1-2电流和磁场
1-2相励磁方式

1-2相励磁方式
1-2相励磁方式如下:
1.直接相励磁方式(Direct Excitation):在这种方式下,励磁电流直接通过线圈或绕组流过,产生磁场。
这种方式简单直接,适用于小功率和低频率的应用。
2.串联相励磁方式(Series Excitation):在这种方式下,励磁线圈或绕组与电源和负载串联连接。
励磁电流通过负载和励磁线圈,同时产生磁场。
这种方式适用于大功率和高频率的应用。
这两种相励磁方式都用于激励电机、发电机和变压器等设备,以产生所需的磁场。
选择哪种方式取决于具体的应用需求和设备设计。
高中物理磁场和电场的知识点

高中物理磁场和电场的知识点磁场是一种看不见、摸不着的特殊物质,在高中的物理学习中,学生会学习到磁场的知识点,下面店铺的小编将为大家带来高中物理关于磁场的知识点的介绍,希望能够帮助到大家。
高中物理磁场知识点1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用.(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A?m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由左手定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.(4)在磁场中静止的电荷不受洛伦兹力作用.7.带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB8.带电粒子在复合场中运动(1)带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.(2)带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.高中物理电场知识点1.两种电荷(1)自然界中存在两种电荷:正电荷与负电荷.(2)电荷守恒定律2.库仑定律(1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.(2)适用条件:真空中的点电荷.点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.3.电场强度、电场线(1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.(2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:E=F/q方向:正电荷在该点受力方向.(3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.(4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.(5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.(1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.(2)沿着电场线的方向,电势越来越低.6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU7.等势面:电场中电势相等的点构成的面叫做等势面.(1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.(3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.8.电场中的功能关系(1)电场力做功与路径无关,只与初、末位置有关.计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.(2)只有电场力做功,电势能和电荷的动能之和保持不变.(3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.10.带电粒子在电场中的运动(1)带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.(2)带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动(3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.(4)带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值[注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。
高中选修3-1,2电与磁物理知识点

第一章、电 场一、电荷 :1、自然界中有且只有两种电荷:丝绸摩擦过的玻璃棒带正电,毛皮摩擦过的橡胶棒带负电。
电荷间的相互作用:同种电荷相互排斥,异种电荷相互吸引。
