz=679、化简,求值: 5x2-[3x-2( 2x-3) +7x2],其中 x=-2.原式 =-2x2 +x-6=-1680、若两个多项式的和是 2x2+xy+3y2,一个加式是x2-xy,求另一个加式.( 2x2+xy+3y2 )——( x2-xy) = x2+2xy+3y281、若 2a2-4ab+b2与一个多项式的差是 -3a2+2ab-5b2,试求这个多项式.( 2a2-4ab+b2 )—( -3a2+2ab-5b2) =5a2 -6ab+6b282、求 5x2y- 2x2y 与- 2xy2+ 4x2y 的和.( 5x2y- 2x2y) +(- 2xy2+ 4x2y) =3xy2+ 2x2y83、求 3x2+ x- 5 与 4- x+ 7x2的差.( 3x2+ x- 5)—( 4- x+ 7x2) =— 4x2+ 2x- 984、计算 5y+3x+5z2 与 12y+7x-3z2 的和( 8xy2 +3x2 y-2)—( -2x2 y+5xy2 -3)=5x2 y+3xy2 +186、多项式 -x2 +3xy-12 y 与多项式 M 的差是-1 22 x-xy+y,求多项式 MM=-1 2 32 x+4xy— 2 y87、当x=- 1 ,y=-3时,求代数式3(x2-2xy)22 -[3x-2y+2( xy+y) ]的值.原式 =-8xy+y= — 1588 、化简再求值 5abc-{2a 2 b-[3abc-( 4ab2 -a2 b) ]-2ab2 },其中 a=-2, b=3, c=-14 原式 =83abc-a2 b-2ab2 =3689、已知 A=a2 -2ab+b2 , B=a2 +2ab+b2( 1)求 A+B;( 2)求 14 (B-A);A+B=2a2 +2b2 14 (B-A)=ab90、小明同学做一道题,已知两个多项式 A, B,计算A+B,他误将 A+B 看作 A-B,求得9x2-2x+7,若 B=x2+3x-2,你能否帮助小明同学求得正确答案?A=10x2+x+5 A+B=11x2+4x+391、已知: M=3x2+2x-1, N=-x2-2+3x,求 M-2N.M-2N=5x2- 4x+392、已知 A ? 4x2 ?4xy ? y2,B ? x2 ? xy ?5y2 ,求3A- B3A- B=11x2 -13xy+8y293、已知 A= x2+ xy+ y2, B=- 3xy- x2,求 2A- 3B.2A- 3B= 5x2+ 11xy+ 2y294、已知 a ?2 + (b+ 1)2= 0,求 5ab2- [2a2b- (4ab2- 2a2b)]的值.原式 =9ab2- 4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c =0.原式=8abc-8a b=-322296、已知a,b,z满足:(1)已知|x-2|+(y+3)2 =0,(2)z是最大的负整数,化简求值:2(x y+xyz)-3(x y-xyz)-4x y.原式=-5x y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+ (6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m +3mn=5,求5m -[+5m -(2m -mn)-7mn-5] 的值原式=2m +6mn+5=1599、设A=2x -3xy+y +2x+2y,B=4x -6xy+2y -3x-y,若2 2 222 2 2 222 2 2 2|x-2a|+(y-3)=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a) +3,当a取任意有理数时,请比较A与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A2。

7年级上册数学电子课本(带答案)

7年级上册数学电子课本(带答案)

7年级上册数学电子课本(带答案)7年级上册数学电子课本带答案第一章整式的基本概念1.1 整式的定义和性质整式的定义:由有限个同一变量的变量、常数和它们的积或商的有理数指数幂组成的代数式称为整式。

整式的性质:(1)整式的项有多项式项和常数项两种;(2)整式的次数是指所有单项式次数的最大值;(3)同次异项相加得同次项;(4)同底数指数幂相乘,指数相加;(5)整式可以化简成同类项相加的形式。

