[配套k12学习]全国通用版中考数学复习单元测试二方程与不等式

合集下载

【配套K12】[学习]2019中考数学一轮复习 第一部分 教材同步复习 第二章 方程(组)与不等式(

【配套K12】[学习]2019中考数学一轮复习 第一部分 教材同步复习 第二章 方程(组)与不等式(

精品K12教育教学资料
精品K12教育教学资料 第一部分 第二章 第9讲
1.不等式组⎩⎪⎨⎪⎧ 3x -x +,x +32≥1的解集为__-1≤x <3__.
2.某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱.若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元.
(1)问:购买1个温馨提示牌和1个垃圾箱各需多少元?
(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8 000元,问:最多购买垃圾箱多少个?
解:(1)设购买1个温馨提示牌需要x 元,购买1个垃圾箱需要y 元,依题意, 得⎩⎪⎨⎪⎧ 3x +4y =580,x =y -40,解得⎩⎪⎨⎪⎧ x =60,y =100.
答:购买1个温馨提示牌需要60元,购买1个垃圾箱需要100元.
(2)设购买垃圾箱m 个,则购买温馨提示牌(100-m )个,依题意得,60(100-m )+100m ≤8 000,
解得m ≤50.
答:最多购买垃圾箱50个.。

配套K12中考数学 第二章 方程(组)与不等式(组)第2节 一元二次方程及应用(无答案)

配套K12中考数学 第二章 方程(组)与不等式(组)第2节 一元二次方程及应用(无答案)

第二节一元二次方程及应用,贵阳五年中考真题及模拟) 一元二次方程的应用(1次)1.(2013贵阳21题10分)2010年年底某市汽车拥有量为100万辆,而截止到2012年年底,该市的汽车拥有量已达到144万辆.(1)求2010年年底至2012年年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年年底汽车拥有量的10%,求2012年年底至2013年年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.2.(2015贵阳考试说明)关于x的一元二次方程(a-6)x2-8x+6=0有实数根,则整数a的最大值是( ) A.6 B.7 C.8 D.93.(2015贵阳考试说明)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A.289(1-x)2=256 B.256(1-x)2=289C.289(1-2x)=256 D.256(1-2x)=2894.(2015贵阳模拟)若一元二次方程x2-x-1=0的两根分别为x1、x2,则1x1+1x2=________.5.(2015贵阳模拟)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?,中考考点清单)一元二次方程的概念1.只含有________个未知数,未知数的最高次数是________,像这样的________方程叫一元二次方程.其一般形式是____________.【温馨提示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法:(1)当b =0,c ≠0时,x 2=-c a ,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解;(3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由________来判定,我们将________称为根的判别式.4.判别式与根的关系:(1)当b 2-4ac>0⇔方程有________的实数根; (2)当b 2-4ac<0⇔方程没有实数根;(3)当b 2-4ac =0⇔方程有________的实数根.【温馨提示】(1)一元二次方程有实数根的前提是b 2-4ac≥0.(2)当a 、c 异号时Δ>0.一元二次方程的应用(高频考点)5.列一元二次方程解应用题的步骤:①审题;②设未知数;③列方程;④解方程;⑤检验;⑥做结论.6.一元二次方程应用问题常见的等量关系:(1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用,利润率=利润÷进货价.【方法点拨】利用方程根的意义,把方程的根代入方程中,是解决一元二次方程有关问题的一种重要方法,我们可以把这种方法称为让根回家.,中考重难点突破)一元二次方程的概念及解法【例1】(1)(2014白银中考)若方程(m-1)xm2+1+mx-5=0是关于x的一元二次方程,则m=________.(2)解方程:(x-1)(2x-1)=3(x-1).【解析】第(2)题中,方程两边都含有因式x-1,如果在方程两边同时约去x-1,就会导致方程失去一个根x =1,本题可先移项,利用因式分解法求解.【学生解答】【点拨】解一元二次方程时,不能随便在方程两边约去含未知数的代数式,否则,可能导致方程失去一个根.1.(2015贵阳考试说明)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为( )A.-2 B.-1 C.1 D.22.(2015贵阳考试说明)用配方法解一元二次方程x2+4x-5=0,此方程可变形为( )A.(x+2)2=9 B.(x-2)2=9C.(x+2)2=1 D.(x-2)2=13.用因式分解法解方程:(1)(2015广东中考)x2-3x+2=0;(2)(2015兰州中考)x2-1=2(x+1).一元二次方程根与系数的关系和判别式【例2】(2015贵阳考试说明)已知关于x的一元二次方程x2+2(m+1)x+m2-1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足(x1-x2)2=16-x1x2,求实数m的值.【学生解答】【点拨】通过根与系数关系求得的m值必须满足Δ≥0.4.(2014黄冈中考)若α,β是一元二次方程x2+2x-6=0的两根,则α2+β2=( )A.-8 B.32 C.16 D.40一元二次方程的应用【例3】(2015咸宁中考)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2013年销售烟花爆竹20万箱,到2015年烟花爆竹销售量为9.8万箱.求咸宁市2013年到2015年烟花爆竹年销售量的平均下降率.【解析】先设咸宁市2013年到2015年烟花爆竹年销售量的平均下降率是x,那么把2013年烟花爆竹销售量看作单位1,在此基础上可求2014年的年销售量,以此类推可求2015年的年销售量,而2015年的年销售量为9.8万箱,据此列方程即可.【学生解答】5.(2015武威中考)近年来某县加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元.设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是( )A.2500x2=3600B.2500(1+x)2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=36006.(2016原创预测)贵阳市南明区某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,若商店准备获利2000元,则应进货多少个?定价为多少元?。

配套K12山东省中考数学一轮复习第二章方程与不等式第6讲分式方程及其应用过预测练习

配套K12山东省中考数学一轮复习第二章方程与不等式第6讲分式方程及其应用过预测练习

分式方程及其应用
考向分式方程的解法
1.[2018·黄石]分式方程4x +1x2-1-52(x -1)=1的解为x =12
. 考向分式方程的解
2.[2018·鹤岗]已知关于x 的分式方程m -2x +1
=1的解是负数,则m 的取值范围是 (D ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠2
3.[2018·齐齐哈尔]若关于x 的方程1x -4+m x +4=m +3x2-16无解,则m 的值为-1或5或-13.
考向分式方程的应用
4.[2018·深圳]某超市预测某饮料有畅销,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这款饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价是多少元?
(2)若两次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
解:(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(x +2)元.
由题意,得3·1600x =6000x +2
, 解得x =8.
经检验,x =8是原分式方程的解,且符合题意. 答:第一批饮料进货单价为8元.
(2)设销售单价为m 元.
由题意,得(m -8)·16008+(m -10)·600010
≥1200. 解得m ≥11.
答:销售单价至少为11元.。