2、电荷守恒定律:电荷既不会创造,也不会消灭,只能从一个物体转移到另一个物体,或从物体的一个部分转移到另一个部分。
“起电”的三种方法:摩擦起电,接触起电,感应起电。
实质都是电子的转移引起:失去电子带正电,得到电子带等量负电。
3、电荷量Q :电荷的多少元电荷:带最小电荷量的电荷。
自然界中所有带电体带的电荷量都是元电荷的整数倍。
密立根油滴实验测出:e=1.6×10—19C 。
点电荷:与所研究的空间相比,不计大小与形状的带电体。
库仑定律:真空中两个点电荷之间相互作用的静电力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比。
公式: k = 9×109 N ·m 2/C 2二、电场:1、电荷间的作用通过电场产生。
电场是一种客观存在的一种物质。
电场的基本性质是对放入其中的电荷有力的作用。
2、电场强度E :放入电场中的电荷所受电场力与它的电荷量q 的比。
E=F/q 单位:N/C 或V/mE 是电场的一种特性,只取决于电场本身,与F 、q 等无关。
普通电场场强点电荷周围电场场强匀强电场场强公式 E=F/qE=U/d 方向 与正电荷受电场力方向相同 与负电荷受电场力方向相反沿半径方向背离+Q 沿半径方向指向—Q由“+Q ”指向 “—Q ” 大小电场线越密,场强越大各处场强一样大3、电场线:形象描述场强大小与方向的线,实际上不存在。
疏密表示场强大小,切线方向表示场强方向。
一率从“+Q ”指向“—Q ”。
正试探电荷在电场中受电场力顺电场线,负电荷在电场中受电场力逆电场线。
电场线的轨迹不一定是带电粒子在电场中运动的轨迹。
只有电场线为直线,带电粒子初速度为零时,两条轨迹才重合。
任意两根电场线都不相交。
4、静电平衡时的导体净电荷只分布在外表面上,内部合场强处处为零。
量子力学1-2

一、电荷守恒定律
1、电流强度和电流密度(矢量) 电流强度和电流密度(矢量) I: 单位时间通过空间任意曲面的电量(单位:安培) 单位时间通过空间任意曲面的电量(单位:安培)
v J:
大小:单位时间垂直通过单位面积的电量 大小: 方向:沿导体内该点上的电流方向 方向:
r r 两者关系: 两者关系: I = dI = J ⋅ dS ∫ ∫
二、毕奥萨伐尔定律
1、毕奥萨伐尔定律(电流决定磁场的实验定律) 毕奥萨伐尔定律(电流决定磁场的实验定律) r v v v v r 上的电流密度, 设 J (x′)为源点 x′上的电流密度,r 为由 x′点到场点 x 的距离, 的距离,则
r 线电流元为: 线电流元为: Idl
r 体电流元为: 体电流元为: JdV
µ0 I r µ0 I = − + e =0 2 2 z 2π r 2π r
(r > a)
(r < a)
r r µ0 I r ∇× B = 2 ez = µ0 J πa
意义: 意义:某点邻域上的磁感应强度的旋度只和该点上的电流密度有 虽然对任何包围着导线的回路都有磁场环量, 关,虽然对任何包围着导线的回路都有磁场环量,但是磁场的旋 度只存在于有电流分布的导线内部, 度只存在于有电流分布的导线内部,而在周围空间中的磁场是无 旋的。 旋的。
又 ∵
Q = ∫ ρdV
V
dQ d ∂ρ ∴ = ∫ ρdV = ∫ dV V ∂t dt dt V
所以有: 所以有:
∫
S
r r J ⋅ dS = −
∫
∂ρ dV V ∂t
d dQ = 0 Q=C ρdV = 0 全空间总电荷守恒 ∫V dt dt
磁场与电流的作用

磁场与电流的作用
磁场和电流之间有着紧密的关系。
磁场是由电流产生的,并且电流
在存在磁场的情况下也会受到磁场的影响。
1. 电流产生磁场:当电流通过导线时,会形成一个有方向的磁场环
绕着导线。
这个磁场的方向与电流的方向有关,在导线周围形成一个
闭合的磁场线圈。
这个现象被称为“安培环路定理”。
2. 磁场对电流的作用:磁场可以对通过其的电流施加力。
根据洛伦
兹力定律,当电流通过一个磁场时,会受到与电流方向垂直的力,即
洛伦兹力。
这个力的大小与电流强度和磁场强度有关。
3. 磁场对电流的方向有影响:根据右手定则,当电流通过一个磁场时,磁场会对电流的方向施加一个力矩,使得电流在磁场中发生偏转。
这个定则可以用来确定电流受到磁场力的方向。
4. 电流产生磁场并产生相互作用:当多个导线中有电流通过时,它
们各自产生的磁场会相互作用。
这种相互作用可以导致导线之间的吸
引或排斥,这是基于电磁感应原理的基础。
总的来说,磁场和电流之间的作用是相互的。
电流可以产生磁场并
受到磁场力的作用,而磁场则可以对电流施加力并改变电流的方向。
这些相互作用是电磁学和电动力学的基础,并在电磁装置和电路中得
到广泛应用。
电流的磁场和磁感应强度的计算

电流的磁场和磁感应强度的计算电流产生的磁场是我们日常生活中经常接触到的物理现象之一。
磁场的强度可以通过磁感应强度来表示,而其计算涉及到一些重要的物理理论和公式。
本文将介绍如何计算电流所产生的磁场和磁感应强度。
1. 线电流的磁场计算当通过一根导线的电流为I时,根据右手螺旋定则,我们可以得知电流所产生的磁场具有一个确定的方向。