1.2 多项式的概念和运算多项式的定义:只含有同一个变量的各项代数和式称为多项式。

多项式的运算:(1)同类项之间可以相加减;(2)多项式和多项式相加减;(3)多项式和数相乘。

1.3 整式的因式分解因式分解的步骤:(1)提公因式;(2)区分平方差公式、立方差公式、两数平方差等特殊公式;(3)配方法;(4)求根公式。

第二章一元一次方程2.1 一元一次方程的概念一元一次方程的定义:形如ax+b=0(a≠0)的式子称为一元一次方程,其中x是未知数,a和b是已知数。

2.2 一元一次方程的解法(1)移项法;(2)等式两边乘以相同的数;(3)约分;(4)去分母。

2.3 较复杂的运算问题第三章图形的基本概念3.1 图形的基本概念和性质图形的基本概念和性质:(1)点、线、面的概念;(2)图形的相似和全等性质;(3)图形的投影和投影的性质。

3.2 平面几何问题的解法平面几何问题的解法:(1)全等三角形的性质;(2)相似三角形的性质;(3)平行四边形的性质。

第四章勾股定理4.1 勾股定理的概念勾股定理的定义:直角三角形的斜边的平方等于两条直角边的平方和。

4.2 勾股定理的应用(1)求一条直角边;(2)求斜边;(3)证明两个角是否为直角;(4)在平面直角坐标系中求距离和中点坐标等。

第五章平面向量5.1 平面向量的概念和性质平面向量的定义:既有大小又有方向的量称为向量。

平面向量的性质:(1)向量的加法和减法;(2)数与向量的乘法;(3)向量的数量积和向量积的概念和计算公式。

20121.2整式(含答案)

20121.2整式(含答案)

