2125_02_29 Petroleum Technology, Volume 1-2
科聚亚聚氨酯

不断改善产品性能是科聚亚矢志不渝的追求。
科聚亚公司是全球最大的塑料添加剂生产商,同时在热浇注型聚氨酯预聚体、阻 燃剂、工业润滑油、特殊化学品、日用化学品以及农作物化学剂等领域内保持全 球领先地位。 2005年,康普顿化学公司与大湖化工合并,宣告了科聚亚的诞生。如今的科聚 亚,兼具康普顿•诺尔化工、Uniroyal化工和Witco化工等化学公司的优秀品质, 体现了公司在化工领域100多年的传承与创新。 科聚亚在全球拥有近5600名员工,他们分别在研发、制造、销售、管理等领域 为全球的客户提供优质服务。
LFM低游离MDI系统
品名 LFM 2450 LFM 500 LFM 1450 LFM 300 NCO % 4.45 4.92 4.5 2.95 硬度 95A 50D 95A 90A 固化剂种类 Caytur 31 Caytur 31 Caytur 31 Caytur 31 适用期(分钟) >10 30 >10 30 特性 极佳低温性能、动态性能好 高回弹 耐磨 耐磨、动态性能好
TDI聚酯
品名 V 6060 V 6007 B 8011 E 330 E 390 E 455 EP 2663/80 EP 2663/90 NCO % 3.35 4.26 3.3 3.3 3.9 4.55 3.18 4.63 硬度 62A 57A 53A 80A 84A~86A 88A~90A 80A 90A~91A 固化剂种类 MOCA MOCA MOCA MOCA MOCA MOCA MOCA MOCA 适用期(分钟) 9 25 60 7~8 6~7 5 8 6 特性 低硬度、高回弹 优异的耐溶剂性 优异的耐溶剂性 操作性佳、高撕裂/抗剪割 操作性佳、高撕裂/抗剪割 操作性佳、高撕裂/抗剪割 操作性佳、高撕裂/抗剪割 操作性佳、高撕裂/抗剪割
石化装置改造项目管道设计的注意事项

影响,且阀门泄漏分为“内泄漏”以及“外泄漏”。
如果阀门与法兰密封泄漏无法有效管理,将会对石油保化工装置的安全性产生重要不良影响。
第三,出现腐蚀因素。
对于管道设置而言,腐蚀因素是最常见且最危险的不良因素。
腐蚀因素可以对管道周围的环境产生严重影响,腐蚀可以对管道材料造成不可逆损害[1]。
目前,常见的腐蚀损坏包含了应力损坏、腐蚀性损坏、局部腐蚀性损坏以及大气腐蚀性损坏等。
且不同的腐蚀损坏条件,在不同的管道材料以及其环境当中,二者具有一定差异。
因此,其造成的腐蚀程度也具有明显不同,将对后续的管道维修产生一定的干扰腐蚀情况,难以控制。
第四,出现进出装置的因素。
在进出装置管道设置中,其设置了切断阀装置,且为了保障整体工程的安全性,还额外设有盲板,盲板遵循“8”字设计方法[2]。
但在现有的管道设计中,对盲板设计存在了一定的误区,使其盲板在对管道有毒或可燃气体输送中,缺乏必要的保护机制,例如出现窒息。
因此,在后续改良中,必须注意对盲板进行整体设计规划,以减少在实际工作中盲板设立不当所产生的潜在危害。
2 石化装置管道设计现状分析目前,我国针对管道工艺以及其整体的工艺路线均执行“安全性第一”的设计原则。
作为最基本,同时也是必须遵守的原则之一,在遇到相关问题时,“安全性第一”的工作原则均可以对管道设计工作产生有效保障[3]。
因此,就现状分析而言,我国整体工作环境以及工作机制正在逐步成长。
在设计中,选择具有适用性、应用性、安全性的材料,以保障降低工程成本,提升工程质量。
在石油化装置管道设计中,必须考虑以下四大要素。
0 引言管道在石油化装置当中,其占据极大份额。
管道对于石油的输送以及开采起到了决定性因素。
对目前我国石油管道设计领域进行分析时,必须根据工程现状,对石油化工液体或气体输送进行有效改良,以保障其管道设计可以根据实际工程情况完成有效增长,满足相关的工程模式。
在一定程度上减少石油的投入成本,促使其管道发挥自身最大的功能,完成管道的维护。
泰科纳推出无卤阻燃聚合物

[ 3 】丁宗彪 , 连慧 , 王全瑞等.钨化合物催化过氧化氢氧化环己酮合成
己二 酸 叨.有 机 化 学 ,0 42 ( )3 9 3 1 2 0 ,4 3 : 1— 2 .
[】张世 刚 , 4 姜恒 , 官红. 催化 氧化环 己酮 / 己醇 清洁合成 己二酸f】 环 J.
F in l vr n na y te i o ii i y Us g P tle e S l h n c Acd a h re dy En io me tlS nh ss fAdpc Acd b i -ou n up o i i s te n Acdc Lg n ii ia d
Zh n Xi a g a
(o eeo ot uu d ctnZ eghu U i ri fLg tIds y Z egh u4 0 0 ,hn) C l g fC ni osE uao ,hnzo nv syo i n ut , h nzo 50 2C i l n i e t h r a
【.精细化工 中间体 ,0 4 3 ( )3 — 1 J J 20 ,4 5 :9 4 .
