高考数学一轮 圆锥曲线的综合问题(学案)
2019届高考理科数学一轮复习精品学案:第54讲圆锥曲线的综合问题(含解析)

第54讲圆锥曲线的综合问题考试说明 1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.掌握椭圆与抛物线的定义、几何图形、标准方程及简单几何性质.3.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.4.了解圆锥曲线的简单应用.5.理解数形结合的思想.真题再现■ [2017-2013]课标全国真题再现1.[2017·全国卷Ⅱ]设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且·=1,证明:过点P且垂直于OQ的直线l过C的左焦点 F.解:(1)设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由=得x0=x,y0=y.因为M(x0,y0)在C上,所以+=1,因此点P的轨迹方程为x2+y2=2.(2)证明:由题意知F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),·=3+3m-tn,=(m,n),=(-3-m,t-n).由·=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0,所以·=0,即⊥.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.[2017·全国卷Ⅲ]已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解:(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4,所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10;当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,圆M的方程为+=.3.[2017·全国卷Ⅰ]已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点,若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解:(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由+>+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)证明:设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为,,则k1+k2=-=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2=+=+=.由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0,即(2k+1)·+(m-1)·=0,解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).4.[2016·全国卷Ⅱ]已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M 两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,求k的取值范围.解:(1)设M(x1,y1),则由题意知y1>0.当t=4时,椭圆E的方程为+=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为,因此直线AM的方程为y=x+2.将x=y-2代入+=1得7y2-12y=0,解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×××=.(2)由题意知t>3,k>0,A(-,0).将直线AM的方程y=k(x+)代入+=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.由x1·(-)=得x1=,故|AM|=|x1+|=.由题设知,直线AN的方程为y=-(x+),故同理可得|AN|=.由2|AM|=|AN|得=,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=.t>3等价于=<0,即<0,由此得或解得<k<2.因此k的取值范围是(,2).5.[2015·全国卷Ⅰ]在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(1)当k=0时,分别求C在点M和N处的切线方程.(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.解:(1)由题设可得M(2,a),N(-2,a)或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,所以曲线C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.y=在x=-2处的导数值为-,所以曲线C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0,故x1+x2=4k,x1x2=-4a.从而k1+k2=+==.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.6.[2015·全国卷Ⅱ]已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值.(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.解:(1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2,得(k2+9)x2+2kbx+b2-m2=0,故x M==,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.因为直线l过点,所以l不过原点且与椭圆C有两个交点的充要条件是k>0,k≠3.由(1)得直线OM的方程为y=-x.设点P的横坐标为x P,由得=,即x P=.将点的坐标代入(1)中l的方程得b=,因此x M=.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4-,k2=4+.因为k>0,k≠3,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.7.[2013·全国卷Ⅱ]平面直角坐标系xOy中,过椭圆M:+=1(a>b>0)右焦点的直线x+y-=0交M于A,B 两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.解:(1)设A(x1,y1),B(x2,y2),P(x0,y0),则+=1,+=1.=-1.由此可得=-=1.因为x1+x2=2x0,y1+y2=2y0,=,所以a2=2b2.又由题意知,M的右焦点为(,0),故a2-b2=3.因此a2=6,b2=3.所以M的方程为+=1.(2)由解得或因此|AB|=.由题意可设直线CD的方程为y=x+n-<n<,设C(x3,y3),D(x4,y4).由得3x2+4nx+2n2-6=0,于是x3,4=.因为直线CD的斜率为1,所以|CD|=|x4-x3|=.由已知,四边形ACBD的面积S=|CD|·|AB|=.当n=0时,S取得最大值,最大值为.所以四边形ACBD面积的最大值为.■ [2017-2016]其他省份类似高考真题1.[2017·北京卷]已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.解:(1)由抛物线C:y2=2px过点P(1,1),得p=,所以抛物线C的方程为y2=x,抛物线C的焦点坐标为,0,准线方程为x=-.(2)证明:由题意,设直线l的方程为y=kx+(k≠0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由得4k2x2+(4k-4)x+1=0,则x1+x2=,x1x2=.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1).直线ON的方程为y=x,点B的坐标为x1,.因为y1+-2x1=====0,所以y1+=2x1.故A为线段BM的中点.2.[2017·天津卷]设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D,若△APD的面积为,求直线AP的方程.解:(1)设F的坐标为(-c,0).依题意,=,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=,所以椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P-1,-,故Q-1,.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=.由点B异于点A,可得点B,.由Q,可得直线BQ的方程为-(x+1)-+1=0,令y=0,解得x=,故D,0,所以|AD|=1-=.又因为△APD的面积为,故××=,整理得3m2-2|m|+2=0,解得|m|=,所以m=±, 所以,直线AP的方程为3x+y-3=0或3x-y-3=0.3.[2017·山东卷]在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,焦距为2. (1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.解:(1)由题意知e==,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立方程得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=×.由题意可知圆M的半径r=|AB|=×.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立方程得x2=,y2=,因此|OC|==.由题意可知sin==,而==×,令t=1+2,则t>1,∈(0,1),因此=×=×=×≥1, 当且仅当=,即t=2时等号成立,此时k1=±, 所以sin≤,因此≤,所以∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率k1=±.4.[2016·天津卷]设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF ⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解:(1)设F(c,0),由+=,即+=,可得a2-c2=3c2.又a2-c2=b2=3,所以c2=1,因此a2=4.所以椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0,解得x=2或x=.由题意得x B=,从而y B=.由(1)知,F(1,0),设H(0,y H),有=(-1,y H),=,.