选择题(每小题x 分,共y 分)---整式(含答案)(2012赤峰)2.下列运算正确的是(D)A .532x x x -=B .222()a b a b +=+C .336()m n m n =D .624p p p ÷=(2012•江苏常州)2.下列运算正确的是( C )A.3a +2a =a 5B.a 2·a 3= a 6C.(a +b)(a -b)= a 2-b 2D.(a +b)2= a 2+b 2(2012•毕节贵州省)4.下列计算正确的是( C )A .3a -2a=1B .a 4•a 6=a 24C .a 2÷a=aD .(a+b)2=a 2+b 2 +=2+ (2012•云南)8.若,,则a+b 的值为( B )A .B .C .1D .2 (2012•云南)3.下列运算正确的是( D )A .x 2•x 3=6B .3﹣2=﹣6C .(x 3)2=x 5D .40=1(2012•漳州)2.计算a 6·a 2的结果是( B )A .a 12B .a 8C .a 4D .a 3(2012•山东枣庄市)1.下列运算,正确的是( A )A .22232x x x -=B .()2222a a -=-C .()222a b a b +=+ D .()2121a a --=-- (2012•陕西省)3.计算23)5(a -的结果是( D )A .510a -B .610aC .525a -D .625a (2012•宁夏)1.下列运算正确的是( C )A .32a -2a =3B .32)(a =5aC .⋅3a 6a =9aD .22)2(a =24a (2012•河北省)2.计算3()ab 的结果是( C )A .3ab B.3a b C.33a b D.3a b(2012•广西北海市)5.下列运算正确的是:( B ) A .x 3·x 5=x 15 B .(2x 2)3=8x 6 C .x 9÷x 3=x 3 D .(x -1)2=x 2-12 (2012•东营市)2. 下列运算正确的是( A )A .523x x x =⋅B .336()x x =C .5510x x x +=D . 336x x x =- (2012•东营市)8.若43=x ,79=y ,则y x 23-的值为( A ) A .74 B .47 C .3-D .72A .3a-a=3B .a 2·a 3=a 5C .a 15÷a 3=a 5(a ≠0)D .(a 3)3=a 6(2012•福建省南安)2.下列运算,正确的是( D ).A.22a a a =⋅B. 523a a a =+C. 236a a a =÷D. 623)(a a =(2012宜宾)5.将代数式x 2+6x+2化成(x+p)2+q 的形式为(B )A . (x ﹣3)2+11B . (x+3)2﹣7C . (x+3)2﹣11D . (x+2)2+4 (2012宜宾)3.下面运算正确的是( D )A . 7a 2b ﹣5a 2b=2B . x 8÷x 4=x 2C . (a ﹣b)2=a 2﹣b 2D . (2x 2)3=8x 6 (2012•湛江)6. 下列运算中,正确的是( C )A .3a 2﹣a 2=2B .(a 2)3=a 5C .a 3•a 6=a 9D .(2a 2)2=2a 4 (2012•南通)6.已知x 2+16x +k 是完全平方式,则常数k 等于( A )A .64B .48C .32D .16(2012•南通)2.计算(-x )2·x 3的结果是( A )A .x 5B .-x 5C .x 6D .-x 6(2012南昌)8.已知(m ﹣n)2=8,(m+n)2=2,则m 2+n 2=(C)A . 10B . 6C . 5D . 3(2012•福建省泉州)2、42)(a 等于( C ).A.42aB.24aC.8aD. 6a(2012江西)4.下列运算正确的是( D )A . a 3+a 3=2a 6B . a 6÷a ﹣3=a 3C . a 3a 3=2a 3D .(﹣2a 2)3=﹣8a 6(2012南昌)2.在下列表述中,不能表示代数式“4a ”的意义的是( D )A . 4的a 倍B . a 的4倍C . 4个a 相加D . 4个a 相乘 (2012六盘水)6.下列计算正确的是( D )A .B . (a+b)2=a 2+b 2C .(﹣2a)3=﹣6a 3D .﹣(x ﹣2)=2(2012•桂林)4.计算2xy 2+3xy 2的结果是( A )A .5xy 2B .xy 2C .2x 2y 4D .x 2y 4(2012•常德市)9、下列运算中,结果正确的是 ( D )A.1243a a a =∙B.5210a a a =÷C.532a a a =+ D.a a a 3-4= (2012•连云港)5.