应 时 间短 , 成 工 艺 简 单 , 率 高 , 有 良好 的重 合 收 还
复使 用 性 。
参考文献
[ 凌关庭 , 1 】 唐述潮 , 陶民强编. 品添加剂手册 ( 食 第二版) ] [. : M 北京 化学
泰 科 纳 推 出 无 卤 阻 燃 聚 合 物
气 电子 元 件 推 出 的 V一 0级 无 卤阻 燃 聚 合 物 ,具 有 低 翘 曲 、 高 温 、 流 动 性 、 壁 、 型 周 期 短 的特 耐 高 薄 成
性 。该 材 料 可 以使 新 型 连 接 器 具 有 更 高 的 针 脚 密
固定顶储油罐VOCs回收治理技术及前景分析

挥发性有机物(VOCs )是参与大气光化学反应的有机化合物。
VOCs 造成的温室效应导致海平面显著上升,会淹没海岸线分布的低洼地区和海岛,从而造成严重的经济损失。
全球变暖会改变全球雨量分布,导致农作物品质下降,使农业经济遭受严重影响。
此外,也会致使海洋生物多样性减少,危害人类生存。
国际能源署(IEA)报告指出:2020年,全球石油和天然气企业向大气中排放的甲烷为7000×104t (相当于21×108t CO 2当量),相当于欧盟能源CO 2总排放量。
由此可见,甲烷的逸散排放可能会削弱天然气的低碳效果。
如果VOCs 逸散浓度过高,就会取代空气中的氧气,造成缺氧环境,危害人身健康甚至危害生命。
油气田生产过程中,仍有许多环节需要人员操作,因此保障工作人员的身体健康实属必要。
从国家和地方生态环境主管部门密集出台挥发性有机物综合治理方案和日益严格的执法形势可以看出,“十四五”期间,挥发性有机物综合治理将是大气污染防治的重中之重[1-3]。
为促进陆上石油天然气开采工业的技术进步和固定顶储油罐VOCs 回收治理技术及前景分析李必怡(大庆油田设计院有限公司)摘要:固定顶储油罐是油田站场中存储原油的重要设施,因其受到自身及外界因素的影响存在一定的呼吸损耗,挥发性有机物(VOCs)无组织排放到大气中,不仅造成了能源的浪费,也给人类生存和社会环境造成了严重影响。
采用大罐抽气装置可以很好地解决这一难题,通过HYSYS 软件模拟工况,确定固定顶储油罐的蒸发损耗量,并优化生产运行,研发油田地面工程集输系统密闭流程,以减少油气挥发;保障了油田的安全生产,同时可以创造较高的经济价值。
VOCs 回收治理对油田可持续发展和绿色环保具有重要意义。
关键词:固定顶储油罐;VOCs;治理方案;大罐抽气装置;呼吸损耗DOI :10.3969/j.issn.2095-1493.2023.07.019Treatment technology and prospect analysis of VOCs recovery in fixed-roof storage tank LI BiyiDaqing Oilfield Design Institute Co .,Ltd .Abstract:The fixed-roof storage tank is an important facility for storing crude oil in oilfield station .Due to the respiratory loss caused by internal and external factors,the volatile organic compounds (VOCs)are discharged into the atmosphere without organizationIt,which not only causes a waste of energy,but has a serious impact on human survival and social development.However,adopting the large tank extraction device can be a good solution to this challenge.By simulating the working condi-tion with HYSYS software,the evaporation loss of fixed-roof storage tank can be determined,and the production operation can be optimized to realize the closed process of gathering and transportation system of oilfield surface engineering and reduce the oil and gas volatilization loss.Additionally,it can not only ensure the safe production of oilfields,but create higher economic value.Even more to the point,the recovery treatment of VOCs is of great significance to the harmonious,green and sustain-able development of oilfield .Keywords:fixed-roof storage tank;VOCs;treatment scheme;large tank extraction device;breath-ing loss作者简介:李必怡,工程师,硕士,2014毕业于东北石油大学(油气储运工程专业),从事油气集输设计工作,186****6662,****************,黑龙江省大庆市大庆油田设计院油气集输室,163712。
雷神能量 0W-40 机油说明书

化学品安全技术说明书产品名称: 雷神能量 0W-40 最初编制日期: 02/12/2016 修订日期: 19/10/2018 依据GB/T 16483、GB/T 17519编制版本: 1.1SDS编号: 10693-0045第 1 部分化学品及企业标识产品名称 (中文名): 雷神能量 0W-40产品名称 (英文名) : Leichtlauf Energy 0W-40产品代码: 20739 (1L), 20740 (4L), 21271 (205L), 21272 (20L)企业名称: LIQUI MOLY GmbH地址: 德国, Ulm-Lehr, Jerg-Wieland-Str. 4邮政编码: D-89081传真: (+49) 0731-1420-88电话号码: (+49) 0731-1420-0化学事故应急咨询电话: +86 (0)25 8547 7110负责安全资料表的人员的电子邮箱:建议用途: 机油第 2 部分危险性概述紧急情况概述GHS 分类除上述提到的危害外,没有其他危害的相关信息标签要素无资料其他信息物理和化学危险: 没有更进一步的信息健康危害: 在正常使用条件下无明显危害环境危害: 没有更进一步的信息其他危害: 没有更进一步的信息第 3 部分成分/组成信息产品形态: 混合物。
第 4 部分急救措施急救总体急救措施: 切勿给无意识的人口服任何东西。
如感觉不适,就医(如可能,向其出示标签)吸入: 使其呼吸新鲜空气。
让患者休息皮肤接触: 脱去受感染衣物并以温和肥皂与水清洗接触的皮肤部分,再以热水冲净眼睛接触: 立即用大量清水冲洗。
疼痛或发红情形持续时,就医处理食入: 漱口。
不得诱导呕吐。
紧急就医最重要的症状和健康影响在正常使用条件下无明显危害对保护施救者的忠告没有更进一步的信息给医生的特别提示对医生的特別提示: 没有更进一步的信息第 5 部分消防措施灭火剂适用灭火剂: 二氧化碳干粉泡沫不适用灭火剂: 不得用强水流特别危险性爆炸危险: 可形成易燃/爆炸性蒸气-空气混合物给消防员的建议和保护措施灭火方法: 以水喷雾冷却暴露的容器扑灭化学火灾时应格外小心防止灭火废水污染环境: 未有防护装备(包括呼吸防护装备)勿进入火场消防人员应穿戴的个体防护装备第 6 部分泄漏应急处理人员防护措施、防护装备和应急处置程序火源控制措施: 避免任何火源一般措施: 确保适当的空气流通避免与皮肤、眼睛及衣物接触: 没有更进一步的信息作业人员防护措施、防护装备和应急处置程序未受过紧急情况培训的人员应急处置程序: 疏散多余的人员对于应急人员防护装备: 清洁人员应配备适当的防护装备应急处置程序: 对该区域进行通风环境保护措施: 避免渗入排水沟及公共用水若液体渗入排水沟或进入公共用水时通知当局泄漏化学品的收容、清除方法及所使用的处置材料清除方法: 没有更进一步的信息: 没有更进一步的信息收容方法: 用液体吸附性材料(例如砂、硅藻土、酸吸附剂或通用吸附剂)吸收。
罗托克流体技术(苏州)有限公司介绍企业发展分析报告模板

Enterprise Development专业品质权威Analysis Report企业发展分析报告罗托克流体技术(苏州)有限公司免责声明:本报告通过对该企业公开数据进行分析生成,并不完全代表我方对该企业的意见,如有错误请及时联系;本报告出于对企业发展研究目的产生,仅供参考,在任何情况下,使用本报告所引起的一切后果,我方不承担任何责任:本报告不得用于一切商业用途,如需引用或合作,请与我方联系:罗托克流体技术(苏州)有限公司1企业发展分析结果1.1 企业发展指数得分企业发展指数得分罗托克流体技术(苏州)有限公司综合得分说明:企业发展指数根据企业规模、企业创新、企业风险、企业活力四个维度对企业发展情况进行评价。
该企业的综合评价得分需要您得到该公司授权后,我们将协助您分析给出。
1.2 企业画像类别内容行业空资质空产品服务:工业自动控制系统装置制造;工业自动控制系1.3 发展历程2工商2.1工商信息2.2工商变更2.3股东结构2.4主要人员2.5分支机构2.6对外投资2.7企业年报2.8股权出质2.9动产抵押2.10司法协助2.11清算2.12注销3投融资3.1融资历史3.2投资事件3.3核心团队3.4企业业务4企业信用4.1企业信用4.2行政许可-工商局4.3行政处罚-信用中国4.4行政处罚-工商局4.5税务评级4.6税务处罚4.7经营异常4.8经营异常-工商局4.9采购不良行为4.10产品抽查4.11产品抽查-工商局4.12欠税公告4.13环保处罚4.14被执行人5司法文书5.1法律诉讼(当事人)5.2法律诉讼(相关人)5.3开庭公告5.4被执行人5.5法院公告5.6破产暂无破产数据6企业资质6.1资质许可6.2人员资质6.3产品许可6.4特殊许可7知识产权7.1商标7.2专利7.3软件著作权7.4作品著作权7.5网站备案7.6应用APP7.7微信公众号8招标中标8.1政府招标8.2政府中标8.3央企招标8.4央企中标9标准9.1国家标准9.2行业标准9.3团体标准9.4地方标准10成果奖励10.1国家奖励10.2省部奖励10.3社会奖励10.4科技成果11土地11.1大块土地出让11.2出让公告11.3土地抵押11.4地块公示11.5大企业购地11.6土地出租11.7土地结果11.8土地转让12基金12.1国家自然基金12.2国家自然基金成果12.3国家社科基金13招聘13.1招聘信息感谢阅读:感谢您耐心地阅读这份企业调查分析报告。
氯醚树脂分子式

氯醚树脂分子式全文共四篇示例,供读者参考第一篇示例:氯醚树脂是一种具有氯醚键结构的塑料,其分子式通常表示为(CnH2nOCl)m,其中n和m分别代表重复单元的数量。
氯醚树脂的结构中含有氯和氧原子,因此具有很好的耐化学性和热稳定性,是一种优良的工程塑料。
氯醚树脂具有许多优异的性能,比如优异的力学性能、耐化学性、电气性能以及优异的耐热性。
这些性能使得氯醚树脂在工程塑料领域有着广泛的应用。
它可以用于制造汽车零部件、电子产品外壳、工程管道等。