根据安培环路定理及比奥-萨伐尔定律,我们可以推导出计算电流所产生的磁场的公式:B = (μ0 * I) / (2π * r)其中,B表示磁感应强度,μ0是真空中的磁导率(μ0 = 4π * 10^-7 T·m/A),I为电流,r为距离导线的距离。
2. 直线导线的磁场计算当电流通过一根长直导线时,我们可以通过将导线分成多个小段,并对每个小段的磁场进行积分,然后将积分结果相加来计算整个导线所产生的磁场。
根据式(1),对每个小段的磁场进行积分计算得到:dB = (μ0 * I * dl * sinθ) / (4π * r^2)其中,dB表示小段产生的磁场,dl为小段的长度,θ为小段与距离r的夹角。
由于整条导线各个小段的磁场方向相同,因此我们可以通过将每个小段的贡献相加来得到整个导线的磁场:B = ∫dB = (μ0 * I / 4π) ∫(dl * sinθ / r^2)当导线为无限长时,θ为90度,sinθ为1,因此磁感应强度的计算简化为:B = (μ0 * I) / (4π * r)3. 环形线圈的磁场计算对于一个半径为R的环形线圈,环形线圈的磁场在圆心处的磁感应强度可以通过使用比奥萨伐尔定律计算得到。
根据比奥萨伐尔定律,圆环上一点处的磁感应强度等于该点上的导线产生的磁场在圆心处的贡献之和。
设圆心与环形线圈上一点的距离为r,则有:B = (μ0 * I * π * R^2) / (2 * (R^2 + r^2)^(3/2))其中,B表示圆心处的磁感应强度。
4. 叠加原理的应用当在一空间内存在多个电流源时,根据磁场的叠加原理,我们可以将每个电流源产生的磁场分别计算,然后将它们的磁场矢量相加。
高中物理选修2磁场 知识点梳理和总结

解析 本题要注意在受力分析时把立体图变成侧视平面图,然后通过平衡状 态的受力分析来确定 B 的方向和大小.若 B 沿 z 正向,则从 O 向 O′看,导线 受到的安培力 F=ILB,方向水平向左,如图甲所示,导线无法平衡,A 错误.
若 B 沿 y 正向,导线受到的安培力竖直向上,如图乙所示.当 FT=0,且满 足 ILB=mg,即 B=mILg时,导线可以平衡,B 正确.
1.大小 (1)F=BILsin θ(其中 θ 为 B 与 I 之间的夹角) (2)磁场和电流垂直时 F=BIL. (3)磁场和电流平行时 F=0. 2.方向 (1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手 掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指 所指的方向就是通电导线在磁场中所受安培力的方向. (2)安培力的方向特点:F⊥B,F⊥I,即 F 垂直于 B 和 I 决定的平面.(注意: B 和 I 可以有任意夹角) [自我诊断] 1.判断正误 (1)小磁针 N 极受磁场力的方向就是该处磁感应强度的方向.(√) (2)磁场中的一小段通电导体在该处受力为零,此处 B 一定为零.(×) (3)由定义式 B=IFL可知,电流强度 I 越大,导线 L 越长,某点的磁感应强度 就越小.(×) (4)磁感线是真实存在的.(×) (5)通电线圈可等效成条形磁铁,它周围的磁感线起始于线圈一端,终止于 线圈的另一端.(×) (6)安培力的方向既跟磁感应强度方向垂直,又跟电流方向垂直.(√) 2.(多选)指南针是我国古代四大发明之一.关于指南针,下列说法正确的 是( ) A.指南针可以仅具有一个磁极 B.指南针能够指向南北,说明地球具有磁场 C.指南针的指向会受到附近铁块的干扰 D.在指南针正上方附近沿指针方向放置一直导线,导线通电时指南针不偏
电流的磁场(第2课时)(课件)-苏科版九年级物理下册

四、课外实践与练习
线圈中的电流从A流向B和从 B流向A时,线圈左端分别是电 磁铁的哪一极?活塞向哪个方向 运动?血液如何流动?
电流从A流向B时,线圈左端为S极,活塞向左运动,S1 关闭,血液从S2流入;
利用电磁继电器可以用低电压、弱电流的控制电路来控制高 电压、强电流的受控电路,并且能实现遥控和生产自动化。
电磁继电器被广泛应用于自动控制和通信领域(如电冰箱、 汽车、电梯、机床里的控制电路)
二、电磁继电器 ①图中是一种水位自动报警器原理图,试说明它的工作原理。
当水位上涨时,水与金属A接触,由于水(不纯净)是导体,使控制 电路接通,电磁铁吸引衔铁,使动触点与下面的静触点接触,工作电路 接通,则红灯发光;
将钥匙拔出,电磁铁所在的控制电路断开,磁性消失,动、静 触点脱开,电动机所在的工作电路断开,电动机停止工作。
四、课外实践与练习
5. 医生给心脏疾病的患者做手术时,往往要用一种称为“人工 心脏泵”(血泵)的体外装置来代替心脏,以推云力血液循环.图是该 装置的示意图,线圈AB固定在用软铁制成的活塞柄上(相当于一个 电磁铁),通电时线圈与活塞柄组成的系统与固定在左侧的磁体相 互作用,从而带动活塞运动。活塞筒通过阀门与血管相通,阀门S1 只能向外开启,S2只能向内开启.
