抽样定理实验-学生

合集下载

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。

2、观测并记录平顶抽样前后信号的波形。

此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。

3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。

(2)7.7KHZ在频率为9HZ 时的波形如上图,低通滤 波器恢复出的信号与原信号基本一致, 只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右, 恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。

上述现象验证了抽样定理,即,在信号 的频率一定时,采样频率不能低于被采 样信号的2倍,否则将会出现频谱的混 叠,导致恢复出的信号严重失真。

实验二PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ 用示波器接模块21的音频输出,观测信号 的幅频特性。

⑴、4000HZ(2)、3500HZ(1)9.0KHZ(3)7.0KHZ(3)120HZ⑷50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。

实验项目二PCM编码规则实验1、以FS为触发,观测编码输入波形。

示波器的DIV档调节为100微秒图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。

实验5 抽样定理

实验5  抽样定理

实验5 抽样定理一、实验目的:1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。

2、进一步加深对时域、频域抽样定理的基本原理的理解。

3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。

二、实验原理:1、时域抽样与信号的重建 (1)对连续信号进行采样例5-1 已知一个连续时间信号sin sin(),1H z 3ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。

程序清单如下:%分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1;f0=1;T0=1/f0; fm=5*f0;Tm=1/fm; t=-2:dt:2;f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2;f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end程序运行结果如图5-1所示。

-2-1.5-1-0.50.511.52-0.500.5原连续信号和抽样信号-2-1.5-1-0.50.511.52-2-1.5-1-0.50.511.52-2-1.5-1-0.50.511.52图5-1(2)连续信号和抽样信号的频谱由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)
实验名称:抽样定理
实验目的:
1.理解抽样定理的意义和应用
2.掌握抽样定理的实验方法
实验原理:
抽样定理是通信原理中非常重要的一个原理,它是指在信号经过理想低通滤波器之后,如果采样频率大于等于信号频率的两倍,就可以完全恢复原始信号,这个定理也称为奈奎
斯特定理。

实验器材:
示波器、函数信号发生器、导线、面包板。

实验步骤:
1.将函数信号发生器的频率调整至1kHz,并将示波器连接至信号发生器输出端口检测波形。

2.在示波器上观察到正弦波形之后,将频率调整至5kHz,再次观察波形。

5.根据抽样定理的公式计算出采样频率,例如在10kHz时,采样频率应大于等于
20kHz。

6.将采样频率设置为30kHz,并观察波形。

7.继续提高采样频率直至可清晰观察到原始信号的波形。

实验结果:
在采样频率大于20kHz的情况下,可以清晰地观察到原始信号的波形。

在采样频率低
于20kHz的情况下,原始信号的波形会出现明显的径向失真。

实验分析:
在通信系统中,信号传输的过程中可能会发生失真现象,而抽样定理可以帮助我们消
除这种失真。

在本实验中,我们使用函数信号发生器产生不同频率的信号,并通过示波器
观察波形。

通过设置不同的采样频率,可以清晰地观察到原始信号的波形,并验证奈奎斯特定理的正确性。

通过本实验验证了奈奎斯特定理的正确性,即在采样频率大于信号频率的两倍时,可以完全恢复原始信号,避免信号采样带来的失真。

实验四:抽样定理

实验四:抽样定理

−∞
显然,已抽样信号 xs(t) 也是一个冲激串,只是这个冲激串的冲激强度被 x(nTs) 加权了。 从频域上来看,p(t) 的频谱也是冲激序列,且为:

∑ F{ p(t)} = ωs δ (ω − nωs )
4.4
−∞
根据傅里叶变换的频域卷积定理,时域两个信号相乘,对应的积的傅里叶变换等于这两 个信号的傅里叶变换之间的卷积。所以,已抽样信号 xs(t)的傅里叶变换为:

p(t) = ∑δ (t − nTs )
4.1
−∞
由图可见,模拟信号 x(t)经抽样后,得到已抽样信号(Sampled Signal)xs(t),且:
xs (t) = x(t) p(t)
4.2
将 p(t)的数学表达式代入上式得到:

∑ xs (t) = x(nTs )δ (t − nTs )
4.3
反之如果抽样频率小于信号带宽的2太近所以必将造成频谱之间的混叠在这种情况下是无论如何也无法恢复出原来的连续时间信号时将原连续时间信号xt抽样而得到的离散时间序列xn可以唯一地代表原连续时间信号或者说原连续时间信号xt可以完全由xn唯一地恢复
实验四:抽样定理
一、实验目的
1、理解信号的抽样及抽样定理以及抽样信号的频谱分析。 2、掌握和理解信号抽样以及信号重建的原理。
H ( jω) T
ω
−ωc
ωc
h(t) T ωc π
t
图 4.7 理想低通滤波器的幅度频率响应和单位冲激响应
范例程序程序 Program4_2 就是根据这个内插公式来重构原始信号。本程序已经做了较 为详细的注释,请结合教材中的内插公式仔细阅读本程序,然后执行,以掌握和理解信号重
建的基本原理。范例程序 Program4_2 如下。