氯醚树脂还具有良好的加工性能,易于成型、切割和焊接,可以通过注塑、挤出、吹塑等加工方法来制造各种形状的制品。
而且氯醚树脂还具有优异的抗老化性能,能够长时间保持其原始性能。
在实际应用中,氯醚树脂还可以与其他材料进行复合,以改善其性能。
比如与玻璃纤维、碳纤维等进行复合,可以提高其强度和刚度,使其适用于更多的领域。
第二篇示例:氯醚树脂,又称氯醚烷基树脂,是一类重要的合成树脂材料,其分子式为(C2H4O)nCl。
氯醚树脂具有优异的物理性能和化学稳定性,广泛应用于涂料、粘合剂、塑料、橡胶等领域,是当今工业中不可或缺的重要材料之一。
氯醚树脂的分子结构中含有氯、氧和乙烯氧基团,这种结构赋予了氯醚树脂优异的特性。
氯醚树脂具有较高的热稳定性和化学稳定性,能够在较高温度下长时间保持其性能不变,同时具有较好的耐化学腐蚀性,能够在强酸、强碱等恶劣环境下使用。
氯醚树脂还具有优异的电绝缘性能和耐候性,能够在户外环境下长时间使用而不受到外界环境的影响。
氯醚树脂在涂料领域具有广泛的应用。
由于其优良的物理性能和化学稳定性,氯醚树脂可以用作涂料的基料,提高涂料的耐久性和附着力。
氯醚树脂还能够用于涂料的增塑剂和固化剂,使得涂料具有更好的性能和使用寿命。
氯醚树脂还可用于制备高温涂料,能够在高温环境中长时间使用而不失去其原有性能。
第三篇示例:氯醚树脂,又称氯烷基醚树脂,是一类重要的合成树脂材料,具有独特的化学结构和物理性质。
氢化石油树脂介绍

氢化石油树脂介绍一.产品相关介绍1.石油树脂:英文名称:petroleum resin。
石油树脂是石油裂解所副产的C5 、C9 馏份,经前处理、聚合、蒸馏等工艺生产的一种热塑性树脂,它不是高聚物,而是分子量介于300-3000 的低聚物。
2.氢化石油树脂:氢化石油树脂是石油树脂经氢化反应,把石油树脂中的不饱和烃转变成为饱和烃,改善了石油树脂的色相、气味和耐候性的产品。
主要分为C5加氢树脂和C9加氢树脂。
3.C5加氢石油树脂:C5 加氢石油树脂是以乙烯裂解的C5 馏份为原料,由C5 组分中的双烯和单烯经阳离子聚合而成。
密度为 1.0 左右,易溶于有机溶剂,如苯、甲苯、二甲苯、各型号溶剂油等,不溶于水。
外观为颗粒状固体,外观呈白色或黄色,易碎,易生成粉尘,无毒、无味,属非易燃易爆物品(注:环保)。
C5 加氢石油树脂具有良好的增粘性、相容性、热稳定性和光稳定性,并可以改善胶粘性的粘接性能,是许多胶粘剂(热熔胶、压敏胶)必不可少的增粘组份。
广泛应用于热溶胶、压敏胶、建筑业的结构与装饰、汽车组装、轮胎、商品包装、书刊装订、卫生用品、制鞋、热溶性路标漆、彩色沥青等行业。
(注:和SBS应用领域基本一样)作为油漆添加剂,可加快漆膜的干燥速度,提高油漆的耐水性、耐酸碱性、耐老化性以及表面硬度和光泽。
用于熔接型路标漆,具有干燥速度快,附着力强,耐久性、耐候性、热稳定性好,无溶剂等特点。
作为医用容器及包装材料添加剂(如储血包、液体药物包装袋、输液管等)以改善其耐热性、透明性及柔软性。
该产品也用于橡胶、塑料、光学记录材料、等领域。
二.国内C5加氢石油树脂市场介绍C5石油树脂由于具有酸值低、混溶性好、熔点低、粘合性好、耐水和耐化学品等特点,可用作粘合剂、油墨、橡胶增粘剂、纸张上浆剂及各种涂料的添加剂。
近年来随着生产技术的改进、新品种的开发、应用领域的扩展和市场需求的增长,我国石油树脂进入高速发展阶段,近几年的年均增长率达到12%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.International Agency for Research on Cancer,IARC Monographs on the Evaluationof Carcinogenic Risk to Humans ,Vol.77,2000,p.227.22.ACGIH (ed.):Documentation of the Biological Exposure Indices ,7th ed.,Cincinatti2001.V INCENT A.W ELCHK EVIN J.F ALLONWashington Group Intl.,Inc.(formerly The Badger Company)Cambridge,Massachusetts,United StatesH EINZ -P ETER G ELBKEBASF Aktiengesellschaft,LudwigshafenFederal Republic of GermanyCYCLOPENTADIENE ANDDICYCLOPENTADIENE1.IntroductionCyclopentadiene [542-92-7](CPD),C 5H 6,(1)and its more stable dimer,dicyclo-pentadiene [77-73-6](DCPD),C 10H 12(2)are are the major constituents of hydro-carbon resins,cyclic ole fin polymers,and a host of specialty chemicals.(1)12345(2)1233a 45677a 8They can be transformed into many chemical intermediates used in the pro-duction of pharmaceuticals,pesticides,perfumes,flame retardants,and antioxi-dants.Because of their wide industrial uses,their chemistry has been extensively investigated and documented.Numerous reviews (1–12)have been published on the subject.The production processes and industrial uses of CPD and DCPD are summarized in Ref.13.In additional to the classical organic reactions,CPD forms organic metallic complexes,ferrocene,with transition metals (14).Some of these complexes have been established as excellent ole fin polymerization catalysts.Several reviews have been published on this rapid growing field (15–19).2.Physical PropertiesThe physical properties of CPD and DCPD are given in Table 1.DCPD,3a ,4,7,7a -tetrahydo-4,7-methano-1H -indene,can exist in two stereoisomers,the endo and Kirk-Othmer Encyclopedia of Chemical Technology .Copyright John Wiley &Sons,Inc.All rights reserved.10.1002/0471238961.0325031211050514.a01.pub2exo forms.Because commercially available DCPD is mostly the endo isomer,the propertiesin(endo DCPD)(exo DCPD)Table 1are pertinent to those of the endo isomer.Spectroscopical information on CPD and DCPD can be found in the following references:Mass spectrum,ref.20;nmr spectrum,ref.21;infrared,ultraviolet and Raman spectra ref.2.DCPD decomposes rapidly at its normal boiling point to two molecules of cyclopentadiene.Puri fication of DCPD by distillation must be conducted under vacuum conditions.Figure 1depicts the lowering of the boiling point as a func-tion of pressure.The dimer is the form in which CPD is sold commercially.3.Chemical ReactionsCyclopentadiene is very reactive.In addition to the vast number of reactions one expects from a conjugated double bond structures which include Diels –Alder addition,hydrogenation,halogen addition,etc,the highly acidic methylene group promotes a number of condensation reactions.On the other hand,DCPD behaves like non-conjugated dienes,with the exception that the double bond in Table 1.Physical Properties of Cyclopentadiene and DicyclopentadienePhysical propertiesCyclopentadiene Dicyclopentadiene molecular weight66.1132.2bp,101.3kPa,a 8C40.0170mp,8CÀ97:232physical formcolorless liquid colorless solid odorsweet terpenic camphoraceous d 2040.8021d 3540.9302n 20D1.4440 1.5105n 35D 1.5050heat of combustion,kJ/mol b29295767heat of vaporization,kJ/mol d28.938.5heat of fusion,kJ/mol b8.0 2.1speci fic heat,kJ/(kgK)b1.7 1.7heat of cracking,kJ/mol b102.9spontaneous ignition temp,8Cin oxygen510510in air640 2.43dielectric constant at 408C2.43ionization energy,eV8.58.8aTo convert kPa to mm Hg,multiply by 7.5.b To convert kJ to kcal,divide by 4.184.the bicycloheptene ring is more reactive than that in the