1. 电磁铁
①带铁芯的通电螺线管称为电磁铁。
螺线管
铁芯
②特点:有电流通过时有磁性,没有电流时就失去磁性。
一、影响电磁铁磁性强弱的因素
③电磁铁的工作原理
利用电流的磁效应工作。在螺线管的内部插入铁芯通电后,铁芯 在螺线管的磁场中被磁化,两磁场叠加,使电磁铁的磁性大大增强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 无限长载流圆柱体的 磁场 L 解 (1)对称性分析 ) (2) r > R ) µ0 I ∫l B ⋅ d l = µ 0 I B = 2π r π r2 0 < r < R ∫ B ⋅ d l = µ0 2 I l πR µ0 Ir B= 2 2π R
I
R R
r
B
I .
dI
dB
B
B 的方向与 I 成右螺旋
2π R
I
B
o
∫ B ⋅ dl = ∫ 2π R dl
l
µ0 I
R
dl
l
设闭合回路 l 为圆 形回路( 形回路( l 与 I 成右螺 旋)
∫ B ⋅ dl = µ I
l 0
若回路绕向为逆时针 回路绕向为逆 µ0 I 2π dl ∫ B ⋅ d l = − ∫0 dφ = −µ0 I l o R 2π l 对任意形状的回路 µ0 I µ0 I dφ B B ⋅ dl = rdφ = dφ dl 2π r 2π I
d (5) ) I *A
R1
µ0 I
4π d
2R
I R o
B0 =
µ0 I
4R
R2
(3) I ) R o
*o
B0 =
µ0 I
8R
B0 =
µ0 I
4 R2
−
µ0 I
4 R1
−
µ0 I
4π R1
磁偶极矩
m = IS e n
例2中圆电流磁感强度公 式也可写成
I S
m
en
B=
µ 0 IR
2x
3
2
B=
µ0m
§2 电流和磁场
1.电荷守恒定律
1)
电流
电流为通过截面S 电流为通过截面 的电 荷随时间的变化率 荷随时间的变化率
S
+ + + + + +
dq I= dt dq = envi dtS
I
I = envi S
vi 为电子的漂移速度大小 为电子的漂移速度 漂移速度大小
单位: 单位 1A
mA = 10 A
-3
2) 电流密度 该点正电荷运动方向 该点正电荷运动方向 方向规定 规定: 方向规定: j 大小规定 规定: 大小规定:等于在单位时间内过该点附近垂直 于正电荷运动方向的单位面积的电荷
dQ dI j= = = envi dtdS cos α dS cos α
dI = j ⋅ dS = jdS cosα
讨 论
B=
µ0 nI
2
(cos β 2 − cos β1 )
β1 = π − β 2
l/2
点位于管内轴线中点 (1)P点位于管内轴线中点 ) 点位于管内
cos β1 = − cos β 2
B = µ0 nI cos β 2 =
若
cos β2 =
(l / 2)
l
2
+ R2
µ0 nI
2
(l
2
/4+ R
Idl
r
B
dB
p *
o
R
ϕ
B
I 解 根据对称性分析
4π r B = Bx = ∫ dB sin ϕ
dB =
µ 0 Id l
2
x
Idl
R
r
x
dB =
o
ϕ
r dB 2 2 2 ϕ r =R +x α µ 0 I cos αdl *p x B= 4 π ∫l r 2
B=
B=
cosα = R
µ 0 Id l
B
1 µ 0 nI 2
O
3.磁场的环量和旋度
• 1) 安培环路定理
∫ B ⋅ dl
= µ0 ∑ Ii
i =1
n
2)安培环路定理的微分形式 )
∫ B ⋅ dl
l
= µ 0 ∫ j ⋅ dS
s
∵ ∫ B ⋅ dl = ∫ ∇ × B ⋅ dS
l s
∴ ∇ × B = µ0 j
安培环路定理的证明
B=
µ0 I
无限大均匀带电(线密度为 线密度为i)平面的磁场 例4 无限大均匀带电 线密度为 平面的磁场
d a c
µ0i
2
B
i
b
o
解
r
∫ B ⋅dl
l
= 2 ∫ B ⋅ dl = 2 B ab = µ 0i ab a µ0 i B= 2