由BF⊥HF,得·=0,所以+=0,解得y H=,因此直线MH的方程为y=-x+.设M(x M,y M),由方程组得x M=.在△MAO中,∠MOA≤∠MAO?|MA|≤|MO|,即(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-或k≥,所以直线l的斜率的取值范围为-∞,-∪,+∞.5.[2016·北京卷]已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:|AN|·|BM|为定值.解:(1)由题意得解得a=2,b=1.所以椭圆C的方程为+y2=1.(2)证明:由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=(x-2).令x=0,得y M=-,从而|BM|=|1-y M|=1+.直线PB的方程为y=x+1.令y=0,得x N=-,从而|AN|=|2-x N|=2+.所以|AN|·|BM|=2+·1+===4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.6.[2016·四川卷]已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P,证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.解:(1)由已知得,a=b,则椭圆E的方程为+=1.由方程组得3x2-12x+(18-2b2)=0.①方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,此时方程①的解为x=2,所以椭圆E的方程为+=1,点T的坐标为(2,1).(2)证明:由已知可设直线l'的方程为y=x+m(m≠0),由方程组可得所以P点坐标为2-,1+,|PT|2=m2.设点A,B的坐标分别为A(x1,y1),B(x2,y2).由方程组可得3x2+4mx+(4m2-12)=0.②方程②的判别式为Δ=16(9-2m2),由Δ>0,解得-<m<.由②得x1+x2=-,x1x2=,所以|PA|==2--x1,同理|PB|=2--x2.所以|PA|·|PB|=2--x12--x2=2-2-2-(x1+x2)+x1x2=2-2-2--+ =m2.故存在常数λ=,使得|PT|2=λ|PA|·|PB|.【课前双基巩固】知识聚焦1.(1)没有一个两个(2)对称轴渐近线Δ>0Δ=0Δ<02.|y1-y2|对点演练1.[解析] 设A(x1,y1),B(x2,y2),由消去y,化简可得6x2+4x-7=0,所以x1+x2=-,x1x2=-,所以|AB|=·=×=.2.[解析] 设A(x1,y1),B(x2,y2),则-=1,-=1,两式相减,得=-,即k==,又线段AB的中点恰好为点P(5,2),所以k=.3.x-y-=0[解析] 抛物线C:y2=4x的焦点为F(1,0),设直线l的方程为y=k(x-1),与抛物线方程联立,得k2x2-(2k2+4)x+k2=0.设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+2=+2=,解得k2=3,又直线l的倾斜角为锐角,所以k=,所以直线l的方程为y=(x-1),即x-y-=0.4.(1+,+∞)[解析] 由题设条件可知△ABF2为等腰三角形,只要∠AF2B为钝角即可,所以有>2c,即b2>2ac,所以c2-a2>2ac,即e2-2e-1>0,所以e>1+.5.1或-1[解析] 由得(1-k2)x2+2k2x-2k2-1=0.当1-k2=0,即k=±1时,方程只有一根,所以直线与双曲线仅有一个公共点;当1-k2≠0,即k≠±1时,要满足题意只需Δ=(2k2)2-4(1-k2)(-2k2-1)=0,此时无解.所以若直线l:y=k(x-)与双曲线x2-y2=1仅有一个公共点,则实数k的值为1或-1.6.[2-2 ,2+2 ][解析] 由椭圆方程得y2=1-,所以x2+y2+2x=x2+2x+1=(x+2)2-1.由+y2=1,得|x|≤,所以当x=时,x2+y2+2x有最大值2+2 ;当x=-时,x2+y2+2x有最小值2-2 .所以x2+y2+2x∈[2-2 ,2+2 ].。
高考数学(理)一轮复习精品资料 专题53 圆锥曲线的综合问题(教学案)含解析

圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.高频考点一圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例1】椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,过其右焦点F与长轴垂直的弦长为1.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,点P是直线x=1上的动点,直线P A与椭圆的另一交点为M,直线PB与椭圆的另一交点为N.求证:直线MN经过一定点.联立得⎩⎨⎧y =t3(x +2),x 24+y 2=1,即(4t 2+9)x 2+16t 2x +16t 2-36=0,(8分) 可知-2x M =16t 2-364t 2+9,所以x M =18-8t 24t 2+9,则⎩⎪⎨⎪⎧x M =18-8t 24t 2+9,yM =12t4t 2+9.同理得到⎩⎪⎨⎪⎧x N =8t 2-24t 2+1,y N =4t 4t 2+1.(10分)由椭圆的对称性可知这样的定点在x 轴上,不妨设这个定点为Q (m ,0), 又k MQ =12t 4t 2+918-8t 24t 2+9-m ,k NQ=4t4t 2+18t 2-24t 2+1-m , k MQ =k NQ ,所以化简得(8m -32)t 2-6m +24=0,令⎩⎪⎨⎪⎧8m -32=0,-6m +24=0,得m =4,即直线MN 经过定点(4,0).(13分)探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.【变式探究】如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N.(2)证明 由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为x =2,所以直线l 与AF 的交点M ⎝⎛⎭⎫2,2x 0-33y 0;直线l 与直线x =32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0.则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2 =43·(2x 0-3)23y 20+3(x 0-2)2, 因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得 |MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以所求定值为|MF ||NF |=23=233. 高频考点二 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例2】 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105.(1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点. ①设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值.(2)①证明 设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2), 则B (-x 1,-y 1),因为直线AB 的斜率k AB =y 1x 1,又AB ⊥AD ,所以直线AD 的斜 率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(1+4k 2)x 2+8mkx +4m 2-4=0. 所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2. 由题意知x 1≠-x 2,所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0),可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此存在常数λ=-12使得结论成立.②解 直线BD 的方程为y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由①知M (3x 1,0),可得△OMN 的面积S =12×3|x 1|×34|y 1|=98|x 1||y 1|.因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时等号成立,此时S 取得最大值98, 所以△OMN 面积的最大值为98.【感悟提升】圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.【变式探究】 设点P (x ,y )到直线x =2的距离与它到定点(1,0)的距离之比为2,并记点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设M (-2,0),过点M 的直线l 与曲线C 相交于E ,F 两点,当线段EF 的中点落在由四点C 1(-1,0),C 2(1,0),B 1(0,-1),B 2(0,1)构成的四边形内(包括边界)时,求直线l 斜率的取值范围.由根与系数的关系得x 1+x 2=-8k 21+2k 2,于是x 0=x 1+x 22=-4k 21+2k 2,y 0=k (x 0+2)=2k 1+2k 2, 因为x 0=-4k 21+2k 2≤0,所以点G 不可能在y 轴的右边,又直线C 1B 2和C 1B 1的方程分别为y =x +1,y =-x -1, 所以点G 在正方形内(包括边界)的充要条件为 ⎩⎪⎨⎪⎧y 0≤x 0+1,y 0≥-x 0-1,即⎩⎪⎨⎪⎧2k 1+2k 2≤-4k 21+2k 2+1,2k 1+2k 2≥4k 21+2k 2-1, 亦即⎩⎪⎨⎪⎧2k 2+2k -1≤0,2k 2-2k -1≤0.解得-3-12≤k ≤3-12,②由①②知,直线l 斜率的取值范围是⎣⎢⎡⎦⎥⎤-3-12,3-12. 高频考点三 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例3】如图,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.从而|DF 1|=22.(3分) 由DF 1⊥F 1F 2,得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322.所以2a =|DF 1|+|DF 2|=22, 故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(4分)探究提高 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【变式探究】 在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.1.【2016高考新课标3理数】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.2.