five-member ring because of the bond angle strain in the bicycloheptene ring.3.1.Diels –Alder Addition.In Diels –Alder addition,the conjugated double bonds of CPD react with the p bond of a dienophile,a compound contain-ing ethylenic or acetylenic unsaturation.The ethylenic or acetylenic group is added across the 1,4position of theCPD,+R 2R 1R 4R 3142(1)resulting in a bicyclo[2.2.1]heptene derivative,a cyclohexene derivative with a bridged methylene group.Because of Diels –Alder reactions,many multicyclic compounds can be synthesized with CPD as the building blocks.Examples of these reactions,which are highly exothermic (71–75kJ/mol),are shown in Table 2.Both CPD and DCPD can be used in the reactions.However for the latter,the reaction needs to be carried out at temperatures above 1758C in order for the DCPD to dissociate rapidly to the CPD monomer.The rate of the reaction is strongly affected by other substituents of the dienophile.For instance,the reac-tion between CPD and maleic anhydride occurs spontaneously whereas that between CPD and ethylene requires elevated temperatures and very high pressure.A long floppy chain on the dienophile is also a strong inhibitor of the reaction (22).Diels –Alder addition is stereochemically speci fic (22).There is a strong ten-dency of most substituents of the dienophile to orient in the endo con figuration inPressure in mm Hg B o i l i n g p o i n t , C Fig.1.Boiling point of dicyclopentadiene as a function of pressure.Table2.Diels–Alder Adducts from CyclopentadieneDienophile Structure of adductDibasic acids and derivativesmaleic anhydride,R¼Hchloromaleic anhydride,R¼Cl OHR OOMonobasic acidscrotonic acid,R1¼H;R2¼CH3 methacrylic acid,R1¼CH3;R2¼H R1COOHR2Aldehydesacrolein,R¼Hcrotonaldehyde,R¼CH3HH CHO RKetonesmethyl propenyl ketone(3-penten-2-one),R1¼CH3;R2¼CH3methyl vinyl ketone(3-buten-2-one),R1¼H;R2¼CH3HH COR2 R1Vinyl compoundsethylene,R¼Hstyrene,R¼C6H5vinyl acetate,R¼CH3COO RHAcetylenesacetylene,R¼H acetylenedicarbonitrile,R¼CNQuinonesp-benzoquinoneOO Nitroso compoundsnitrosobenzeneConjugated diolefins 1,3-butadiene,R¼H2the bicycloheptene derivative formed fromCPD.12Endo 12Exo With maleic anhydride as the dienophile,the reaction leads exclusively to the endo form (23)of the nadic anhydride,endo-cis -bicyclo[2.2.1]hept-5-ene-2,3-dicar-boxylic anhydride [129-64-6](3).(3)(1)OOO O O O3.2.Polymerization.Cyclopentadiene dimerizes spontaneously andexothermally at ambient temperature to endo DCPD via the Diels –Alder addi-tion mechanism,in which one of the CPD molecule acts as the dienophile.At temperatures above 1008C,CPD polymerizes thermally to trimers,tetramers,and higher oligomers.Since either one of the nonconjugated double bonds in an oligomer can participate in the Diels-Alder addition to the CPD to form a higher oligomer,the higher oligomers can have several structural isomers.For instance,two trimers,3a ,4,4a ,5,8,8a ,9,9a -octahydro-4,9:5,8-dimethanobenz-1H -[f ]indene,[7158-25-0](4)and 1,4,4a ,4b ,5,8,8a ,9a -octahydro-1,4:5,8-dimethano-1H -fluorene [35184-08-8](5),are formed in the ratio 87:13by the addition of CPD to DCPD (24).(4)(5)In contrast to DCPD,higher thermal oligomers are crystalline compounds with little odor.The yields of the oligomers at various temperatures and contact times are shown in Table 3.In addition to thermal polymerization,CPD can be polymerized rapidly at low temperatures with the aid of Lewis acid catalysts (25).The catalysts most often uses in the industry are AlCl 3and BF 3although AlBr 3,TiCl 4,SnCl 4as well as alkyl aluminum chlorides are all known to be effective catalysts.3.3.Condensation Involving the Methylene Group.Because of the resonance stabilization of the p -electron system,the cyclopentadienyl anionforms readily from CPD after the dissociation of the acidic methylene proton.Under alkaline conditions,CPD undergoes condensation reaction with carbonyl compounds,such as ketones and aldehydes,yielding a family of highly colored fulvene derivatives (26).CH −+C O R 1R 2CH C O R 1R 2C C R 1R 2+OH −The color of the fulvenes increases with the size of R 1and R 2(2).The dimethylfulvene is bright yellow whereas fulvenes with aromatic substitutents are blood-red.The aldehyde condensation products are also strongly colored.Because they resinify easily,it is dif ficult to separate them in the pure form.Fulvenes can be hydrogenated to the corresponding alkylated cyclopen-tanes in the presence of nickel or palladium catalysts.Therefore,the condensa-tion reaction provides a convenient route for the synthesis of alkylated cyclopentanes from CPD.Cyclopentadiene reacts with alkaline oxides and hydroxides forming the alkaline cyclopentadienyl salts.Alkaline hydroxides supported on high surface materials such as kieselguhr and alumina are good absorbents for trace amounts of cyclopentadiene contaminant in other hydrocarbons (27).3.4.Hydrogenation.Cyclopentadiene can be hydrogenated stepwise through cyclopentene to cyclopentane in the presence of hydrogen and