【配套K12】中考数学 考点跟踪突破 第二章 方程与不等式自我测试

【配套K12】中考数学 考点跟踪突破 第二章 方程与不等式自我测试

第二章 方程与不等式一、选择题(每小题6分,共30分)1.(2015·大连)方程3x +2(1-x)=4的解是( C )A .x =25B .x =65C .x =2D .x =1 2.(2015·云南)下列一元二次方程中,没有实数根的是( A )A .4x 2-5x +2=0B .x 2-6x +9=0C .5x 2-4x -1=0D .3x 2-4x +1=03.(2015·广州)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为( B ) A .-4 B .4 C .-2 D .24.(2015·陕西)不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为( C )A .8B .6C .5D .45.(2015·玉林)某次列车平均提速v km /h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km .设提速前列车的平均速度为x km /h ,则列方程是( A )A .s x =s +50x +vB .s x +v =s +50xC .s x =s +50x -vD .s x -v =s +50x二、填空题(每小题6分,共30分)6.(2015·咸宁)将x 2+6x +3配方成(x +m)2+n 的形式,则m 等于__3__.7.(2015·怀化)方程2x -11+x=0的解是__x =-2__. 8.(2015·荆门)王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了__5__千克.9.(2015·咸宁)如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,则x 2-y 2的值为__-54__. 10.(2015·武汉)定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3等于__10__.三、解答题(共40分)11.(9分)解方程(组):(1)(2015·淮安)⎩⎪⎨⎪⎧x -2y =3①,3x +y =2②; 解:①+②×2得:7x =7,即x =1,把x =1代入①得:y =-1,则方程组的解为⎩⎪⎨⎪⎧x =1,y =-1(2)(2015·徐州)x 2-2x -3=0;解:因式分解得:(x +1)(x -3)=0,即x +1=0或x -3=0,解得:x 1=-1,x 2=3(3)(2015·广安)1-x x -2=x 2x -4-1.解:化为整式方程得:2-2x =x -2x +4,解得:x =-2,把x =-2代入原分式方程中,等式两边相等,经检验x =-2是分式方程的解12.(7分)(2015·永州)已知关于x 的一元二次方程x 2+x +m 2-2m =0有一个实数根为-1,求m 的值及方程的另一实根.解:设方程的另一根为x 2,则-1+x 2=-1,解得x 2=0.把x =-1代入x 2+x +m 2-2m=0,得(-1)2+(-1)+m 2-2m =0,即m(m -2)=0,解得m 1=0,m 2=2.综上所述,m 的值是0或2,方程的另一实根是013.(8分)(2015·呼和浩特)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求出满足条件的m 的所有正整数值. 解:⎩⎪⎨⎪⎧2x +y =-3m +2①,x +2y =4②,①+②得:3(x +y)=-3m +6,即x +y =-m +2,代入不等式得:-m +2>-32,解得:m <72,则满足条件m 的正整数值为1,2,314.(8分)(2015·十堰)已知关于x 的一元二次方程x 2-(2m +3)x +m 2+2=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1,x 2,且满足x 12+x 22=31+|x 1x 2|,求实数m 的值.解:(1)∵关于x 的一元二次方程x 2-(2m +3)x +m 2+2=0有实数根,∴Δ≥0,即(2m+3)2-4(m 2+2)≥0,∴m ≥-112(2)根据题意得x 1+x 2=2m +3,x 1x 2=m 2+2,∵x 12+x 22=31+|x 1x 2|,∴(x 1+x 2)2-2x 1x 2=31+|x 1x 2|,即(2m +3)2-2(m 2+2)=31+m 2+2,解得m =2或m =-14(舍去),∴m =215.(8分)(2015·哈尔滨)华昌中学开学初在金利源商场购进A ,B 两种品牌的足球,购买A 品牌足球花费了2500元,购买B 品牌足球花费了2000元,且购买A 品牌足球数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌足球多花30元.(1)求购买一个A 品牌,一个B 品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A ,B 两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A ,B 两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B 品牌足球?解:(1)设购买一个A 品牌的足球需x 元,则购买一个B 品牌的足球需(x +30)元,由题意得2500x =2000x +30×2,解得:x =50,经检验x =50是原方程的解,x +30=80.答:一个A 品牌的足球需50元,则一个B 品牌的足球需80元 (2)设此次可购买a 个B 品牌足球,则购进A 牌足球(50-a)个,由题意得50×(1+8%)(50-a)+80×0.9a≤3260,解得a≤3119,∵a 是整数,∴a 最大等于31,答:华昌中学此次最多可购买31个B 品牌足球。

中考数学总复习 第二章 方程与不等式综合测试题(含答案)

中考数学总复习 第二章 方程与不等式综合测试题(含答案)

方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B )A. 3x -2=3B. -x +6=2xC. 4-2(x -1)=1D. 3x +1=02.下列各项中,是二元一次方程的是(B )A. y +12x B. x +y 3-2y =0 C. x =2y +1 D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D ) A. -1B. 0C. 2D. 3 4.分式方程 x x -2-1x=0的根是(D ) A. x =1 B. x =-1C. x =2D. x =-2 5.分式方程x 2x -1+x1-x =0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =2900 7.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A ) A. 1B. 2C. 3D. 4 8.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A ) A. 第一象限 B. 第二象限C. 第三角限D. 第四象限解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限. 9.关于x 的分式方程a x +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确 10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图)A. 2B. 1C. 6D. 10解:∵x >0,∴x 2+9x =x +9x ≥2x ·9x =6, 则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__.12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__. 16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本题有8小题,共66分)17.(本题8分)解下列方程(组).(1)解方程:x x +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1.解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.② ②-①,得3y =3,∴y =1.将y =1代入①,得x =83. ∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x . 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答. 解:设13x -1=y ,则原方程化为12y =12+2y , 解得y =-13.当y =-13时,有13x -1=-13,解得x =-23. 经检验,x =-23是原方程的根. ∴原方程的根是x =-23. 19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx+a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0,∴x =2(m +2)±4m 2=2+m ±2m . ∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0,∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49.20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解. (1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1.(2)∵3+2x >m +3x ,∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2,∴2<3-m ≤3,∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7.(2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t.(2)300×8000-400×1000-15000-97200=1887800(元).答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9, 解得x =90.经检验,x =90是分式方程的解且符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件). 由题意,得120×50×45+y ×50×15-4950≥650, 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意.∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬.(2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得100z +80(16-z -1)+50=1490,解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.。

[配套K12]2年中考1年模拟备战2018年中考数学 第二篇 方程与不等式 专题08 一元二次方程(含解析)

[配套K12]2年中考1年模拟备战2018年中考数学 第二篇 方程与不等式 专题08 一元二次方程(含解析)