【2016高考浙江理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.【答案】(I )22221a k a k +(II )02e <≤.所以a >因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为1a <≤,由c e a a ==得,所求离心率的取值范围为02e <≤.3.【2016高考新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--,即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩2k <<.因此k 的取值范围是)2.4.【2016年高考北京理数】(本小题14分)已知椭圆C :22221+=x y a b(0a b >>)的离心率为2 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)详见解析.直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.5.【2016年高考四川理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.方程②的判别式为2=16(92)m ∆-,由>0∆,解得22m -<<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==-- ,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+2109m =.故存在常数45λ=,使得2PT PA PB λ=⋅. 6.【2016高考上海理数】(本题满分14)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
高考数学 考点突破——圆锥曲线:圆锥曲线的综合问题学案-人教版高三全册数学学案

圆锥曲线的综合问题【知识梳理】1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则:Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2·|y 1-y 2|【考点突破】考点一、直线与圆锥曲线的位置关系【例1】在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. [解析] (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1, 又点P (0,1)在曲线C 1上,∴0a 2+1b2=1,得b =1,则a 2=b 2+c 2=2,所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m 消去y ,得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.② 综合①②,解得⎩⎪⎨⎪⎧k =22,m =2或⎩⎪⎨⎪⎧k =-22,m =- 2. 所以直线l 的方程为y =22x +2或y =-22x - 2. 【类题通法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x 2项的系数是否为零的情况,以及判别式的应用.但对于选择题、填空题要充分利用几何条件,用数形结合的方法求解. 【对点训练】已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.[解析] 将直线l 的方程与椭圆C 的方程联立,得方程组222142y x m x y =+⎧⎪⎨+=⎪⎩ ② ① 将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.考点二、弦长问题【例2】如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[解析] (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2,解得a =2,b =3, 所以椭圆方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k2, 所以|AB |=k 2+1|x 1-x 2| =k 2+1·x 1+x 22-4x 1x 2=12k 2+13+4k2. 同理,|CD |=12⎝ ⎛⎭⎪⎫1k 2+13+4k2=12k 2+13k 2+4. 所以|AB |+|CD |=12k 2+13+4k 2+12k 2+13k 2+4=84k 2+123+4k 23k 2+4=487,解得k =±1, 所以直线AB 的方程为x -y -1=0或x +y -1=0. 【类题通法】 求解弦长的四种方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.(3)联立直线与圆锥曲线方程,消元得到关于x 或y 的一元二次方程,利用根与系数的关系得到(x 1-x 2)2或(y 1-y 2)2,代入两点间的距离公式.(4)当弦过焦点时,可结合焦半径公式求解弦长. 【对点训练】设F 1,F 2分别是椭圆D :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2作倾斜角为π3的直线交椭圆D 于A ,B 两点,F 1到直线AB 的距离为23,连接椭圆D 的四个顶点得到的菱形的面积为2 5.(1)求椭圆D 的方程;(2)设过点F 2的直线l 被椭圆D 和圆C :(x -2)2+(y -2)2=4所截得的弦长分别为m ,n ,当m ·n 最大时,求直线l 的方程.[解析] (1)设F 1的坐标为(-c ,0),F 2的坐标为(c ,0)(c >0), 则直线AB 的方程为y =3(x -c ),即3x -y -3c =0, ∴|-3c -3c |(3)2+(-1)2=23,解得c =2.∵12·2a ·2b =25,∴ab =5, 又a 2=b 2+c 2,∴a 2=5,b 2=1, ∴椭圆D 的方程为x 25+y 2=1.(2)由题意知,可设直线l 的方程为x =ty +2,则圆心C 到直线l 的距离d =|2t |t 2+1,∴n =222-d 2=4t 2+1, 由⎩⎪⎨⎪⎧x =ty +2,x 25+y 2=1得(t 2+5)y 2+4ty -1=0, 设直线l 与椭圆D 的交点坐标为(x 1,y 1),(x 2,y 2), ∴y 1+y 2=-4t t 2+5,y 1y 2=-1t 2+5, ∴m =1+t 2|y 1-y 2|=25(t 2+1)t 2+5,∴m ·n =85·t 2+1t 2+5=85t 2+1+4t 2+1≤25⎝ ⎛⎭⎪⎫当且仅当t 2+1=4t 2+1,即t =±3时,等号成立,∴直线l 的方程为x -3y -2=0或x +3y -2=0.考点三、中点弦问题【例3】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .x 245+y 236=1B .x 236+y 227=1 C .x 227+y 218=1 D .x 218+y 29=1 (2)已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.[答案] (1) D (2) x +2y -3=0[解析] (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a24+b 2x 2-32a 2x+94a 2-a 2b 2=0, 所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32, 故E 的方程为x 218+y 29=1.(2)法一 易知此弦所在直线的斜率存在,所以设其方程为y -1=k (x -1),此弦的两端点坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y -1=k (x -1),x 24+y 22=1,消去y 整理得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0,∴x 1+x 2=4k (k -1)2k 2+1, 又∵x 1+x 2=2,∴4k (k -1)2k 2+1=2,解得k =-12. 故此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.法二 易知此弦所在直线的斜率存在,所以设斜率为k , 此弦的两端点坐标分别为A (x 1,y 1),B (x 2,y 2), 则x 214+y 212=1①,x 224+y 222=1②, ①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. ∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.【类题通法】处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:【对点训练】1.若椭圆的中心在原点,一个焦点为(0,2),直线y =3x +7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为________.[答案] x 28+y 212=1[解析] 因为椭圆的中心在原点,一个焦点为(0,2),则a 2-b 2=4,所以可设椭圆方程为y 2b 2+4+x 2b2=1,由⎩⎪⎨⎪⎧y =3x +7,y 2b 2+4+x 2b2=1,消去x ,整理得 (10b 2+4)y 2-14(b 2+4)y -9b 4+13b 2+196=0,设直线y =3x +7与椭圆相交所得弦的端点为(x 1,y 1),(x 2,y 2), 由一元二次方程根与系数的关系得:y 1+y 2=14(b 2+4)10b 2+4=2. 解得:b 2=8.所以a 2=12. 则椭圆方程为x 28+y 212=1.2.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________.[答案] 3x +4y -13=0[解析] 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2,∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.。
2022届高考数学一轮复习(新高考版) 第8章 强化训练10 圆锥曲线中的综合问题

由题意可知O→A⊥O→B,即O→A·O→B=0, ∴x1·x2+y1·y2=(1+k2)x1·x2+2k(x1+x2)+4=0, ∴121+1+4kk22-13+2k42k2+4=0, 解得 k2=4>34, ∴|AB|= 1+k2|x1-x2|= 1+k2· x1+x22-4x1x2
= 1+k2·4 1+4k42-k2 3=41765. 综上,直线 l 的方程为 2x-y+2=0 或 2x+y-2=0,|AB|=41765.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
技能提升练
13.焦点为F的抛物线C:y2=4x的对称轴与准线交于点E,点P在抛物线C
所以△PAB的面积
S△PAB=12|PM|·|y1-y2|=342
y02 4x0
3
2.