noble metal catalysts such as palladium (2).The heats of reaction at 828C are as follows (28)C 5H 6þH 2À!C 5H 899:2kJ =mole ð22:2kcal =mol ÞC 5H 6þ2H 2À!C 5H 10212:8kJ =mole ð50:9kcal =mol ÞSimilarly DCPD is hydrogenated first to the dihydro derivative and then to the tetrahydro DCPD (29).The heat of hydrogenation of the double bond of the bicycloheptene ring is 139kJ/mol (32.2kcal/mol),whereas that of the five-member ring is 110kJ/mol (26.2kcal/mol)(30).Therefore the former double bond is more reactive and is the first to be hydrogenated,yielding the 3a ,4,5,6,7,7a -hexahydro-4,7-methanoindene (6),one of the two possible Table 3.Yield of Cyclopentadiene Oligomers at VariousTemperatures and Contact Times,wt%150–1608C 170–1808C 2008C Oligomer14h 22h 90h tricyclopentadiene405025tetracyclopentadiene103045pentacyclopentadiene2510unreacted DCPD 50105structural isomers of the dihydro DCPD.(6)Oligomers of CPD can also be hydrogenated.The endo isomers of the hydro-genated products are waxlike solids.Physical properties of the hydrogenated oli-gomers can be found in refs.30–32.Hydrocarbon resins produced by polymerization of CPD are hydrogenated to improve their color,light stability and adhesive properties.Colorless resins obtained this way are used for demand-ing applications such as adhesives for transparent pressure-sensitive tape.Hydrogenation of CPD and DCPD with noble metal catalysts tends to pro-duce a mixture of dihydro and tetrahydro derivatives.If only the dihydro deriva-tives are to be produced,selective hydrogenation catalysts must be used. Hydrogenation catalysts designed for the conversions of conjugated diolefins like 1,3-butadiene or isoprene to the olefins have been used for this service.These catalysts are mostly palladium metal modified with one or more promoters(33).3.5.Oxidation.Cyclopentadiene reacts spontaneously with oxygen to form a brown,gummy substance that contains a substantial amount of perox-ides.Dicyclopentadiene reacts with air slowly,yielding a gummy deposit.The gum formation in DCPD can be inhibited by the addition of100–200ppm by weight of antioxidants such as t-butylcatechol and a-naphthol.Vapor-phase catalytic oxidation of CPD over vanadium oxide at400–5258C yields maleic anhydride,carbon dioxide,and formaldehyde.Dihydroxylcyclopentenes and tetrahydroxylcyclopentane can be prepared by treating CPD with hydrogen peroxide(34–37).3.6.Halogenation.Halogens and hydrogen halides react readily with the conjugated double bonds of CPD,producing a series of halogenated com-pounds ranging from the monohalocyclopentene to tetrahalocyclopentane. 3-Chlorocyclopentene is not stable.It decomposes on standing,with resinifica-tion and the release of hydrogen chloride.The halogenated derivatives of cyclopentadiene serve as the starting points for the synthesis of a large number of organic compounds,including amines,alco-hols,and thiocyanates.Of all the chloro compounds derived from CPD,only hex-achlorocyclopentadiene[77-47-4]has been used in commercial quantities.It is prepared by a liquid phase chlorination of CPD below508C(38).Tetrachlorocy-clopentane is producedfirst,by chlorine addition,and is then converted to octa-chlorocyclopentane by catalytic chlorination over arsenious oxide or phosphorus pentachloride at175–2508C.Octachlorocyclopentane is then dehydrochlorinated thermally to the hexachlorocyclopentadiene.Hexachlorocyclopentadiene is the basis for a number of pesticides such as Chlorodane,Aldrin,Dieldrin,and Kepone.The production of some of these mate-rials has been banned in many regions because of their carcinogenic properties and toxicity to wildlife.Hexachlorocyclopentadiene is also the raw material for chlorendic acid,which is used as aflame retardant(39)for unsaturated polyester resins.3.7.Alkylation.Cyclopentadiene can be multiply alkylated in high yields using alkyl halides,oxo alcohols,and Guerbet alcohols(40,41).The multi-ply alkylated cyclopentanes obtained by hydrogenation of the diene derivatives have been demonstrated to be useful as synthetic lubricants.4.Source and ProductionSteam crackers for the production of ethylene are the primary source of cyclopen-tadiene and dicyclopentadiene,although a small amount is still recovered from coal tar distillation.The amount of CPD produced depends on the feedstock to the cracker.The yield from a naphtha cracker is6to8times of that from a gas cracker,which uses ethane and propane feed mixture.The cracked gas leaving the furnace section of a steam cracker contains many chemical components.They are separated by a series of fractionation col-umns.The bottom stream from the debutanizer column,known as the pyrolysis gasoline in the industry,contains the C5and heavier fraction of the cracked gas. Typically,cyclopentadiene plus dicyclopentadiene constitute15–25wt%of the pyrolysis gasoline.Because CPD dimerizes readily,it is usually recovered in the form of the DCPD.There are two ways by which DCPD can be obtained from the pyrolysis gasoline,depending