下列各式计算正确的是( C )A .(a +1)2=a 2+1B .a 2+a 3=a 5C .a 8÷a 2=a 6D .3a 2-2a 2=1(2012重庆)3.计算()2ab 的结果是( C ) A .2ab B .b a 2 C .22b a D .2ab(2012•益阳)2.下列计算正确的是( D )A .2a +3b =5abB .22(2)4+=+x xC .326()=ab abD .0(1)1-=(2012•浙江省义乌市)3.下列计算正确的是( C )A .a 3·a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .(3a )2=a 6 (2012绍兴)2.下列运算正确的是( C )A . 2x x x +=B .623x x x ÷=C .34x x x ⋅=D .235(2)6x x =A .5552a a a +=B .()32622a a -=- C .2122a a a -⋅= D .()322221a a a a -÷=-(2012•上海)1.在下列代数式中,次数为3的单项式是( A )A 2xy ;B 33+x y ;C .3x y ; D .3xy . (2012安徽,4分)3.计算32)2(x -的结果是( B )A.52x -B. 68x -C.62x -D.58x -(2012•成都)4.下列计算正确的是( B )A .223a a a +=B .235a a a ⋅=C .33a a ÷=D .33()a a -= (2012•广州)4.下面的计算正确的是( C )A .6a ﹣5a=1B .a+2a 2=3a 3C .﹣(a ﹣b)=﹣a+bD .2(a+b)=2a+b(2012•杭州)5.下列计算正确的是( D )A .(﹣p 2q)3=﹣p 5q 3B .(12a 2b 3c)÷(6ab 2)=2abC .3m 2÷(3m ﹣1)=m ﹣3m 2D .(x 2﹣4x)x ﹣1=x ﹣4(2012金华市)3.下列计算正确的是( C )A .a 3a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .(3a)2=a 6(2012•乐山)3. 计算32()()x x -÷-的结果是( A )(A)x - (B)x (C)5x - (D)5x(2012•丽水) 2.计算3a •(2b )的结果是( C )A .3abB .6aC .6abD .5ab(2012•临沂)3.下列计算正确的是( D )A .2a 2+4a 2=6a 4B .(a +1)2=a 2+1C .(a 2)3=a 5D .x 7÷x 5=x 2(2012•聊城)2.下列计算正确的是( D )A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 2(2012•南充) 2.下列计算正确的是( D )(A)x 3+ x 3=x 6 (B)m 2·m 3=m 6 (C)32-2=3 (D)14×7=72(2012•衢州)3.下列计算正确的是( D )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6•a 2=a 12D .(﹣a 6)2=a 12(2012江苏苏州,3分)8.若,则的值是( B ) A .3 B .4 C .5 D . 6(2012•济宁)下列运算正确的是( D )A .﹣2(3x ﹣1)=﹣6x ﹣1B .﹣2(3x ﹣1)=﹣6x+1C .﹣2(3x ﹣1)=﹣6x ﹣2D .﹣2(3x ﹣1)=﹣6x+2二、填空题(每小题x 分,共y 分)(2012•厦门)8.计算: 3a -2a = a . .(2012•河北省)15.已知1y x =-,则2()()1x y y x -+-+的值为 1 .(2012•南通)11.单项式3x 2y 的系数为 3 .(2012•梅州)7. 若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为 3(2012滨州)15.根据你学习的数学知识,写出一个运算结果为a 6的算式 a 4a 2=a 6(答案不唯一) .(2012•厦门)16.已知a +b =2,ab =-1,则3a +ab +3b = 5 ;a 2+b 2= .(2012•黔东南州)13.二次三项式x 2﹣kx+9是一个完全平方式,则k 的值是 __±6_______ .(2012•福建省南安)14.已知3=+b a ,1=ab ,则22b a +的值为_7______.(2012•江苏常州)15.已知x=y+4,则代数式22x 2xy+y 25--的值为 -9 。