因为 x20+y420=1(-1≤x0<0),
所以 y20-4x0=-4x20-4x0+4∈[4,5],
所以△PAB 面积的取值范围是6
2,15
4
10.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.已知双曲线 C:ax22-by22=1,且圆 E:(x-2)2+y2=1 的圆心是双曲线 C 的右焦点.若圆 E 与双曲线 C 的渐近线相切,则双曲线 C 的方程为 __x32_-__y_2_=__1__.
解析 ∵c=2⇒a2+b2=4.
12.已知椭圆 L:ax22+by22=1(a>b>0)的离心率为 23,短轴长为 2. (1)求椭圆L的标准方程; 解 由 e2=ac22=a2-a2b2=1-ba22=34,得 a2=4b2, 又短轴长为2,可得b=1,a2=4, ∴椭圆 L 的标准方程为x42+y2=1.
数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。
知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。
【数学】2019届一轮复习人教A版(理)专题16圆锥曲线的综合问题教案

第3讲圆锥曲线的综合问题高考定位圆锥曲线的综合问题包括:探索性问题、定点与定值问题、范围与最值问题等,一般试题难度较大.这类问题以直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要综合运用函数与方程、不等式、平面向量等诸多知识以及数形结合、分类讨论等多种数学思想方法进行求解,对考生的代数恒等变形能力、计算能力等有较高的要求.真题感悟(2017·江苏卷)如图,在平面直角坐标系xOy中,椭圆E:x2 a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.解(1)设椭圆的半焦距为c.因为椭圆E的离心率为12,两准线之间的距离为8,所以ca=12,2a2c=8,解得a=2,c=1,于是b=a2-c2=3,因此椭圆E的标准方程是x24+y23=1.(2)由(1)知,F1(-1,0),F2(1,0).设P(x0,y0),因为P为第一象限的点,故x0>0,y0>0. 当x0=1时,l2与l1相交于F1,与题设不符.当x0≠1时,直线PF1的斜率为y0x0+1,直线PF2的斜率为y0x0-1.因为l1⊥PF1,l2⊥PF2,所以直线l 1的斜率为-x 0+1y 0,直线l 2的斜率为-x 0-1y 0,从而直线l 1的方程:y =-x 0+1y 0(x +1),①直线l 2的方程:y =-x 0-1y 0(x -1).②由①②,解得x =-x 0,y =x 20-1y 0,所以Q ⎝⎛⎭⎪⎫-x 0,x 20-1y 0. 因为点Q 在椭圆上,由对称性,得x 20-1y 0=±y 0,即x 20-y 20=1或x 20+y 20=1. 又P 在椭圆E 上,故x 204+y 23=1.由⎩⎪⎨⎪⎧x 20-y 20=1,x 204+y 203=1,解得x 0=477,y 0=377; ⎩⎪⎨⎪⎧x 20+y 20=1,x 204+y 203=1无解.因此点P 的坐标为⎝ ⎛⎭⎪⎫477,377. 考 点 整 合1.定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点.解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.2.圆锥曲线中最值问题主要是求线段长度的最值、三角形面积的最值等. (1)椭圆中的最值F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有 ①OP ∈[b ,a ]; ②PF 1∈[a -c ,a +c ]; ③PF 1·PF 2∈[b 2,a 2];④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①OP ≥a ; ②PF 1≥c -a .3.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [命题角度1] 定点的探究与证明【例1-1】 (2017·南京、盐城调研)如图,在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,椭圆Ω:x 24+y 2=1,A 为椭圆右顶点,过原点O 且异于坐标轴的直线与椭圆Ω交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D ⎝ ⎛⎭⎪⎫-65,0.设直线AB ,AC 的斜率分别为k 1,k 2.(1)求k 1k 2的值;(2)记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求出λ值;若不存在,说明理由; (3)求证:直线AC 必过点Q .(1)解 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(2)解 存在.设直线AP 方程为y =k 1(x -2),联立⎩⎨⎧y =k 1(x -2),x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2(k 21-1)1+k 21,y P =k 1(x P-2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1(x -2),x 24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =2(4k 21-1)1+4k 21,y B =k 1(x B-2)=-4k 11+4k 21, 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212(k 21-1)1+k 21+65=-5k 14k 21-1,所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC . (3)证明 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝ ⎛⎭⎪⎫-65,-85,则P ⎝ ⎛⎭⎪⎫-65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎪⎫x +65,联立⎩⎨⎧y =-5k 14k 21-1⎝ ⎛⎭⎪⎫x +65,x 2+y 2=4,解得x Q =-2(16k 21-1)16k 21+1,y Q =16k 116k 21+1,因为k 2=-y B -x B -2=4k 11+4k 212(1-4k 21)1+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-2(16k 21-1)16k 21+1-2=-14k 1=k 2, 故直线AC 必过点Q .探究提高 如果要解决的问题是一个定点问题,而题设条件又没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,明确解决问题的目标,然后进行推理探究,这种先根据特殊情况确定定点,再进行一般性证明的方法就是由特殊到一般的方法.[命题角度2] 定值的探究与证明【例1-2】 (2016·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:AN ·BM 为定值.(1)解 由题意得⎩⎪⎨⎪⎧c a =32,12ab =1,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =1,c = 3.