on whether the pyrolysis gasoline is processed immediately after leaving the debutanizer.When the pyrolysis gasoline is processed immedi-ately,the amount of DCPD present is small.The process scheme generally fol-lows that depicted in Figure2.The C5fraction of the pyrolysis gasoline isfirst separated as the overhead of a depentanizer.The C5stream is heat-soaked in a dimerizer at about1008C.The CPD in the C5stream is converted to DCPD.Theseparation of the low-boiling C5components from the DCPD is achieved byagasolineFuel oilFig.2.Process scheme for extracting dicyclopentadiene from pyrolysis gasoline when the gasoline is processed immediately after its production in an ethylene plant.second fractionation in which the DCPD is recovered as the bottom product.The DCPD is mainly in the endo form and has a purity of 82–90%.If the pyrolysis gasoline is placed in storage before it is processed or if the process is supplemented with purchased pyrolysis gasoline,a signi ficant amount of the CPD in the pyrolysis gasoline is already in the form of DCPD,since cyclo-pentadiene dimerizes to DCPD at a rate of 9mol%/h at 358C.The recovery of the DCPD follows a different process scheme as shown in Figure 3.The pyrolysis gasoline is first heat-soaked in a dimerizer to convert remaining CPD to DCPD.The ef fluent from the dimerizer is fractionated in one or more columns where the C5–C9components are separated from the C10and heavier fraction.(Usually,this fractionation is carried out in two steps:First a CPD-lean C5stream is produced as the overhead of a depentanizer.The bottom stream of the depentanizer is further processed in a second column which separates the C6–C9components as the overhead while the C10and heavier fraction becomes the bottom stream.)The C10and heavier stream,which contains 50–70%DCPD,is distilled to yield a DCPD overhead product.The purity of the DCPD is 82–95%.The process in Figure 2requires less demanding fractionation but it has the disadvantage of leaving in the DCPD all the oligomers produced during the heat-soak step.The process scheme in Figure 3also has the advantage of flexibility in adjusting the DCPD product to a desirable purity by simply varying the fractio-nation conditions in the last column.High-purity DCPD in the range of 98–99%is produced by thermal cracking of the lower-purity DCPD.Pure CPD is separated from the crude DCPD by distillation and is redimerized in controlled conditions to avoid oligomer formation.Unreacted CPD is stripped from the high-purity DCPD by mild fractionation (42).The annual capacity of DCPD production for all grades in the United States is estimated to be in excess 350millions pounds in the 1999.The major U.S.gasoline Fig.3.Process scheme for extracting dicyclopentadiene from pyrolysis gaso-line when the gasoline was in storage for an extended period of time after its production in an ethylene plant.producers are B.F.Goodrich Company,Equistar Chemicals (a joint venture of Lyondell Petrochemical,Milennium Chemicals,and Occidental Petroleum Company),Exxon Chemical Company,Phillips Petroleum Company,Shell Oil Company,Texmark Chemicals,and Velsicol Chemical Corporation.The major consumptions of DCPD in the United States are in the production of hydrocarbon and unsaturated polyester resins (80%),ethylene –propylene terpolymers (10%),reaction injection molding (5%),and miscellaneous uses (5%).The last includes flame retardants,pesticides,antioxidants,and metallocene catalyst production.The demand for DCPD will grow in a rate of 4%per year in the next several years.Western Europe and Japan have,respectively,annual DCPD production capacities of 176and 195millions pounds,and predicted annual growth rates of 5%and 6%(43).The major producers in Europe are Exxon,EniChem,Dow,and Shell.Nippon Zeon and JSR are the major producers in Japan.5.Storage and HandlingBecause CPD monomer dimerizes spontaneously at room temperature and a large quantity of heat (75kJ/mol or 18kcal/mol)is released in the process,mate-rial containing a substantial amount of CPD should not be stored in any sealed container without the provision of removing the heat.The rate constant of the dimerization is 1.2Â106exp(À16.7/RT )L/mol s (2).Thus the rate of reaction accelerates rapidly withincreasing temperature.Without adequate heat dissipation,runaway dimeriza-tion occurs.The resulting high temperature leads to the building up of pressure,which will eventually burst the mercial quantity of CPD is usually produced,stored,and shipped in the form of the stable dimer,DCPD.Because of the high freezing point of DCPD,the material is transported in tank cars,rail cars,or barges equipped with heating elements.The heating of the DCPD must be regulated.Otherwise,excess temperature will lead to the formation of the undesirable oligomers.Exposing DCPD to even a trace amount of oxygen or rust at temperatures in excess of 1008C promotes the forma-tion of peroxides and other oxygenates.The oxygenates degrade the quality of the DCPD because