抽样定理_实验报告

抽样定理_实验报告

1. 了解电信号的采样方法与过程。

2. 理解信号恢复的方法。

3. 验证抽样定理的正确性。

二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。

三、实验设备与器材1. 信号与系统实验箱TKSS-C型。

2. 双踪示波器。

四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。

2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。

3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。

4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。

5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。

五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。

2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。

1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。

2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。

3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。

七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。

2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。

3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。

通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。

1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。

抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。

本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。

2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。

该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。

3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。

3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。

然后,将该模拟信号通过电缆连接到示波器上进行观测。

在示波器上观测到的信号即为模拟信号的采样结果。

3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。

这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。

4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。

实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。

4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。

例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。

5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。

抽样定理实验报告

抽样定理实验报告

抽样定理实验报告一、实验目的1.了解抽样定理的基本概念和原理;2.通过实验掌握抽样定理的应用方法;3.分析实验结果,验证抽样定理的有效性。

二、实验原理抽样定理,也称为中心极限定理,是概率论和数理统计学中的重要定理之一、它指出当从总体中抽取的样本数量足够大时,样本均值的分布接近于正态分布。

具体原理如下:假设总体的分布情况未知,从中抽取容量为n的样本,将样本观察值依次排列为X1,X2,...,Xn。

根据大数定律,当n趋向于无穷大时,样本均值的极限分布为正态分布。

三、实验步骤1.确定实验总体和样本容量:假设总体为一些城市的居民收入情况,样本容量为n=50。

2.随机抽取样本:从该城市的居民总体中随机选取50个人的收入数据作为样本数据。

3.计算样本均值:将样本数据相加后除以样本容量,得到样本均值。

4.重复步骤2和3,进行多次实验:重复50次实验,每次都从总体中随机抽取不同的样本,并计算样本均值。

5.统计实验结果:将50次实验中得到的样本均值进行统计,并绘制频数分布直方图。

6.分析实验结果:通过观察频数分布直方图,分析样本均值的分布情况,验证抽样定理的有效性。

四、实验结果及分析根据实验步骤,我们从城市的居民总体中随机抽取了50个人的收入数据,并计算了样本均值。

通过重复50次实验,并统计得到的样本均值,我们绘制了频数分布直方图。

从频数分布直方图中可以看出,样本均值的分布情况呈现出正态分布的特点,中间值出现的频率最高,两端值出现的频率相对较低。

这与抽样定理的结论一致,即样本均值的极限分布为正态分布。

实验结果的分析表明,当样本容量足够大(在本实验中,样本容量为50),从总体中抽取的样本均值趋近于总体均值,而且样本均值的分布接近正态分布。

这进一步验证了抽样定理的有效性。

五、实验结论通过本次实验,我们了解了抽样定理的基本概念和原理,并通过实验验证了抽样定理的有效性。

实验结果表明,当从总体中抽取足够大的样本时,样本均值的分布接近正态分布。

实验四、抽样定理

实验四、抽样定理

实验四、抽样定理
抽样定理是模拟信号数字化的理论基础。

当采样频率 小于 时, 在接收端恢复的信号失真比较大, 这是因为存在信号的混频;当采样频率大于或等于奈奎斯特频率 时, 恢复信号与原信号基本一致。

理论上, 理想的抽样频率为2倍的奈奎斯特带宽, 但实际工程应用中, 限带信号绝不会严格限带, 且实际滤波器特性并不理想, 通常选取抽样频率的2.5~5倍的最高频率 进行采样以避免失真。

例如, 普通的话音信号带宽为3.4kHz 左右, 而抽样频率则通常选取8kHz 。

本实验被采样的模拟信号源是幅度1V 、频率为100Hz 的正弦波, 抽样脉冲为窄矩形脉冲, 脉宽为1微秒。

抽样器用乘法器代替。

用于恢复信号的低通滤波器采用三阶巴特沃斯低通滤波器(Butterworth )。

为验证信号与恢复不失真条件和分析信号失真的原因, 我们分别选取了100Hz 、200Hz 、500Hz 等几种不同的抽样频率, 对原输入信号波形与抽样恢复后的波形进行观察和分析。