第二篇 方程与不等式专题08 一元二次方程☞解读考点☞2年中考【2017年题组】一、选择题1.(2017内蒙古包头市)若关于x 的不等式12a x -<的解集为x <1,则关于x 的一元二次方程210x ax ++=根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定 【答案】C .点睛:本题考查了根的判别式:一元二次方程20ax bx c ++=(a ≠0)的根与△=24b ac -有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 考点:1.根的判别式;2.不等式的解集.2.(2017内蒙古呼和浩特市)关于x 的一元二次方程22(2)10x a a x a +-+-=的两个实数根互为相反数,则a 的值为( )A .2B .0C .1D .2或0 【答案】B . 【解析】试题分析:设方程的两根为1x ,2x ,根据题意得120x x += ,所以220a a -=,解得a =0或a =2,当a =2时,方程化为210x += ,△=﹣4<0,故a =2舍去,所以a 的值为0.故选B . 考点:根与系数的关系.3.(2017四川省凉山州)若关于x 的方程2230x x +-=与213x x a=+-有一个解相同,则a 的值为( ) A .1 B .1或﹣3 C .﹣1 D .﹣1或3 【答案】C . 【解析】试题分析:解方程2230x x +-=,得:x 1=1,x 2=﹣3,∵x =﹣3是方程213x x a=+-的增根,∴当x =1时,代入方程213x x a =+-,得:21131a=+-,解得a =﹣1.故选C . 点睛:本题考查了解一元二次方程﹣因式分解法,分式方程的解.此题属于易错题,解题时要注意分式的分母不能等于零.考点:1.解一元二次方程﹣因式分解法;2.分式方程的解.4.(2017四川省泸州市)已知m ,n 是关于x 的一元二次方程222240x tx t t -+-+=的两实数根,则(2)(2)m n ++的最小值是( )A .7B .11C .12D .16 【答案】D .点睛:本题考查了一元二次方程根与系数的关系.注意还需考虑有实数根时t 的取值范围,这是本题最易漏掉的条件.解此类题目要把代数式变形为两根之积或两根之和的形式.考点:1.二次函数的性质;2.最值问题;3.二次函数的最值;4.根与系数的关系;5.综合题. 5.(2017四川省绵阳市)关于x 的方程022=++n mx x 的两个根是﹣2和1,则mn 的值为( ) A .﹣8 B .8 C .16 D .﹣16 【答案】C . 【解析】试题分析:∵关于x 的方程022=++n mx x 的两个根是﹣2和1,∴2m -=﹣1,2n=﹣2,∴m =2,n =﹣4,∴mn =(﹣4)2=16.故选C .考点:根与系数的关系.6.(2017宁夏)关于x 的一元二次方程()21320a x x -+-=有实数根,则a 的取值范围是( )A .18a >- B .18a ≥- C .18a >-且1a ≠ D .18a ≥-且1a ≠ 【答案】D . 【解析】试题分析:根据题意得a ≠1且△=32﹣4(a ﹣1)•(﹣2)≥0,解得18a ≥-且a ≠1.故选D .考点:根的判别式.7.(2017安徽省)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( )A .16(12)25x +=B .25(12)16x -=C .216(1)25x += D .225(1)16x -= 【答案】D .考点:由实际问题抽象出一元二次方程.8.(2017山东省东营市)若244x x -+ x +y 的值为( ) A .3 B .4 C .6 D .9 【答案】A . 【解析】试题分析:根据题意得:244x x -+=0,所以244x x -+=0,即(x ﹣2)2=0,2x ﹣y ﹣3=0,所以x =2,y =1,所以x +y =3.故选A .点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.考点:1.解一元二次方程﹣配方法;2.非负数的性质:绝对值;3.非负数的性质:算术平方根. 9.(2017山东省泰安市)一元二次方程2660x x --=配方后化为( )A .2(3)15x -=B .2(3)3x -=C . 2(3)15x +=D .2(3)3x += 【答案】A . 【解析】试题分析:方程整理得:x 2﹣6x =6,配方得:x 2﹣6x +9=15,即2(3)15x -=,故选A .考点:1.解一元二次方程﹣配方法;2.一次方程(组)及应用.10.(2017湖北省荆州市)规定:如果关于x 的一元二次方程20ax bx c ++=(a ≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程2280x x +-=是倍根方程;②若关于x 的方程220x ax ++=是倍根方程,则a =±3;③若关于x 的方程260ax ax c -+=(a ≠0)是倍根方程,则抛物线26y ax ax c =-+与x 轴的公共点的坐标是(2,0)和(4,0); ④若点(m ,n )在反比例函数4y x=的图象上,则关于x 的方程250mx x n ++=是倍根方程. 上述结论中正确的有( )A .①②B .③④C .②③D .②④ 【答案】C . 【解析】③关于x 的方程260ax ax c -+=(a ≠0)是倍根方程,∴x 2=2x 1,∵抛物线26y ax ax c =-+的对称轴是直线x =3,∴抛物线26y ax ax c =-+与x 轴的交点的坐标是(2,0)和(4,0),故③正确; ④∵点(m ,n )在反比例函数4y x =的图象上,∴mn =4,解250mx x n ++=得x 1=﹣2m ,x 2=﹣8m,∴x 2=4x 1,∴关于x 的方程250mx x n ++=不是倍根方程; 故选C .考点:1.反比例函数图象上点的坐标特征;2.根的判别式;3.根与系数的关系;4.抛物线与x 轴的交点;5.综合题.11.(2017白银)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x +2×20x =32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x +2×20x ﹣2x 2=570 【答案】A . 【解析】试题分析:设道路的宽为xm ,根据题意得:(32﹣2x )(20﹣x )=570,故选A . 考点:由实际问题抽象出一元二次方程.12.(2017贵州省六盘水市)三角形的两边a 、b 的夹角为60°且满足方程240x -+=,则第三边的长是( )A B .C .D .【答案】A . 【解析】点睛:本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解直角三角形. 考点:1.解一元二次方程﹣因式分解法;2.解直角三角形.13.(2017四川省攀枝花市)关于x 的一元二次方程2(1)210m x x ---=有两个实数根,则实数m 的取值范围是( )A .m ≥0B .m >0C .m ≥0且m ≠1D .m >0且m ≠1 【答案】C . 【解析】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△≥0时,方程有两个实数根”是解题的关键.考点:根的判别式. 二、填空题14.(2017四川省内江市)设α、β是方程(1)(4)5x x +-=-的两实数根,则33βααβ+= . 【答案】47. 【解析】试题分析:方程(1)(4)5x x +-=-可化为2310x x -+= ,∵α、β是方程(1)(4)5x x +-=-的两实数根,∴α+β=3,αβ=1,∴222=(+)2αβαβαβ+-=7,4422222=()2αβαβαβ++-=47,∴33βααβ+ =44αβαβ+=47,故答案为:47.点睛:本题考查了根与系数的关系,难度较大,关键是根据已知条件对33βααβ+进行变形. 考点:1.根与系数的关系;2.条件求值.15.(2017四川省眉山市)已知一元二次方程2320x x --=的两个实数根为1x ,2x ,则12(1)(1)x x --的值是 . 