they impact undesirable color to the product.DCPD is usually stabilized with 100–200ppm of antioxidants such as tert -butyl catechol to pre-vent gum deposit during storage.Temp.8CDimerization rate mol %/h Temp.8C Dimerization rate mol %/h À200.0525 3.500.5306101359151.5401520 2.5For commercial applications,which require the cyclopentadiene monomer, the CPD is obtained from DCPD by thermal cracking.The process involves dis-tilling the DCPD at its normal boiling point(1708C)under an inert atmosphere. At1708C,DCPD cracks at a rate of36%/h.By maintaining the overhead tem-perature of the column at41–428C,the boiling point of CPD,an overhead con-densate of pure CPD monomer can be obtained.The thermal cracking and distillation can also be accomplished by heating the DCPD in the presence of a heavy oil at about2508C.The heavy oil functions as a solvent to minimize fouling due to resinification at high temperature.Another method of producing CPD is by cracking the DCPD in the vapor phase at350–4008C.At these temperatures, the decomposition of the DCPD is instantaneous.The vapor-phase process has the disadvantage that C10codimers presented in the DCPD also crack at the high temperatures,producing C5diolefins such as isoprene and piperylenes. The C5diolefins makes the purification of the CPD much more difficult.To mini-mize the cracking of C10codimers,one needs to maintain the temperature below 2508C(44–46).Because CPD reacts spontaneously with oxygen to form gummy peroxide-containing products,it must be protected from air if not being used immediately. To minimize dimerization,CPD should be stored at a temperature belowÀ208C.6.Health and Safety FactorsDCPD is a toxic substance.By oral administration in rats,the LD50is353mg/kg of body weight,and by skin absorption in rabbits,the LD50is6.72ml/kg.An atmospheric concentration of2000ppm causes death in rats exposed for a period of4h.Studies with rats indicate that DCPD has no deleterious effects on the blood and blood-forming organs.Toxicological effects are similar to terpenes rather than to benzene.The TLV and PEL for DCPD are both5ppm,as estab-lished by ACGIH and OSHA.Chronic exposure causes damages to the liver, kidneys and lungs.es of Cyclopentadiene and DicyclopentadieneThere are two general categories of industrial end uses of cyclopentadiene and dicyclopentadiene:(1)commodity resins and polymers,which include hydrocar-bon resins,unsaturated polyester resins,and ethylene propylene diene rubbers (EPDM);(2)specialty polymers andfine chemicals,which include cyclic olefin copolymers,flame retardants,agrochemicals,specialty norbornenes,flavor and fragrance intermediates.Over90%of the U.S.consumption of CPD and DCPD is in thefirst category.7.1.Hydrocarbon Resins.About50%of the DCPD produced is used in hydrocarbon resins.Crude DCPD with60–75%purity is typically used in this application.Other components in the feedstock may consist of codimers of CPD with isoprene,piperylene,and methylcyclopentadiene,and a small amount of the dimers of methylcyclopentadiene.Both DCPD and the codimers are incorporated into the hydrocarbon resins(47,48).Other C5diolefins can also be added to the process.The hydrocarbon resins can be produced by a simple thermal polymeriza-tion process(49–51)or by Lewis acid catalyzed reaction(52).The thermal pro-cess is carried out at a high temperature in the range of200–2808C and a reactor pressure above300psig.At temperatures below2008C,the Diels–Alder poly-mers are formed.They are not desirable in most resins because they are insolu-ble in aromatic solvents.If reaction temperature exceeds2808C,decomposition of the resins would occur.In the acid-catalyzed process,crude DCPD is mixed with a Lewis acid such as BF3in the presence of an alcohol or ether(53).An aromatic co-solvent may also be used.Temperature control is critical for producing the resin.After reac-tion,the Lewis acid is removed by a caustic solution and the resin is further washed with water to remove any caustic and catalyst residues.Unreacted DCPD and the co-solvent are removed by steam stripping.The DCPD concentration and reaction temperatures have strong influence on the properties of thefinal resins such as the softening point,color,unsatura-tion,and reactivity.The resin may be hydrotreated to improve the color and ther-mal stability.The resins are sold in the solid form asflakes or pellets.The main applications of the resins are in adhesives,tackifiers in tires andfloor tiles, surface coating and varnishes,and ink.Water-white resins produced by hydro-genation process are used in road-marking paint,hot-melt adhesives with ther-moplastic rubber,which can be found in diapers and feminine hygiene products.7.2.Unsaturated Polyester Resins.Unsaturated polyester resins based on DCPD are produced by reacting glycols,maleic anhydride,and DCPD (12).There are at least four different methods(12,54)in making the DCPD-based polyesters.They are usually two-step batch processes.In one commonly used method,the glycol