所以椭圆C 的方程为x 24+y 2=1. (2)证明 由(1)知A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2, 从而BM =|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而AN =|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.所以AN ·BM =⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,BM =2,AN =2, 所以AN ·BM =4.综上,AN ·BM 为定值.探究提高 定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 (2012·江苏卷)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0).已知点(1,e )和⎝ ⎛⎭⎪⎫e ,32都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线AF 1与直线BF 2平行,AF 2与BF 1交于点P .(ⅰ)若AF 1-BF 2=62,求直线AF 1的斜率; (ⅱ)求证:PF 1+PF 2是定值.解 (1)由题设知a 2=b 2+c 2,e =ca ,由点(1,e )在椭圆上,得1a 2+c 2a 2b 2=1,解得b 2=1,于是c 2=a 2-1,又点⎝⎛⎭⎪⎫e ,32在椭圆上,所以e 2a 2+34b 2=1,即a 2-1a 4+34=1,解得a 2=2.因此,所求椭圆的方程是x 22+y 2=1.(2)由(1)知F 1(-1,0),F 2(1,0),又直线AF 1与BF 2平行,所以可设直线AF 1的方程为x +1=my ,直线BF 2的方程为x -1=my . 设A (x 1,y 1),B (x 2,y 2),y 1>0,y 2>0.由⎩⎪⎨⎪⎧x 212+y 21=1,x 1+1=my 1,得(m 2+2)y 21-2my 1-1=0, 解得y 1=m +2m 2+2m 2+2,故AF 1=(x 1+1)2+(y 1-0)2=(my 1)2+y 21=2(m 2+1)+m m 2+1m 2+2.①同理,BF 2=2(m 2+1)-m m 2+1m 2+2.②(ⅰ)由①②得AF 1-BF 2=2m m 2+1m 2+2,解2m m 2+1m 2+2=62得m 2=2,注意到m >0, 故m = 2.所以直线AF 1的斜率为1m =22. (ⅱ)证明 因为直线AF 1与BF 2平行, 所以PB PF 1=BF 2AF 1,于是PB +PF 1PF 1=BF 2+AF 1AF 1,故PF 1=AF 1AF 1+BF 2BF 1.由B 点在椭圆上知BF 1+BF 2=22,从而PF 1=AF 1AF 1+BF 2(22-BF 2).同理PF 2=BF 2AF 1+BF 2·(22-AF 1).因此,PF 1+PF 2=AF 1AF 1+BF 2(22-BF 2)+BF 2AF 1+BF 2·(22-AF 1)=22-2AF 1·BF 2AF 1+BF 2.又由①②知AF 1+BF 2=22(m 2+1)m 2+2,AF 1·BF 2=m 2+1m 2+2,所以PF 1+PF 2=22-22=322.因此,PF 1+PF 2是定值. 热点二 最值与范围问题[命题角度1] 求线段长度、三角形面积的最值【例2-1】 (2017·宿迁调研)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线的距离为6 2. (1)求椭圆C 的标准方程;(2)设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线P A 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .①当直线P A 的斜率为12时,求△FMN 的外接圆的方程; ②设直线AN 交椭圆C 于另一点Q ,求△APQ 的面积的最大值.解(1)由题意,得⎩⎪⎨⎪⎧c a =22,c +a 2c =62,解得⎩⎨⎧a =4,c =22,则b =22,所以椭圆C 的标准方程为x 216+y 28=1.(2)由题可设直线P A 的方程为y =k (x +4),k >0, 则M (0,4k ),可得MF 的斜率为k MF =-2k , 因为MF ⊥FN ,所以直线FN 的斜率k FN =-1k MF=22k ,所以直线FN 的方程为y =22k (x -22),则N ⎝ ⎛⎭⎪⎫0,-2k .①当直线P A 的斜率为12,即k =12时,M (0,2),N (0,-4),F (22,0), 因为MF ⊥FN ,所以圆心为(0,-1),半径为3, 所以△FMN 的外接圆的方程为x 2+(y +1)2=9. ②联立⎩⎪⎨⎪⎧y =k (x +4),x 216+y 28=1,消去y 并整理得(1+2k 2)x 2+16k 2x +32k 2-16=0, 解得x 1=-4或x 2=4-8k 21+2k 2,所以P ⎝ ⎛⎭⎪⎫4-8k 21+2k 2,8k 1+2k 2,直线AN 的方程为y =-12k (x +4), 同理可得Q ⎝ ⎛⎭⎪⎫8k 2-41+2k 2,-8k 1+2k 2, 所以P ,Q 关于原点对称,即PQ 过原点. 所以△APQ 的面积S =12OA ·(y P -y Q )=2×16k1+2k 2=322k +1k≤82,当且仅当2k =1k ,即k =22时,取等号. 所以△APQ 的面积的最大值为8 2.探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).[命题角度2] 求几何量、某个参数的取值范围【例2-2】 (2016·全国Ⅱ卷)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,AM =AN 时,求△AMN 的面积; (2)当2AM =AN 时,求k 的取值范围. 解 (1)设M (x 1,y 1),则由题意知y 1>0. 当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由AM =AN 及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得 (3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk 2,故AM =|x 1+t |1+k 2=6t (1+k 2)3+tk 2. 由题设知,直线AN 的方程为y =-1k (x +t ),故同理可得AN =6k t (1+k 2)3k 2+t. 由2AM =AN 得23+tk 2=k 3k 2+t, 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2. t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0, 即k -2k 3-2<0. 由此得⎩⎨⎧k -2>0,k 3-2<0,或⎩⎨⎧k -2<0,k 3-2>0,解得32<k <2.因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.(3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2】 (2017·苏、锡、常、镇模拟)如图,在平面直角坐标系xOy 中,设点M (x 0,y 0)是椭圆C :x 24+y 2=1上一点,从原点O 向圆M :(x -x 0)2+(y -y 0)2=r 2作两条切线分别与椭圆C 交于点P ,Q ,直线OP ,OQ 的斜率分别记为k 1,k 2.(1)若圆M 与x 轴相切于椭圆C 的右焦点,求圆M 的方程;(2)若r =255.①求证:k 1k 2=-14;②求OP ·OQ 的最大值.