b
4.磁场的散度
磁场高斯定理
∫S B ⋅ d S = 0
∇⋅B = 0
磁场是无源的 磁场是无源的
(cosθ1 − cosθ 2) 4π r0
µ0 I
B 的方向沿 x 轴的负方向. 轴的负方向
无限长载流长直导线的磁场 无限长载流长直导线的磁场. 载流长直导线的磁场
z
D
θ2
B
B=
(cosθ1 − cosθ 2) 4π r0
B=
µ0 I
I
o
x
C
θ1 → 0 θ2 →π
µ0I
2 π r0
θ1
P y
+
无限长载流长直导线的磁场
磁感线
I
I
I
I S N
1) 磁通量:通过某曲面的磁感线数 ) 磁通量:
B
s⊥
θ
s
B
θ
en
匀强磁场下, 匀强磁场下,面 S的磁通量为: 的磁通量为: 的磁通量为
Φ = B ⋅ S = B ⋅ enS
B
dS
θ B
Φ = BS cosθ = BS⊥
一般情况
s
Φ = ∫s B ⋅ dS
B
dS2
S2 θ
I
S
I2
恒定电场: 恒定电场: 1)在恒定电流情况下,导体中电荷分布 )在恒定电流情况下, 不随时间变化形成恒定电场; 不随时间变化形成恒定电场; 2)恒定电场与静电场具有相似性质(高 与静电场具有相似性质( )恒定电场与静电场具有相似性质 斯定理和环路定理), ),恒定电场可引入 斯定理和环路定理),恒定电场可引入 电势的概念; 电势的概念; 3)恒定电场的存在伴随能量的转换 )恒定电场的存在伴随能量的转换.
x
C
o
Idz sinθ B = ∫ dB = ∫ 2 CD 4π r dB z = −r0 cotθ , r = r0 / sinθ 2 * y dz = r0dθ / sin θ P µ0I θ2 B= ∫θ1 sin θdθ 4 π r0
µ0
r
2
B=
µ0 I
4 π r0
∫θ
θ2
1
sin θ d θ =
B=
µ0I
2π r
I B
I
X
B
电流与磁感强度成右螺旋关系 电流与磁感强度成右螺旋关系 半无限长载流长直导线的磁场 半无限长载流长直导线的磁场
π θ1 → 2 θ 2 →π
BP =
µ0I
4π r
I
o
r
* P
圆形载流导线的磁场. 例2 圆形载流导线的磁场 真空中 , 半径为R 的载流导线 , 通有电流I , 称圆 电流. 的磁感强度的方向和大小. 电流 求其轴线上一点 p 的磁感强度的方向和大小
∫ B ⋅ d l = µ (I
0
2
− I3 )
I1
I2
I3
推广: 推广: 安培环路定理
l
∫ B ⋅ dl
= µ0 ∑ Ii
i =1
n
安培环路定理
∫ B ⋅ dl
= µ0 ∑ Ii
i =1
n
在真空的恒定磁场中, 在真空的恒定磁场中,磁感强度 B 沿任一闭合路径的积分的值, 沿任一闭合路径的积分的值,等于 µ 0 乘以 该闭合路径所穿过的各电流的代数和. 该闭合路径所穿过的各电流的代数和 注意 正负的规定 电流 I 正负的规定 : I 与 L 成右螺 旋时, 之为负 旋时,I 为正;反之为负.
任意载流导线在点 P 处的磁感强度 磁感强度叠加原理
B = ∫ dB = ∫
µ0 I dl × r
4π r
3
判断下列各点磁感强度的方向和大小. 例 判断下列各点磁感强度的方向和大小
1 8 2
d 1、5 点 : B = 0 、
3、7点 :dB 、 点 +3
+
=
µ 0 Id l
4π R
2
7
Idl
R
6 5
讨 论
的方向不变( 右螺旋关系 关系) B 的方向不变 I 和 B 成右螺旋关系) µ 0I B = 3)x = 0 ) 2R 4)x >> R )
2)x < 0 )
B=
µ 0 IR
2x
3
2
, B=
µ 0 IS
2π x
3
(1) ) I (2 )
R B x 0 µ0 I o B0 =
(4) )
BA =
R
o * p
dx
x
x
++ ++++ ++ +++++ +
解 由圆形电流磁场公式
B=
µ 0 IR
2
2 2 3/ 2
(x + R ) 2
β1
β
x1
o p
β2
x2
++ + + + + + + + + + + + + +