【答案】﹣4. 【解析】试题分析:∵一元二次方程2320x x --=的两个实数根为1x ,2x ,∴123x x +=、122x x =-,∴12(1)(1)x x --=1212()1x x x x -++=﹣2﹣3+1=﹣4.故答案为:﹣4.考点:根与系数的关系.16.(2017德州)方程3x (x ﹣1)=2(x ﹣1)的解为 . 【答案】1或23. 【解析】考点:1.解一元二次方程﹣因式分解法;2.等式的性质;3.解一元一次方程.17.(2017枣庄)已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则a 的取值范围是 . 【答案】a >﹣1且a ≠0. 【解析】试题分析:由题意得a ≠0且△=(﹣2)2﹣4a (﹣1)>0,解得a >﹣1且a ≠0.故答案为:a >﹣1且a ≠0.考点:根的判别式.18.(2017山东省泰安市)关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为 . 【答案】k >54. 【解析】试题分析:根据题意得△=(2k ﹣1)2﹣4(k 2﹣1)<0,解得k >54.故答案为:k >54. 考点:根的判别式.19.(2017山东省淄博市)已知α,β是方程2340x x --=的两个实数根,则23a αβα+-的值为 .【答案】0. 【解析】试题分析:根据题意得α+β=3,αβ=﹣4,所以原式=a (α+β)﹣3α=3α﹣3α=0.故答案为:0. 考点:根与系数的关系.20.(2017江苏省扬州市)若关于x 的方程240200x -++=存在整数解,则正整数m 的所有取值的和为 . 【答案】15. 【解析】点睛:本题考查无理方程、换元法、正整数等知识,解题的关键是学会利用换元法解决问题,属于中考填空题中的压轴题.考点:1.无理方程;2.换元法. 三、解答题21.(2017北京市)关于x 的一元二次方程()23220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围. 【答案】(1)证明见解析;(2)k <0. 【解析】试题分析:(1)根据方程的系数结合根的判别式,可得△=(k ﹣1)2≥0,由此可证出方程总有两个实数根; (2)利用分解因式法解一元二次方程,可得出x 1=2、x 2=k +1,根据方程有一根小于1,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.试题解析:(1)证明:∵在方程()23220x k x k -+++=中,△=[﹣(k +3)]2﹣4×1×(2k +2)=k 2﹣2k +1=(k ﹣1)2≥0,∴方程总有两个实数根.(2)解:∵()2322x k x k -+++=(x ﹣2)(x ﹣k ﹣1)=0,∴x 1=2,x 2=k +1.∵方程有一根小于1,∴k +1<1,解得:k <0,∴k 的取值范围为k <0.点睛:本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于1,找出关于k 的一元一次方程. 考点:根的判别式.22.(2017四川省南充市)已知关于x 的一元二次方程2(3)0x m x m ---=. (1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.【答案】(1)证明见解析;(2)m 的值是1或2.【解析】试题解析:(1)证明:∵2(3)0x m x m ---=,∴△=[﹣(m ﹣3)]2﹣4×1×(﹣m )=m 2﹣2m +9=(m ﹣1)2+8>0,∴方程有两个不相等的实数根;(2)∵2(3)0x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴21212()37x x x x +-=,∴(m ﹣3)2﹣3×(﹣m )=7,解得,m 1=1,m 2=2,即m 的值是1或2.考点:1.根与系数的关系;2.根的判别式.23.(2017四川省眉山市)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元. (1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品? 【答案】(1)第3档;(2)第5档. 【解析】试题分析:(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.试题解析:(1)(14﹣10)÷2+1=3(档次). 答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x 档次的产品,根据题意得:(2x +8)×(76+4﹣4x )=1080,整理得:x 2﹣16x +55=0,解得:x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.点睛:本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x 的一元二次方程. 考点:一元二次方程的应用.24.(2017滨州)(1)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为;②方程x2﹣3x+2=0的解为;③方程x2﹣4x+3=0的解为;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为;②关于x的方程的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【答案】(1)①x1=x2=1;②x1=1,x2=2;③x1=1,x2=3;(2)①x1=1,x2=8;②x2﹣(1+n)x+n=0;(3)答案见解析.【解析】试题解析:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+814=﹣8+814,(x﹣92)2=494x﹣92=±72,所以x1=1,x2=8;所以猜想正确.故答案为:x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了因式分解法解一元二次方程.考点:1.解一元二次方程﹣配方法;2.一元二次方程的解;3.解一元二次方程﹣因式分解法.25.(2017山东省潍坊市)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?【答案】(1)裁掉的正方形的边长为2dm;(2)当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.【解析】试题解析:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10﹣2x)(6﹣2x)=12,即x2﹣8x+12=0,解得x=2或x=6(舍去).答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10﹣2x≤5(6﹣2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元.答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.考点:1.二次函数的应用;2.一元二次方程的应用;3.二次函数的最值;4.最值问题;5.操作型.26.(2017山东省烟台市)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用,经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?【答案】(1)10%;(2)去B商场购买足球更优惠.【解析】(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用,比较后即可得出结论.试题解析:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1﹣x)2=162,解得:x=0.1=10%或x=﹣1.9(舍去).