(1)解 由题意可知c =a 2-b 2=4-1=3,则椭圆C 右焦点的坐标为(3,0),因为圆M 与x 轴相切于椭圆C 的右焦点,且点M 是椭圆上一点,所以圆心M 的坐标为⎝⎛⎭⎪⎫3,±12,半径为12, 所以圆M 的方程为(x -3)2+⎝ ⎛⎭⎪⎫y +122=14或 (x -3)2+⎝ ⎛⎭⎪⎫y -122=14. (2)①证明 因为圆M 与直线OP :y =k 1x 相切, 所以|k 1x 0-y 0|k 21+1=255, 即(4-5x 20)k 21+10x 0y 0k 1+4-5y 20=0,同理可得(4-5x 20)k 22+10x 0y 0k 2+4-5y 20=0,所以k 1,k 2是方程(4-5x 20)k 2+10x 0y 0k +4-5y 20=0的两个实根,所以k 1k 2=4-5y 204-5x 20=4-5⎝ ⎛⎭⎪⎫1-14x 204-5x 20=-1+54x 204-5x 20=-14. ②解 设点P (x 1,y 1),Q (x 2,y 2),联立⎩⎪⎨⎪⎧y =k 1x ,x 24+y 2=1, 解得x 21=41+4k 21,y 21=4k 211+4k 21, 同理可得x 22=41+4k 22,y 22=4k 221+4k 22,所以OP 2·OQ 2=⎝ ⎛⎭⎪⎫41+4k 21+4k 211+4k 21·⎝ ⎛⎭⎪⎫41+4k 22+4k 221+4k 22 =4(1+k 21)1+4k 21·4(1+k 22)1+4k 22=4+4k 211+4k 21·1+16k 211+4k 21≤⎝ ⎛⎭⎪⎫5+20k 2122(1+4k 21)2=254(当且仅当k 1=±12时取等号),所以OP ·OQ 的最大值为52.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关:(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;① 利用基本不等式求出参数的取值范围;② 利用函数的值域的求法,确定参数的取值范围.。
高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题

第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。
2019届高考理科数学一轮复习精品学案:第54讲圆锥曲线的综合问题第3课时(含解析)

第 3 课时 定点﹑定值﹑研究性问题【讲堂考点研究】例 1[ 思路点拨 ] (1) 设 ( , y )( y ≠ 0), 由题意与两点间的距离公式可得结论 ;(2) 设直线 的方程为C xMN x=my+n , M ( x 1, y 1), N ( x 2, y 2), 联立直线与抛物线的方程联合韦达定理可得 y 1y 2 的表达式 , 联合条件中的斜率关系可获得 y 1y 2 的值 , 从而成立一个等式 , 可求得结果 .解 :(1) 设 C ( x , y )( y ≠ 0), 因为 B 在 x 轴上且 BC 的中点在 y 轴上 , 因此 B ( -x ,0), 由=, 得( x+1) 2=( x- 1) 2 +y 2,化简得24 ,因此点 C 的轨迹 Γ 的方程为24 ( y ≠0).y = xy = x(2) 证明 : 设直线 MN 的方程为 x=my+n , M ( x 1, y 1), N ( x 2, y 2),由得 y 2- 4my-4n=0, 因此 y 1y 2=- 4n.k MP = = = , 同理 k NP =,因此 + =2, 化简得 y 1y 2=4,又因为 y 1y 2=- 4n , 因此 n=-1, 因此直线 MN 过定点 ( - 1,0) . 变式题解:(1) 如图 , 因为☉ C 1 内切☉ C 2 于点 A , 因此 r- 1=2, 解得 r= 3, 因此☉ C 2 的方程为 ( x- 1) 2+y 2 =9.因为直线 PQ ,PR 分别切☉ C 1, ☉ C 2 于 Q , R , 因此 C 1Q ⊥ PQ ,C 2R ⊥ PR ,连结 PM , 在 Rt △ PQM 与 Rt △ PRM 中 , = = , = , 因此 =,因此 |MC 1|+|MC 2|= +|C 1Q|+|MC 2|=+|C 1Q|+|C 2M|=|C 1Q|+|C 2 R|=4>2=|C 1C 2| ,因此点的轨迹 C 是以, C为焦点 , 长轴长为 4 的椭圆 ( 除掉长轴端点 ),12因此 M 的轨迹 C 的方程为 + =1( y ≠0) .(2) 证明 : 依题意 , 设直线 MN 的方程为 x=ty- 1( t ≠ 0), M ( x 1 , y 1), N ( x 2, y 2),则 M'( x1, -y 1)且 x1≠ x2, y1+y2≠0,联立消去 x,并整理得(3 t 2+4) y2- 6ty- 9=0,=( - 6t )2- 4×( - 9)(3 t 2+4) =144t 2+144>0,则 y1+y2=, y1y2=-, 直线 M'N 的方程为 y+y1=( x-x1), 令y=0,得x=1=1-1=-4, +x = =- =故直线 M'N过定点( - 4,0) .例2 [ 思路点拨 ] (1) 由题意求得 a2, c2,再由 b2=a2-c 2求得 b2,从而可得椭圆的标准方程;(2) 证明 :设 (3 ,y 3),( 4,y4),可求得直线的方程 , 与椭圆方程联立 , 由韦达定理可求得 1 3 , 进一C xD x AR y y =- 步可求 C的坐标,同理得 D的坐标,从而可得k2与 k1的关系式,化简运算即可 .解 :(1)由题意得解得22 2∴b=a -c =5,故椭圆 E 的标准方程为+ =1.(2) 证明 : 设C( x3, y3), D( x4, y4),由已知得 , 直线的方程为y= (x-1), 即 1AR x= y+ . 联立消去 x 并整理,得y2+y- 4=0,则y y =-,∵y∴y =,1 31≠ 0, 3∴x 3= y 3 +1= · +1=,∴C, .同理D , ,∴k 2== =,∵y 1=k 1( x 1+2), y 2=k 1( x 2+2),∴k 2== = ,∴ =为定值.变式题解:(1) 设点 P 的坐标为 ( x , y ), 因为定点 F ,0 在定直线 l : x=- 2 的右边 ,且动点 P 到定直线 l : x=- 2 的距离比到定点 F,0 的距离大 ,因此x>- 2 且 2 ,=|x+ |-化简得=x+ , 即 y 2=2x ,因此轨迹 C 的方程为 y 2=2x.(2) 证明 :设 (2,2 t 1),(2 ,2 t 2)(t 1· 2≠ 0), 则 (2 - 2,2t 1), (2 - 2,2 t 2),ABt = =因为 A , D , B 三点共线 , 因此 2t 2(2 - 2) =2t 1(2 - 2), 因此 ( t 1 -t 2)( t 1t 2+1) =0,又t 1≠2,因此 1 2 1.直线的方程为y= x, 令x=-2, 得M -2,- .t t t =- OA同理可得N - 2, -, 因此以线段MN为直径的圆的方程为( x+2)( x+2) + y+y+ =0,即 ( x+2) 2+y2+2y+=0.将 t 1t 2=- 1代入上式,可得( x+2)2+y2- 2( t 1+t 2) y- 4=0,令 y=0,得 x=0或 x=- 4,故以线段MN为直径的圆被x 轴截得的弦长为定值4.例 3 [ 思路点拨 ] (1)设M点坐标为(x,y),直接找出对于x, y 的方程,这就是曲线C的轨迹方程;(2)设P( m,0),由∠ APF=∠ BPF可知直线BP与 AP的倾斜角互补,即 k BP+k AP=0,获得对于 m的方程,求出 m的值即可 .解 :(1)设M(x,y),则依题意有= ,整理得+ =1,即为曲线 C的方程 .(2)存在 .