整式的加减(含答案)

整式的加减(含答案)

整式的加减1.下列各题中合并同类项结果正确的是( )A .134=-xy xy B .222632a a a =+C .222532a a a =+D .02222=-mn n m2.下列计算正确的是A .ab b a 523=+B .235=-y yC .277a a a =+D .y x yx y x 22223=-3.计算223a a +的结果是( ) A.23a B.24a C.43a D.44a4.下列运算正确的是( ).A .2323a a a +=B .()2a a a -÷= C .()325a a a -=- D .()32628a a =5.下列运算正确的是( ).A .3x+3y= 6 xyB .-y 2-y 2=0C .3(x+8)=3x +8D .- (6 x +2 y)=-6 x -2 y6.下列运算正确的是( ).A .623x x x ÷=B .532x x x =⋅C .624x x x -=D .325()x x =7.下列各式的变形正确的是( )A.235257a a aB.2276t tC.4x+5y=9xyD.22330x y yx8.下列各式计算正确的是( ).A.266a a a =+B.ab b a 352=+-C.mn mn n m 22422=-D.222253ab a b ab -=-9.如果2592++kx x 是一个完全平方式,那么k 的值是:A .±30B .30C .15 D.±1510.下列各式可以分解因式的是 ( )A .()-22x y -B .+224x 2xy y + C. 22x 4y -+ D.-22x 2xy y -11.计算()()()+2x 1x 1x 1-+的结果是 ( )A.-2x 1B.-3x 1C.+4x 1D.-4x 112.分解因式:m 3-4m 2+4m=____.13.因式分解:3x x -= ;14.分解因式:a -2ax+a 2x = .15.计算(π﹣3)0=_________.16.分解因式:=-2282b a ___________________.17.因式分解:22273b a -= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 整式
一、选择题(让你算的少,要你想的多,只选一个可要认准啊!) 1、下面说法中正确的是( )
A 、一个代数式不是单项式,就是多项式
B 、单项式是整式
C 、整式是单项式
D 、以上说法都不对
2、下列代数式中整式有( )
x 1,2x +y ,31a 2b ,πy x -,x
y 45,0.5,a A 、4个 B 、5个 C 、6个
D 、7个
3、制造一种产品,原来每件成本a 元,先提价5%,后降价5%,则此时该产品的成本价为( )
A 、不变
B 、a (1+5%)2
C 、a (1+5%)(1-5%)
D 、a (1-5%)2
4、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m 元后,又降低20%,现售价为n 元,那么该电脑的原售价为( ) A 、(
5
4
n +m )元 B 、(
4
5
n +m )元 C 、(5m +n )元
D 、(5n +m )元
二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!) 5、_____和_____统称整式. 6、多项式a 2-
21ab 2-b 2有_____项,其中-2
1
ab 2的次数是_____. 7、整式21,3x -y 2,23x 2y ,a ,πx +2
1
y ,
522
a π,x +1中_____是单项式,_____是多项式
8、有一棵树苗,刚栽下去时,树高2.1米,以后每年长0.3米,则n 年后树高_____米.
三、解答题(耐心计算,仔细观察,表露你萌动的智慧!) 9、某人买了50元的月票卡,乘车后的余额如下表
求:(1)乘车m次时的余额为多少元?
(2)乘车13次时的余额是多少?
(3)最多能乘多少次?
10、如图,长方形的ABCD的长是a,宽为b,在长方形内画两个扇形,大扇形的半径为b,求图中阴影部分的面积.
参考答案
一、1 C 2 B 3 C 4 B 二、5、单项式 多项式 6. 三 3
7、21 23x 2y a 5
22a ;3x -y 2 πx +21
y x +1 8. 2.1+0.3n
三、9、 (1)50-0.8m (2)50-0.8×13=39.6(元) (3)62
10、【解题思路】 扇形面积我们目前可以没法用公式求出,但可知图中的扇形的面积等于对应半径圆的面积的41.分别求出图中的半径为a-b 、b 的扇形面积,再用长方形形面积减去
两扇形面积即可.
解:图中的扇形的面积等于对应半径圆的面积的
.所以阴影部分的面积
=ab-41πb 2
-4
1π(a-b )2.
附:整式的加减导航
一、学习提要
1.理解单项式、多项式以及整式的概念.
2.理解同类项的概念,会判断同类项,并能熟练地合并同类项. 3.掌握去括号法则,能正确依据法则去括号
4.会进行整式的加减运算,并能根据整式的加减解决一些实际问题; 二、重点、易考点提示
1.重点:(1)单项式的概念、系数与次数的辨别;(2)同类项的概念、合并同类项法则的应用;(3)根据整式的加减解决实际问题.
2.易考点:(1)辨别单项式的系数;(2)同类项的辨别;(3)整式的化简求值;(4)根据整式的加减解决实际问题.
三、知识扫描 (一)有关概念
1.整式:单项式和多项式统称为整式.
友情提示:单独一个单项式是整式;单独一个多项式也是整式不能说整式是单项式,也不能说整式是多项式整式是代数式,但一个代数式不一定是整式
2.单项式:数与字母的积的代数式单独一个数或一个字母也是单项式. (1)单项式的系数:单项式中的数字因数. (2)单项式的次数:单项式中所有字母的指数的和.
友情提示:(1)判别一个代数式是否是单项式的依据是单项式的概念,如2
1
mn 是单项式,因为它是数
21与字母m 、n 的积;而m 2就不是单项式;因为m 2
不是数与字母的积. (2)识别单项式的系数要注意将单项式写成数字与字母的积的形式,然后找数字因式;如确定单项式
52ab -系数,应将单项式写成ab 52-,然后确定其系数为5
2
-而不是-2. (3)单项式的次数是单项式中所有字母的指数和,而不包括系数的指数,如b a 2
3
2次数是3,而不是5.
3.多项式;几个单项式的和.
(1)常数项:多项式中不含有字母的项.
(2)多项式的次数:多项式中,次数最高项的次数就是多项式的次数.
友情提示:项的次数实际就是单项式的次数,也是这一项中所有字母的指数的和.
4.同类项:在多项式中,所含字母相同,且各相同字母的指数也相同的项叫做同类项几个常数项也是同类项.
友情提示:同类项应具备两个条件:(1)所含字母相同;(2)相同字母的指数相同同类项与系数无关,与字母的顺序无关.
5.合并同类项:把多项式中几个同类项合并成一项的过程,叫做合并同类项.
友情提示:合并同类项是整式加减的基础.
(二)有关法则
1.合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变.
友情提示:合并同类项的依据是加法交换律和结合律.
2.去括号法则:
(1)括号前是“+”时,把括号和它前面的“+”去掉,原括号里的各项都不改变符号.
(2)括号前是“-”时,把括号和它前面的“-”去掉,原括号里的各项都改变符号.
友情提示:去括号时首先要看清括号前是“+”还是“-”,然后再依据法则去括号注意改变符号时,改变是括号内的项的符号,而不是括号外的项的符号.
3.整式的加减:整式加减的实质是先去括号,再合并同类项.
友情提示:整式的加减一般分成以下几步:(1)写出算式;(2)去括号;(3)合并同类项在运算的过程中要保证每一步都要正确;求多项式的值实际上是整式的加减的应用,化简的过程就是整式加减运算的过程.
四、几点说明
1.单项式的系数包括它前面的符号.
2.多项式的次数不是各项字母的指数的和,多项式没有系数的说法.
3.同类项的识别应注意满足两个相同,即所含字母相同,相同字母的指数也分别相同.
4.用分配律去括号时,一是不要漏乘括号中的项,二是括号前是“-”时,括号内各项都要变号.
5.在整式的加减运算中,应注意整体思想是灵活应用.。

相关文档
最新文档