答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.(2)100×1011=100011≈90.91(个),在A商城需要的费用为162×91=14742(元),在B商城需要的费用为162×100×910=14580(元).14742>14580.答:去B商场购买足球更优惠.点睛:本题考查了一元二次方程的应用,解题的关键是:(1)根据2015年及2017年该品牌足球的单价,列出关于x的一元二次方程;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用.考点:1.一元二次方程的应用;2.增长率问题.27.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹); (2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?【答案】(1)作图见解析;(2)证明见解析;(3)A (0,1),B (﹣b a ,c a )或A (0,1a ),B (﹣ba,c )等;(4)12b m m a +=-,1212m m n n +=ca. 【解析】(3)方程20ax bx c ++=(a ≠0)可化为20b cx x a a++=,模仿研究小组作法可得一对固定点的坐标;(4)先设方程的根为x ,根据三角形相似可得1212n m xx m n -=-,进而得到2121212()0x m m x m m n n -+++=,再根据20ax bx c ++=,可得20b cx x a a++=,最后比较系数可得m 1,n 1,m 2,n 2与a ,b ,c 之间的关系.试题解析:(1)如图所示,点D 即为所求;(2)如图所示,过点B 作BD ⊥x 轴于点D ,根据∠AOC =∠CDB =90°,∠ACO =∠CBD ,可得△AOC ∽△CDB ,∴AO OC CD BD =,∴152mm =-,∴m (5﹣m )=2,∴2520m m -+=,∴m 是方程2520x x -+=的实数根;(3)方程20ax bx c ++=(a ≠0)可化为20b c x x a a ++= ,模仿研究小组作法可得:A (0,1),B (﹣ba,c a )或A (0,1a ),B (﹣ba,c )等; (4)如图,P (m 1,n 1),Q (m 2,n 2),设方程的根为x ,根据三角形相似可得1212n m xx m n -=-,上式可化为2121212()0x m m x m m n n -+++=,又∵20ax bx c ++=,即20b cx x a a++=,∴比较系数可得12b m m a +=-,1212m m n n +=ca.点睛:本题属于三角形综合题,主要考查的是一元二次方程的解,相似三角形的判定与性质的综合应用,解决问题的关键是作辅助线构造相似三角形,依据相似三角形的对应边成比例,列出比例式并转化为等积式.考点:1.三角形综合题;2.一元二次方程的解;3.相似三角形的判定与性质;4.阅读型;5.操作型;6.压轴题.28.(2017湖北省宜昌市)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【答案】(1)36;(2)35;(3)50%.【解析】(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.试题解析:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据题意,得:2222541.5 1.5(1)(1)43622x x b x b b bx x x x x x ++++=⎧⎪⎨++++++=⎪⎩,解得:58x b =⎧⎨=⎩,∴市政府2015年年初对三项工程的总投资是7x =35亿元;(3)由x =5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=0.5,y 2=1.5(舍) 答:搬迁安置投资逐年递减的百分数为50%.点睛:本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.考点:1.一元二次方程的应用;2.分式方程的应用;3.增长率问题.29.(2017湖北省荆州市)已知关于x 的一元二次方程2(5)10x k x k +-+-= ,其中k 为常数. (1)求证:无论k 为何值,方程总有两个不相等实数根;(2)已知函数2(5)1y x k x k =+-+-的图象不经过第三象限,求k 的取值范围; (3)若原方程的一个根大于3,另一个根小于3,求k 的最大整数值. 【答案】(1)证明见解析;(2)k ≤1;(3)2. 【解析】试题分析:(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明; (2)由于二次函数2(5)1y x k x k =+-+-的图象不经过第三象限,又△=(k ﹣5)2﹣4(1﹣k )=(k ﹣3)2+12>0,所以抛物线的顶点在x 轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口向上,由此可以得出关于k 的不等式组,解不等式组即可求解;(3)设方程的两个根分别是x 1,x 2,根据题意得(x 1﹣3)(x 2﹣3)<0,根据一元二次方程根与系数的关系求得k 的取值范围,再进一步求出k 的最大整数值.试题解析:(1)证明:∵△=(k ﹣5)2﹣4(1﹣k )=k 2﹣6k +21=(k ﹣3)2+12>0,∴无论k 为何值,方程总有两个不相等实数根;(2)解:∵二次函数2(5)1y x k x k =+-+-的图象不经过第三象限,∵二次项系数a =1,∴抛物线开口方向向上,∵△=(k ﹣3)2+12>0,∴抛物线与x 轴有两个交点,设抛物线与x 轴的交点的横坐标分别为x 1,x 2,∴x 1+x 2=5﹣k >0,x 1x 2=1﹣k ≥0,解得k ≤1,即k 的取值范围是k ≤1;(3)解:设方程的两个根分别是x 1,x 2,根据题意,得(x 1﹣3)(x 2﹣3)<0,即x 1x 2﹣3(x 1+x 2)+9<0,又x 1+x 2=5﹣k ,x 1x 2=1﹣k ,代入得,1﹣k ﹣3(5﹣k )+9<0,解得k <52.则k 的最大整数值为2. 点睛:本题考查了抛物线与x 轴的交点,二次函数的图象和性质,二次函数与一元二次方程的关系,根的判别式,根与系数的关系,综合性较强,难度适中.考点:1.抛物线与x 轴的交点;2.根的判别式;3.根与系数的关系;4.二次函数的性质. 30.(2017湖北省鄂州市)关于x 的方程032)12(22=+-+--k k x k x 有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 、2x ,存不存在这样的实数k ,使得5||||21=-x x ?若存在,求出这样的k 值;若不存在,说明理由. 【答案】(1) k >114;(2)4. 【解析】试题解析:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k ﹣1)]2﹣4(k 2﹣2k +3)=4k ﹣11>0,解得:k >114; (2)存在,∵1221x x k +=-,21223x x k k =-+=(k ﹣1)2+2>0,∴将5||||21=-x x 两边平方可得22112225x x x x -+=,即21212()45x x xx +-=,代入得:22(21)4(23)5k k k ---+=,解得:4k ﹣11=5,解得:k =4.考点:1.根与系数的关系;2.根的判别式.31.(2017重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m %,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m %,但销售均价比去年减少了m %,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值. 【答案】(1)50;(2)12.5. 【解析】试题解析:(1)设该果农今年收获樱桃x 千克,根据题意得:400﹣x ≤7x ,解得:x ≥50. 