设直线 AB的方程为 x=ty+ 1( t ≠0), A( ty 1+1, y1), B( ty 2+1, y2), P( m,0),则由消去 x,得3( ty+ 1)2+4y2 =12,即(3 t 2+4) y2+6ty- 9=0,则 y1+y2=, y1y2=,由∠ APF=∠BPF,得 k +k =0,即+ =0,AP BP整理得 2ty1y2+(1 -m)( y1+y2) =0,因此 2t ·(1 ) ·0, 解得 4 + -m = m= .综上知 , 在x轴上存在点P(4,0)知足题意 .变式题解:(1)依题意可知,△PF1F2的周长为|PF1|+|PF2|+|F1F2|,因为=2,故 |PF1|+|PF 2|= 4,因为|PF1|+|PF 2|>|F 1F2| ,故点 P 的轨迹 C1是以 F1, F2为焦点的椭圆的一部分, 且a=2, c=1, 故b=, 故C1的方程为+=1( x≠±2), C2的方程为 y2=4x.(2)假定存在 . 设 A( x1, y1), B( x2, y2), M( x0, y0),设直线 AB的方程为 x=my+1,由得 y2- 4my-4=0,故 y1+y2=4m, y1y2=- 4,又k +k = + 2 = ,MA MB因此= ,2+y2)( x0- 1) 2即 - ( y1+y2)( x0- 1) +my0( y1 +2my1y2( x0- 1) =2my0y1y2,即 m( x +1)( x -my - 1) =0,0 0 0因为直线 AB不经过点 M,因此 x -my - 1≠0,故m=0 或 x +1=0.0 0 0当 m=0时, C1上除点1, ±外,均切合题意;当 m≠0时, M为-1,和- 1, -都切合题意.【备选原因】例 1 为直接法求点的轨迹方程及直线恒过定点问题, 需要获得含参数的直线方程, 从而确立定点状况 ; 例 2 为定值问题 , 定值问题常常需设多个参数, 经过合理化简与运算消去参数, 得出定值 , 此题要注意“点差法”的应用; 例 3 为研究性问题, 考察能否存在相关直线, 一般要假定存在, 在假定的前提下进行推导 , 假如知足要求或条件, 则存在此直线, 不然不存在.1 [ 配合例 1 使用 ] [ 2017·哈尔滨一模 ]已知两点A( -,0), B(,0),动点P在x轴上的射影是Q,且2·=.(1)求动点 P 的轨迹 C的方程;(2) 过 (1,0) 作相互垂直的两条直线分别交轨迹C 于 , 和,,且 1, 2 分别是 , 的中点,求证:直线F G H M N E E GHMNE 1 E 2 恒过定点 .解 :(1) 设点 P 的坐标为 ( x , y ), 则点 Q 的坐标为 ( x ,0) .∵2· = , ∴2[( - -x )( -x ) +y 2] =x 2,∴点 P 的轨迹 C 的方程为 + =1.(2) 证明 : 当两直线的斜率都存在且不为0 时 , 设 l GH : y=k ( x- 1), G ( x 1, y 1), H ( x 2, y 2),l MN : y=- ( x- 1), M ( x 3, y 3), H ( x 4, y 4),联立得 (2 k 2+1) x 2- 4k 2x+2k 2- 4=0, >0 恒成立 ,∴中点1的坐标为,.∴GH E同理 , MN 中点 E 2的坐标为 , , ∴ =,∴直线 E 1E 2 的方程为 y=x- , ∴直线 E 1E 2 过点 ,0 .当两直线的斜率分别为0 和不存在时 , 直线1 2的方程为 0, 也过点 ,0.E E y=综上所述 , 直线 E 1E 2 过定点 ,0 .2 [ 配合例 2 使用 ] [ 2017·宜宾二诊 ]已知椭圆 C : + =1( a>b>0) 的焦距为 2, 点 1,在 C 上 .(1) 求 C 的方程 ;(2) 过原点且不与坐标轴重合的直线l 与C 有两个交点 , , 点A 在 x 轴上的射影为, 线段的中点为 ,A BMAMN直线交 C 于另一点 ,证明:AP· AB 为定值.BN P k k解 :(1) 由题意知 , C 的焦点坐标为 ( ±1,0),2a= + = + =4, b=,因此椭圆 C 的方程为 + =1.(2) 证明 : 设 A ( x 1, y 1), P ( x 2, y 2)( x 1≠ x 2), 则 B ( -x 1, -y 1), N x 1,,由点 A , P 在椭圆 C 上, 得两式相减 , 得 =- .k = = ·, k =.BNBP因为 B , N , P 三点共线 , 因此 k BN =k BP , 即 = ·,因此 k AB · k AP = ·= · · = · =-1, 为定值 .3 [ 配合例 3 使用 ] [ 2017·大同三模 ]椭圆 C : + =1( a>b>0) 的一个焦点为 F 1( - ,0), M (1, y )( y>0) 为椭圆上的一点 , △ MOF 1的面积为 .(1) 求椭圆 C 的标准方程 .(2) 若点T 在圆2 21 上, 能否存在过点 (2,0) 的直线 l 交椭圆 C 于点 , 使= ( + )? 若存在 , 求出x +y =A B直线 l 的方程 ; 若不存在 , 请说明原因 .解 :(1) 由椭圆的一个焦点为F 1( - ,0) 知 c= , 即 a 2-b 2=3. ①又因为△1的面积为 , 即× ×y= , 得 y= , 因此 M 1,,MOF代入椭圆方程 , 得 + =1. ②由 ①② 解得 a 2=4, b 2=1.故椭圆 C 的标准方程为 +y 2=1.(2) 假定存在过点 A (2,0) 的直线 l 切合题意 , 则联合图形 ( 图略 ) 易知直线 l 的斜率必存在 , 于是可设直线 l 的方程为 y=k ( x- 2),由得 (1 +4k 2) x 2- 16k 2x+16k 2- 4=0,( * )解得 x B =,因此 y B =-, 即 B , -,因此+ = ,- ,则 = ,-.因为点 T 在圆 x 2+y 2=1 上, 因此2+ -2=1,化简得 1764242- 5 0, 解得2( 负值舍去 ), 因此 k=± ,k - k = k =经查验 , 此时( * ) 对应的鉴别式>0, 知足题意 .故存在知足条件的直线 l , 其方程为 y=± ( x- 2) .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.8圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。
(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。
3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。
★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 .点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28y x =的准线2x =-与x 轴的交点为Q (-2 , 0), 于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C. 【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x (2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OM K , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程;(Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BM k k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11((,22C D ,它的中点不是N ,不合题意 设直线l 的方程为11()2y k x -=- 将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯ 直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11((,22C D , 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-,将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-, 将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。