and maleic anhydride arefirst allowed to react at a temperature below1508C,typically around1308C.Then DCPD is added to the mixture and the reactor temperature is gradually raised to2008C.After an acid number between30and40is obtained,the polyester is allowed to cool and is diluted with a mixture of styrene and inhibitors.DCPD-based polyester resins have several advantages over the conven-tional polyester resins based on phthalic anhydride.Besides the lower cost of the DCPD,low cost glycols like ethylene glycol can be used instead of the more expensive propylene glycol.Since the DCPD based resins require less styrene than the phthalic anhydride based resin,there is less styrene emission in the production and processing of the DCPD based resins.The resins are used primarily in thefiber-reinforced form as laminates, castings,and coatings(55,56).Glassfiber is one of the commonfillers for the reinforcement.Because of the low viscosity of the resin,the DCPD-based sheet molding compounds can incorporate a greater amount of the low-costfillers.The low print-through of thefillers makes the DCPD based resins ideal for applica-tions in which aesthetic effects are important.These include marine applications (recreation boats,jet skis),automotive parts,safety helmets,bathroom counter tops,shower stalls,and tubs.In the nonreinforced form,the resins have been used as insulation coating for electrical coils(57,58).7.3.Elastomers.Ethylene–propylene–diene monomer(EPDM)rub-bers is a terpolymer of ethylene,propylene and a nonconjugated diene.The diene provides the double bonds in the polymer for the cross-linking,thusincreasing theflexibility of the polymer.Dicyclopentadiene and ethylidene norbornene(ENB),a CPD derivative,are among the most important dienes. Typically,high-purity DCPD in the94þ%range is used.High purity DCPD is also preferred in the synthesis of ENB,which is a two-step process.EPDM rub-ber has a wide variety of applications,particularly in the automotive industry.It is used in side walls of tires,door and window weatherstripping,cable insulation, radiator and heater hose,and belting.In the ENB production,DCPD is thermally cracked to CPD,which subse-quently reacts,via the Diels–Alder mechanism,with butadiene to form the5-vinylbicyclo[2.2.1]-hept-2-ene[3048-64-4](VNB)(7)(59,60).The vinyl double bond is then isomerized in the presence of a selective super-base catalyst such as NaK amide to yield the5-ethylidenebicyclo[2.2.1]-hept-2-ene[16219-75-3] (ENB)(8)(61–63).7.4.Cyclic Olefin Copolymers.Cyclic olefin copolymers(COC)are produced by copolymerization of ethylene with a cyclic olefin monomer such as norbornene,dihydro DCPD,phenyl norbornene,and tetracyclododecene. Ziegler–Natta and metallocene catalysts are used in the polymerization processes.COC resins have excellent transparency,near zero birefringence, low density,low water uptake,and good chemical resistance.The target markets for the polymers are in high-density electronic storage media such as optical disks,high-quality lenses,medical labware,high-performancefilms,and phar-maceutical blister packaging(64).Cyclic olefin monomers are derivatives of CPD or DCPD.Norbornene deri-vatives are produced by the Diels–Alder condensation of an olefin and cyclopen-tadiene.For instance,2-norbornene(9)is obtained by reacting excess ethylene with DCPD at a high temperature(>2008C)and pressure(>2900psia),the con-dition in which the DCPD is cracked to CPD(65).Reactions of CPD or DCPD at high temperatures with styrene and norbornene yield,respectively,the phenyl-norbornene(10)and tetracyclododecene(11).7.5.Polydicyclopentadiene.Ultrapure(98þ%)DCPD can be polymer-ized catalytically to form polydicyclopentadiene[25038-78-2],a low-viscosity gel that is dark in color andflows like water.Very intricate moldings with good impact resistance can be obtained after curing the polyDCPD.In reaction injec-tion molding(RIM),polyDCPD is formed by the injection into a mold two equal amounts of DCPD,one part containing a metal catalyst,and the other part con-taining aluminum alkys activators(66,67).Upon mixing,the catalyst is activated and initiates the metathesis polymerization.The whole process lasts for30s to a few minutes.Reviews of the chemistry and properties of polyDCPD have been published(68,69).Companies like Hercules, B. F.Goodrich,Orkem,Shell, Nippon Zeon and Teijin hold many patents on the polyDCPD synthesis,cata-lysts,modifiers,and applications.The major industrial uses of polyDCPD are in moldings for golf carts,automobile bumpers,housing for the hull and body of recreation water vehicles,and body panels for automobiles.7.6.Cyclopentene.High-purity cyclopentene is produced from CPD by selective hydrogenation.The process involves the cracking of DCPD to high-purity CPD followed by the selective saturation of one of the two double bonds of CPD in afixed-bed reactor containing a palladium-based catalyst.Cyclopen-tene is used as an intermediate in the production of many specialty chemicals.。