答:该果农今年收获樱桃至少50千克; (2)由题意可得:100(1﹣m %)×30+200×(1+2m %)×20(1﹣m %)=100×30+200×20,令m %=y ,原方程可化为:3000(1﹣y )+4000(1+2y )(1﹣y )=7000,整理可得:8y 2﹣y =0,解得:y 1=0,y 2=0.125,∴m 1=0(舍去),m 2=12.5,∴m 2=12.5. 答:m 的值为12.5.点睛:此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.考点:1.一元二次方程的应用;2.一元一次不等式的应用.32.(2017黑龙江省绥化市)已知关于x 的一元二次方程22(21)40x m x m +++-=. (1)当m 为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m 的值. 【答案】(1)m >﹣174;(2)m =﹣4. 【解析】(2)设方程的两根分别为a 、b ,根据题意得:a +b =﹣2m ﹣1,ab =24m -.∵2a 、2b 为边长为5的菱形的两条对角线的长,∴222()2a b a b ab +=+-=22(21)2(4)m m ---- =2m 2+4m +9=52=25,解得:m =﹣4或m =2. ∵a >0,b >0,∴a +b =﹣2m ﹣1>0,∴m =﹣4.若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m 的值为﹣4.点睛:本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=4m +17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m 的一元二次方程.考点:1.根的判别式;2.根与系数的关系;3.菱形的性质.33.(2017江苏省镇江市)如图,Rt △ABC 中,∠B =90°,AB =3cm ,BC =4cm .点D 在AC 上,AD =1cm ,点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿C →B →A →C 的路径匀速运动.两点同时出发,在B 点处首次相遇后,点P 的运动速度每秒提高了2cm ,并沿B →C →A 的路径匀速运动;点Q 保持速度不变,并继续沿原路径匀速运动,两点在D 点处再次相遇后停止运动,设点P 原来的速度为xcm /s . (1)点Q 的速度为 cm /s (用含x 的代数式表示). (2)求点P 原来的速度.【答案】(1)43x ;(2)65cm /s . 【解析】点睛:本题考查了分式方程的应用,勾股定理,正确的理解题意是解题的关键. 考点:一元二次方程的应用.【2016年题组】一、选择题1.(2016天津市)方程2120x x +-=的两个根为( )A .12x =-,26x =B .16x =-,22x =C .13x =-,24x =D .14x =-,23x = 【答案】D . 【解析】试题分析:∵2120x x +-=,∴(x +4)(x ﹣3)=0,则x +4=0,或x ﹣3=0,解得:14x =-,23x =.故选D .考点:解一元二次方程-因式分解法.2.(2016四川省乐山市)若t 为实数,关于x 的方程2420x x t -+-=的两个非负实数根为a 、b ,则代数式22(1)(1)a b --的最小值是( )A .﹣15B .﹣16C .15D .16 【答案】A . 【解析】考点:1.根与系数的关系;2.配方法;3.最值问题.3.(2016山东省泰安市)一元二次方程22(1)2(1)7x x +--=的根的情况是( ) A .无实数根 B .有一正根一负根 C .有两个正根 D .有两个负根 【答案】C . 【解析】试题分析:∵22(1)2(1)7x x +--=,∴22212(21)7x x x x ++--+=,整理得:2680x x -+-=,则2680x x -+=,(x ﹣4)(x ﹣2)=0,解得:14x =,22x =,故方程有两个正根.故选C . 考点:1.根的判别式;2.解一元二次方程-因式分解法;3.根与系数的关系;4.抛物线与x 轴的交点.4.(2016广东省深圳市)给出一种运算:对于函数ny x =,规定y ′=1n nx -.例如:若函数4y x =,则有y ′=34x .已知函数3y x =,则方程y ′=12的解是( )A .1x =4,2x =﹣4B .1x =2,2x =﹣2C .1x =2x =0D .1x =2x =-【答案】B . 【解析】试题分析:由函数3y x =得n =3,则y ′=23x ,∴2312x =,24x =,∴x =±2,故选B .考点:1.解一元二次方程-直接开平方法;2.新定义.5.(2016贵州省六盘水市)用配方法解一元二次方程2430x x +-=时,原方程可变形为( ) A .2(2)1x += B .2(2)7x += C .2(2)13x += D .2(2)19x += 【答案】B . 【解析】试题分析:243x x +=,24434x x ++=+,2(2)7x +=.故选B .考点:解一元二次方程-配方法.6.(2016湖北省荆门市)已知3是关于x 的方程2(1)20x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A .7 B .10 C .11 D .10或11 【答案】D . 【解析】考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.7.(2016湖北省荆门市)若二次函数2y x mx =+的对称轴是x =3,则关于x 的方程27x mx +=的解为( )A .1x =0,2x =6B .1x =1,2x =7C .1x =1,2x =﹣7D .1x =﹣1,2x =7 【答案】D . 【解析】试题分析:∵二次函数2y x mx =+的对称轴是x =3,∴﹣=3,解得m =﹣6,∴关于x 的方程27x mx +=可化为2670x x --=,即(x +1)(x ﹣7)=0,解得1x =﹣1,2x =7.故选D . 考点:1.二次函数的性质;2.解一元二次方程-因式分解法.8.(2016青海省)已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( )A .8B .10C .8或10D .12 【答案】B . 【解析】试题分析:2680x x -+=,(x ﹣4)(x ﹣2)=0,∴1x =4,2x =2,由三角形的三边关系可得: 腰长是4,底边是2,所以周长是:4+4+2=10.故选B .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质. 9.(2016内蒙古包头市)若关于x 的方程21(1)02x m x +++=的一个实数根的倒数恰是它本身,则m 的值是( ) A .52-B .12C .52-或12D .1 【答案】C . 【解析】考点:1.一元二次方程的解;2.分类讨论.10.(2016山东省泰安市)当x 满足24411(6)(6)32x x x x <-⎧⎪⎨->-⎪⎩时,方程2250x x --=的根是( ) A.1 B1 C.1- D.1【答案】D . 【解析】试题分析:24411(6)(6)32x x x x <-⎧⎪⎨->-⎪⎩,解得:2<x <6,∵方程2250x x --=,∴x=1,∵2<x <6,∴x=1D .考点:1.解一元一次不等式;2.一元二次方程的解.11.(2016山东省青岛市)输入一组数据,按下列程序进行计算,输出结果如表:分析表格中的数据,估计方程288260x +-=()的一个正数解x 的大致范围为( )A .20.5<x <20.6B .20.6<x <20.7C .20.7<x <20.8D .20.8<x <20.9 【答案】C . 【解析】考点:1.估算一元二次方程的近似解;2.探究型.12.(2016广西桂林市)若关于x 的一元二次方程方程2(1)410k x x -++=有两个不相等的实数根,则k 的取值范围是( )。