[解析]设弦所在直线与椭圆交于),(),,(2211y x N y x M 两点,则14162121=+y x ,14162222=+y x ,两式相减得:041622122212=-+-y y x x , 化简得0))((4))((21212121=-++-+y y y y x x x x , 把2,42121=+=+y y x x 代入得212112-=--=x x y y k MN故所求的直线方程为)2(211--=-x y ,即042=-+y x3.已知直线y =-x +1与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点,且线段AB 的中点在直线L :x-2y =0上,求此椭圆的离心率[解析] 设),(),,(2211y x B y x A ,AB 的中点为),(00y x M ,代入椭圆方程得1221221=+b y a x ,1222222=+b y a x ,两式相减,得2212122121y y x x b x x a y y -+=--+. AB 的中点为),(00y x M 在直线l 上,0200=-∴y x ,222002121==++∴y x y y x x ,而11221-==--AB k x x y y222122=∴=∴e a b 题型3:与弦长有关的问题[例3](山东泰州市联考)已知直线k x y +=2被抛物线y x 42=截得的弦长AB 为20,O 为坐标原点.(1)求实数k 的值;(2)问点C 位于抛物线弧AOB 上何处时,△ABC 面积最大?【解题思路】用“韦达定理”求弦长;考虑△ABC 面积的最大值取得的条件[解析](1)将k x y +=2代入y x 42=得0482=--k x x , 由△01664>+=k 可知4->k ,弦长AB 2016645=+⨯=k ,解得1=k ;(2)当1=k 时,直线为12+=x y ,要使得内接△ABC 面积最大,则只须使得2241=⨯='C Cx y ,即4=C x ,即C 位于(4,4)点处. 【名师指引】用“韦达定理”不要忘记用判别式确定范围 【新题导练】4. (山东省济南市高三统一考试)已知椭圆22122:1(0)x y C a b a b+=>>与直线10x y +-=相交于两点A B 、.(1)当椭圆的半焦距1c =,且222,,a b c 成等差数列时,求椭圆的方程; (2)在(1)的条件下,求弦AB 的长度||AB ;[解析](1)由已知得:2222222b a c b c =+=+,∴222,3b a ==所以椭圆方程为:22132x y += (2)1122(,),(,)A x y B x y ,由2223610x y x y ⎧+=⎨+-=⎩,得25630x x --=∴121263,55x x x x +==-∴12|||5AB x x =-==(文)已知点()A和)B,动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线2y x =-交于D 、E 两点,求线段DE 的长.(文)解:根据双曲线的定义,可知C 的轨迹方程为2212y x -=.设()11,D x y ,()22,E x y , 联立222,1.2y x y x =-⎧⎪⎨-=⎪⎩得2460x x +-=.则12124,6x x x x +=-=-.所以12DE x =-==故线段DE 的长为 考点2:对称问题题型:对称的几何性质及对称问题的求法(以点的对称为主线,轨迹法为基本方法)【新题导练】[例4 ] 若直线l 过圆x 2+y 2+4x -2y =0的圆心M 交椭圆49:22y x C +=1于A 、B 两点,若A 、B 关于点M 对称,求直线l 的方程.[解析] )1,2(-M ,设),(),,(2211y x B y x A ,则2,42121=+-=+y y x x又1492121=+y x ,1492222=+y x ,两式相减得:04922122212=-+-y y x x , 化简得0))((9))((421212121=-++-+y y y y x x x x ,把2,42121=+-=+y y x x 代入得982112=--=x x y y k AB故所求的直线方程为)2(211--=-x y ,即042=-+y x 所以直线l 的方程为 :8x -9y +25=0.5.已知抛物线y 2=2px 上有一内接正△AOB ,O 为坐标原点. 求证:点A 、B 关于x 轴对称;[解析]设),(),,(2211y x B y x A ,||||OB OA = ,22222121y x y x +=+∴22212122px x px x +=+∴,即0)2)((2121=++-p x x x x ,0,0,021>>>p x x ,21x x =∴,21y y -=,故点A 、B 关于x 轴对称6.在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围. [解析] (1)当0=k 时,曲线上不存在关于直线对称的两点.(2)当k≠0时,设抛物线y 2=4x 上关于直线对称的两点),(),,(2211y x B y x A ,AB 的中点为),(00y x M ,则直线AB 直线的斜率为直线k 1-,可设b x ky AB +-=1: 代入y 2=4x 得0442=-+kb ky y =∆016162>+kb k )(*kb y y k y y 4,42121-=⋅-=+k x x k y -=+-=210,2kb y y 2)(21++kb k 242+=,kb k x +=202M 在直线y =kx +3上,3)2(22++=-∴kb k k k kk bk 3222---=∴, 代入)(*得即01)3)(1(2<⋅+-+kk k k ,又032>+-k k 恒成立,所以-1<k <0. 综合(1)(2),k 的取值范围是(-1,0) 考点3 圆锥曲线中的范围、最值问题 题型:求某些变量的范围或最值[例5]已知椭圆22122:1(0)x y C a b a b +=>>与直线10x y +-=相交于两点A B 、.当椭圆的离心率e满足32e ≤≤,且0OA OB ⋅=(O 为坐标原点)时,求椭圆长轴长的取值范围. 【解题思路】通过“韦达定理”沟通a 与e 的关系[解析]由22222210b x a y a b x y ⎧+=⎨+-=⎩,得222222()2(1)0a b x a x a b +-+-=由22222(1)0a b a b =+->,得221a b +>此时222121222222(1),a a b x x x x a b a b-+==++ 由0OA OB ⋅=,得12120x x y y +=,∴12122()10x x x x -++=即222220a b a b +-=,故22221a b a =-由222222c a b e a a-==,得2222b a a e =-∴221211a e =+-e ≤≤得25342a ≤≤2a ≤≤所以椭圆长轴长的取值范围为 【名师指引】求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题 代数方法:建立目标函数,再求目标函数的最值. 【新题导练】7. 已知P 是椭圆C :12422=+y x 的动点,点)0,21(A 关于原点O 的对称点是B ,若|PB|的最小值为23,求点P 的横坐标的取值范围。