实验信号采样与恢复原理图:
信号采样与恢复的仿真模型如图:
1.实验要求: 信号源 信号预处理 LPF 抽样脉冲
恢复信号
2.根据要求搭建实验仿真的电路模型, 并进行参数设置, 系统采样速率为10kHz, 采样点为1024;
3.实验恢复过程, 为了便于观察, 将图中的两个增益置100;
4.观察原始信号、抽样脉冲、抽样信号、及恢复信号的波形与频谱;
5.将抽样脉冲频率分别置100、200、500Hz, 观察恢复后信号的波形的失真度, 验证抽样定理的要求;
6.观察图中使用的1.4两个LPF的作用;
将实验结果记录下来, 完成实验报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽样定理实验
四、实验步骤
(2)开电,设置主控菜单,选择【主菜单】→【通信原理实验】→ 【抽样定理】→【FIR滤波器】。调节W1主控&信号源使信号A-OUT输出 幅度为3V左右。 (3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合 成波20%的方波。 (4)实验操作及波形观测。
抽样定理实验
四、实验步骤
分别利用上述两个滤波器对被抽样信号进行恢复,比较被抽样信号 恢复效果。 (1)关电,按表格所示进行连线。
源端口 信号源:MUSIC 信号源:A-OUT 模块3:TH3(抽样输出) 模块3:TH3(抽样输出) 目标端口 模块3:TH1(被抽样信号) 模块3:TH2(抽样脉冲) 模块3:TH5(LPF-IN) 模块3:TH13(编码输入) 连线说明 提供被抽样信号 提供抽样时钟 送入模拟低通滤波器 送入FIR数字低通滤波器
4、实验操作及波形观测。
(1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然 抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 (2)观测并记录平顶抽样前后的信号波形:设置开关S13#为“平顶 抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。
抽样定理实验
抽样定理实验
四、实验步骤
2、开电,设置主控菜单,选择【主菜单】→【通信原理实验】 →【抽样定理】 →【FIR滤波器】 。调节主控模块的W1使A-out输出 幅度为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率 3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20% 的方波。
抽样定理实验
三、实验原理
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的 信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低 通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不 是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在 做本实验时与信源编译码的内容没有联系。
对比观测自然抽样时不同滤波器的信号恢复效果:用示波器分别 观测LPF-OUT3# 和译码输出3# ,以100Hz步进减小抽样时钟A-OUT的输出 频率,对比观测模拟滤波器和FIR数字滤波器在不同抽样频率下信号 恢复的效果。(频率步进可以根据实验需求自行设置。)
抽样定理实验
五、实验报告
1、分析平顶抽样和自然抽样的原理及实现方法。 2、绘出所做实验的原理框图,并分别绘出 a、实验一的被抽样信号、抽样脉冲信号、自然抽样输出信号和平 顶抽样输出信号的波形。 b、实验一,自然抽样时,当抽样频率分别为9KHz、7KHz和6KHz 时恢复后的信号波形。
c、实验二,自然抽样时,当抽样频率分别为9KHz、7KHz和6KHz 时,两种滤波器恢复后的信号波形。
四、实验步骤
(3)观测并对比抽样恢复后信号与被抽样信号的波形:设置开关 S13#为“自然抽样”档位,用示波器观测MUSIC 主控&信号源和译码输出3# , 以100Hz的步进减小A-OUT主控&信号源的频率,比较观测并思考在抽样脉 冲频率多小的情况下恢复信号有失真。
抽样定理实验
四、实验步骤
实验项目二 不同滤波器对抽样信号恢复的影响 概述:该项目是通过改变不同抽样时钟频率,比较抽样信号经模拟低 通滤波器和FIR数字低通滤波器这两种滤波器后的恢复效果,从而了 解和探讨不同滤波器对抽样信号恢复的影响。
抽样定理实验
四、实验步骤
实验项目一 抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域观测自然抽样和平顶抽 样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的 输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。
源端口 信号源:MUSIC 信号源:A-OUT 模块3:TH3(抽样输出) 目标端口 模块3:TH1(被抽样信号) 模块3:TH2(抽样脉冲) 模块3:TH13(编码输入) 连线说明 将被抽样信号送入抽样单元 提供抽样时钟 将已抽样信号送入滤波恢复
抽样定理实验
一、实验目的 二、实验器材
三、实验原理
四、实验步骤
五、实验报告
抽样定理实验
一、实验目的
1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。
抽样定理实验
二、实验器材
1、主控&信号源、3号模块 2、双踪示波器 3、连接线 各一块 一台 若干
抽样定理实验
三、实验原理
1、实验原理框图
music 被抽样 信号 保持 电路 平顶抽样 S1 自然抽样 A-out 抽样 脉冲 抽样 输出 LPF-IN LPF LPF-OUT
信号源
抗混叠滤波器
抽样电路
数字滤波 输入 数字滤波 输出
FIR/IIR/反sinc
FPGA数字滤波
2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘 就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽 样信号。平顶抽样和自然抽样信号是通过S1切换输出的。
相关文档
最新文档