中考数学复习第二单元方程及不等式单元测试二方程及不等式试题.doc

中考数学复习第二单元方程及不等式单元测试二方程及不等式试题.doc

2019-2020 年中考数学复习 第二单元 方程与不等式单元测试(二)方程与不等式试题一、选择题 ( 每小题 3 分,共 30 分 )1.方程 3x +2(1 - x) = 4 的解是 ( C )26A . x = 5B. x = 5C . x = 2D. x = 12.二元一次方程组x - y =- 3, 的解是 ( A )2x + y =0x =- 1 B. x = 1 C.x =- 1x =- 2 A.y =- 2 y =- 2D.y = 2y =11 x + 1> 0,3.(2015 ·唐山路北区一模 ) 不等式组3的解集在数轴上可表示为 ( D )2-x ≥04.下列方程有两个相等的实数根的是( C )A . x 2+ x + 1= 0B . 4x 2+ x + 1= 0C . x 2+ 12x +36= 0 D. x 2+ x -2= 02A . 5B . 7C. 5 或 7 D.10( B )1+ x > a ,6.(2016 ·河北考试说明) 若不等式组有解,则 a 的取值范围是( B )2x -4≤0A . a ≤ 3B . a < 3 C. a < 2D. a ≤ 27.(2016 ·保定清苑区模拟 ) 为了让山更绿、 水更清,确保到 2016 年实现全省森林覆盖率达到 63%的目标, 已知 年全省森林覆盖率为60.05%,设从 2014 年起 全省森林覆盖率的年平均增长率为x ,则可列方程为 ( D )2014A . 60.05(1 + 2x) = 63%B . 60.05(1 + 3x) = 63C . 60.05(1 + x) 2= 63%D . 60.05%(1 + x) 2= 63%8.(2015 ·唐山路北区二模 ) 甲、乙两 地相距 420 千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的 1.5 倍,进而从甲地到乙地的时间缩短了2 小时.设原来的平均速度为x 千米 / 时,可列方程为( B )420 420420 420A. x +1.5x = 2 B. x - 1.5x = 2x 1.5x= 2D.x 1.5xC. +-= 2420 4204204202+ k =2的9.关于 x 的方程 m(x +h)0(m , h , k 均为常数, m ≠ 0) 的解是 x =- 3, x = 2,则方程 m(x + h - 3) + k = 012解是 ( B )A . x 1=- 6,x 2=- 1B . x 1= 0,x 2= 5C . x 1=- 3,x 2= 5D. x 1=- 6, x 2= 210 x+ 3y= 4- a,其中- 3≤a≤1. 给出下列结论:.(2016 ·河北考试说明 ) 已知关于 x, y 的方程组x- y=3a.①x= 5,是方程组的解;y=- 1②当 a=- 2 时, x,y 的值互为相反数;③当 a= 1 时,方程组的解也是方程x+y= 4- a 的解;④若 x≤1,则 1≤y≤4.其中正确的有 ( C )A.①② B .②③ C .②③④ D .①③④二、填空题 ( 每小题 4 分,共 16 分 )11 .满足不等式 2(x + 1) > 1- x 的最小整数解是 0.12 .(2016 ·龙东 ) 一件服装的标价为300 元,打八折销售后可获利60 元,则该件服装的成本价是180 元.13 .(2016 ·河北考试说明 ) 已知 a, b 互为相反数,并且2 23a- 2b= 5,则 a + b = 2 .14 .(2016 ·河北考试说明 ) 关于 x 的两个方程 x2- x- 2= 0 与 1 = 2 有一个解相同,则a=- 5.x- 2 x+ a三、解答题 ( 共 54 分)3 115.(12 分 ) 解方程:2x+2= 1-x+1.3 1解:原方程可变形为2(x+1)= 1-x+1.方程两边都乘以2(x + 1) ,得 3= 2(x + 1) - 2.3解得 x=2.3 3检验:当x=2时, 2(x + 1) =2( 2+ 1) =5≠0,3∴原方程的解为x=2.16.(14 分)(2016 ·唐山玉田县模拟) 已知关于x 的一元二次方程(x - 3)(x - 2) = |m|.(1)求证:对于任意实数 m,方程总有两个不相等的实数根;(2) 已知 m是不等式组2a-1> 1,(x -3)(x - 2) = |m|.的整数解,解方程:a+ 1> 2( a-1)2 m解: (1) 证明:原方程可化为 x - 5x+ 6-| | =0,∴= ( - 5) 2- 4(6 -| m| ) = 1+ 4| m| .m m∵ | | ≥0,∴1+4| | >0,即>0,∴对于任意实数m,方程总有两个不相等的实数根.(2)不等式组的解集为 1< a<3,2a- 1>1,∵ m是不等式组的整数解,解得1< a<3. ∴m= 2.a+ 1>2( a- 1)2把 m= 2 代入原方程,得(x -3)(x - 2) = 2,即 x -5x+ 4= 0.解得 x1= 1, x2=4.2x + y=●,的解为x= 5,刚好遮17.(14 分)(2015 ·张家口质检 ) 小亮求得方程组- y= 12 由于不小心滴上了两滴墨水,2x y=★.住了两个数●和★.(1)请求出●,★位置上的这两个数;(2)若 mx+ny= 3,当 m≤2时,求 n 的取值范围;(3)将 (2) 中 n 的取值范围表示在数轴上.解: (1) ●位置上的数是8,★位置上的数是- 2.(2)把 x= 5, y=- 2 代入 mx+ ny= 3,得 5m- 2n= 3,3+ 2n 3+ 2n 7∴ m= 5 . ∵m≤2,∴5≤2. ∴n≤2.(3)略.18.(14分)(2015·邯郸二模改编) 为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12 趟才能完成,需支付运费共 4 800所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200 元.元.已知甲、乙两车单独运完此堆垃圾,则乙车(1)分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需多少趟;(3) 若同时租用甲、乙两车,则甲车运x 趟,乙车运y 趟,才能运完此堆垃圾,其中x, y 均为正整数.①当 x= 10 时, y= 16;当 y= 10 时, x= 13;②用含 x 的代数式表示y.探究:(4)在 (3) 的条件下:①用含 x 的代数式表示总运费:②要想总运费不大于 4 000 元,甲车最多需运多少趟?解: (1) 设甲、乙两车每趟的运费分别为m元、 n 元,由题意得m- n= 200,m=300,12( m+ n)= 4 800.解得n=100.答:甲、乙两车每趟的运费分别为300 元、 100 元.(2) 设单独租用甲车运完此堆垃圾,需运1+1a 趟,由题意得 12( ) =1. 解得 a= 18.a 2a经检验, a= 18 是原方程的解.答:单独租用甲车运完此堆垃圾,需运18 趟.x y(3)②18+36= 1, y=36- 2x.(4)①总运费: 300x+ 100y =300x+ 100(36 - 2x) = 100x+3 600.②100x +3 600 ≤4 000. ∴x≤4.答:甲车最多需运 4 趟.。

【配套K12】中考数学专题复习第二单元方程组与不等式组课时训练六一元二次方程练习

【配套K12】中考数学专题复习第二单元方程组与不等式组课时训练六一元二次方程练习

课时训练(六)一元二次方程(限时:35分钟)|夯实基础|1.[2018·铜仁]关于x的一元二次方程x2-4x+3=0的解为()A.x1=-1,x2=3B.x1=1,x2=-3C.x1=1,x2=3D.x1=-1,x2=-32.[2017·泰安]一元二次方程x2-6x-6=0配方后化为()A.(x-3)2=15B.(x-3)2=3C.(x+3)2=15D.(x+3)2=33.[2018·河南]下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=xC.x2+3=2xD.(x-1)2+1=04.[2017·益阳]关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=-1,那么下列结论一定成立的是()A.b2-4ac>0B.b2-4ac=0C.b2-4ac<0D.b2-4ac≤05.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2=()A.-4B.3C.-D.6.[2018·泸州]已知关于x的一元二次方程x2-2x+k-1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2B.k≤0C.k<2D.k<07.[2018·眉山]我市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%8.[2017·庆阳]如图K6-1,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2,若设道路的宽为x m,则下面所列方程正确的是()图K6-1A.(32-2x)(20-x)=570B.32x+2×20x=32x×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=5709.[2018·天水]关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根为0,则k的值是.10.[2018·威海]关于x的一元二次方程(m-5)·x2+2x+2=0有实根,则m的最大整数解是.11.解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程:.12.[2018·德州]若x1,x2是一元二次方程x2+x-2=0的两个实数根,则x1+x2+x1x2= .13.[2018·黄冈]一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.15.解方程:(1)[2018·绍兴]x2-2x-1=0;(2)2x2-x-1=0;(3)[2018·齐齐哈尔] 2(x-3)=3x(x-3).16.[2017·北京]关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k的取值范围.17.[2017·菏泽]某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?|拓展提升|18.[2017·滨州]根据要求,解答下列问题.(1)解下列方程(直接写出方程的解即可):①方程x2-2x+1=0的解为;②方程x2-3x+2=0的解为;③方程x2-4x+3=0的解为;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为;②关于x的方程的解为x1=1,x2=n.(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.参考答案1.C2.A[解析] 根据配方的步骤:第一步移项得x2-6x=6;第二步配方,方程的左右两边都加上一次项系数一半的平方,得x2-6x+9=6+9;第三步整理,得(x-3)2=15.3.B[解析] 本题考查了用一元二次方程ax2+bx+c=0的根的判别式Δ=b2-4ac来判断方程根的情况,当Δ>0时,方程有两个不相等的实数根.选项A:Δ=b2-4ac=62-4×1×9=0;选项B:先将原方程转化为一般式:x2-x=0,则Δ=b2-4ac=(-1)2-4×1×0=1>0;选项C:将原方程转化为一般式:x2-2x+3=0,则Δ=b2-4ac=(-2)2-4×1×3=-8<0;选项D:将原方程转化为一般式:x2-2x+2=0,则Δ=b2-4ac=(-2)2-4×1×2=-4<0.故选项B正确.4.A[解析] 关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=-1,说明该一元二次方程有两个不相等的实数根,所以b2-4ac>0,因此选A.5.D[解析] ∵方程3x2-4x-4=0的两个实数根分别为x1,x2,∴x1-x2=-=.6.C[解析] 由题可知,Δ>0,即(-2)2-4(k-1)>0,解得k<2.7.C[解析] 设平均每次下调的百分率为x,则根据题意可得:6000(1-x)2=4860,解方程得:x1=0.1=10%,x2=-1.9(舍去).故答案为C.8.A[解析] 将两条纵向的道路向左平移,水平方向的道路向下平移,即可得草坪的长为(32-2x)m,宽为(20-x)m,由草坪面积为长与宽的乘积,即可列出方程(32-2x)(20-x)=570.故选A.9.0[解析] ∵关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根为0,∴k2-k=0,且k-1≠0,解得k=1或k=0,且k≠1,则k=0.10.4 [解析] 因为关于x 的一元二次方程有实数根,所以Δ=22-4(m-5)·2=4-8(m-5)≥0,且m-5≠0,解得m ≤5.5且m ≠5,这样的最大整数解为4.11.x+3=0(或x-1=0)12.-3 [解析] 因为x 1+x 2=-1,x 1x 2=-2,所以x 1+x 2+x 1x 2=-3.13.16 [解析] 解方程得x 1=3,x 2=7,因为两边长为3和6,所以第三边长x 的范围为:6-3<x<6+3,即3<x<9,所以舍去x 1=3,即三角形的第三边长为7,则三角形的周长为3+6+7=16.14. x (x-1)=21 [解析] 由于每个队都要赛(x-1)场,但两队之间只有一场比赛,则x (x-1)=21, 故答案为: x (x-1)=21.15.解:(1)x 2-2x-1=0, a=1,b=-2,c=-1,b 2-4ac=4+4=8>0,x=- - ,∴x=, ∴x 1=1+ ,x 2=1- .(2)把方程左边分解因式得(2x+1)(x-1)=0,∴x 1=- ,x 2=1.(3)2(x-3)=3x (x-3),2(x-3)-3x (x-3)=0,(x-3)(2-3x )=0, ∴x=3或x= .16.解:(1)证明:∵Δ=[-(k+3)]2-4(2k+2)=k2-2k+1=(k-1)2≥0,∴方程有两个实数根.(2)∵x2-(k+3)x+2k+2=(x-2)(x-k-1)=0,∴x1=2,x2=k+1,∵方程有一个根小于1,∴k+1<1,∴k<0,即k的取值范围为k<0.17.解:设销售单价为x元,由题意,得(x-360)[160+2(480-x)]=20000,整理,得x2-920x+211600=0,解得x1=x2=460,答:这种玩具的销售单价为460元时,厂家每天可获利润20000元.18.解:(1)①x1=1,x2=1②x1=1,x2=2③x1=1,x2=3(2)①x1=1,x2=8②x2-(1+n)x+n=0(3)x2-9x+8=0,x2-9x=-8,x2-9x+=-8+,x-2=,∴x-=±.∴x1=1,x2=8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(二) 方程与不等式
(时间:45分钟 满分:100分)
一、选择题(每小题4分,共32分)
1.方程3x +2(1-x)=4的解是(C )
A .x =25
B .x =65
C .x =2
D .x =1 2.方程组⎩
⎪⎨⎪⎧y =2x ,3x +y =15的解是(D ) A.⎩⎪⎨⎪⎧x =2y =3 B.⎩⎪⎨⎪⎧x =4y =3 C.⎩⎪⎨⎪⎧x =4y =8 D.⎩
⎪⎨⎪⎧x =3y =6 3.一元一次不等式2(x +2)≥6的解在数轴上表示为(A )
4.如果2是方程x 2
-3x +k =0的一个根,那么常数k 的值为(B )
A .1
B .2
C .-1
D .-2
5.一元二次方程4x 2-2x +14
=0的根的情况是(B ) A .有两个不相等的实数根 B .有两个相等的实数根
C .没有实数根
D .无法判断
6.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为(C ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-23
7.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为(D )
A.⎩⎪⎨⎪⎧x +y =352x +2y =94
B.⎩⎪⎨⎪⎧x +y =354x +2y =94
C.⎩⎪⎨⎪⎧x +y =354x +4y =94
D.⎩⎪⎨⎪⎧x +y =352x +4y =94
8.(2018·淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是(C )
A.
60x -60(1+25%)x =30 B.60(1+25%)x -60x =30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x
=30
二、填空题(每小题3分,共18分)
9.方程2x -1
=1的解是x =3. 10.一元二次方程x 2-2x =0的解是x 1=0,x 2=2.
11.若关于x 的一元二次方程x 2-x +k +1=0有两个不相等的实数根,则k 的取值范围是k<-34
. 12.已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 21-x 22=10,则a =214
. 13.若关于x 的分式方程x x -3+3a 3-x =2a 无解,则a 的值为1或12
. 14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为78cm.
三、解答题(共50分)
15.(6分)解方程组:⎩
⎪⎨⎪⎧2x +y =3,①3x -5y =11.② 解:由①,得y =3-2x.③
把③代入②,得3x -5(3-2x )=11.解得x =2.
将x =2代入③,得y =-1.
∴原方程组的解为⎩
⎪⎨⎪⎧x =2,y =-1.
16.(6分)解方程:1x -3=1-x 3-x
-2. 解:方程两边同乘(x -3),得
1=x -1-2(x -3).
解得x =4.
检验:当x =4时,x -3≠0,
∴x =4是原分式方程的解.
17.(8分)解不等式组⎩⎪⎨⎪
⎧1+x >-2,
2x -13
≤1,并把解集在数轴上表示出来. 解:由1+x >-2,得x >-3. 由2x -13≤1,得x≤2. ∴不等式组的解集为-3<x≤2.
解集在数轴上表示如下:
18.(8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?
解:设原计划每小时检修管道x 米.由题意,得
600x -6001.2x
=2.解得x =50. 经检验,x =50是原方程的解,且符合题意.
答:原计划每小时检修管道50米.
19.(10分)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在中秋节期间的对话.请问:
(1)2016年到2018年甜甜和她妹妹在中秋节收到红包的年增长率是多少?
(2)2018年中秋节甜甜和她妹妹各收到了多少元的微信红包?
解:(1)设2016年到2018年甜甜和她妹妹在中秋节收到红包的年增长率是x ,依题意,得
400(1+x )2=484,
解得x 1=0.1=10%,x 2=-2.1(舍去).
答:2016年到2018年甜甜和她妹妹在中秋节收到红包的年增长率是10%.
(2)设甜甜在2018年六一收到微信红包为y 元,依题意,得
2y +34+y =484,
解得y =150.
所以484-150=334(元).
答:甜甜在2018年中秋节收到微信红包为150元,她妹妹收到微信红包为334元.
20.(12分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A ,B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元.
(1)A ,B 两种奖品每件各多少元?
(2)现要购买A ,B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件?
解:(1)设A 种奖品每件x 元,B 种奖品每件y 元,根据题意,得
⎩⎪⎨⎪⎧20x +15y =380,15x +10y =280,解得⎩
⎪⎨⎪⎧x =16,y =4. 答:A 种奖品每件16元,B 种奖品每件4元.
(2)设A 种奖品购买a 件,则B 种奖品购买(100-a )件,根据题意,得
16a +4(100-a )≤900,解得a≤
1253
. ∵a 为整数,∴a≤41.
答:A 种奖品最多购买41件.。

相关文档
最新文档