实验五(信号抽样与恢复)

合集下载

实验五 信号的采样与恢复

实验五 信号的采样与恢复

信号与系统实验报告【实验原理】1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。

s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S⁄称抽样频率。

图1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ⁄规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。

而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。

当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的。

因此即使f s =2B ,恢复后的信号失真还是难免的。

图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。

(a)连续信号的频谱(b)高抽样频率时的抽样信号及频谱(不混叠)(c)低抽样频率时的抽样信号及频谱(混叠)图2抽样过程中出现的两种情况4、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。

实验五抽样定理及信号恢复

实验五抽样定理及信号恢复
2. 调节信号源,使其输出f=1KHz,A=1V的三角波;连接 信号源输出端与P41,并把抽样信号Fs(t)的输出端P42 与低通滤波器输入端相连,示波器CH1接原始被抽样 信号输入点P41,CH2接恢复信号输出点TP45,比照观 察信号恢复情况:
3. 设1KHz的三角波信号的有效带宽为3KHz,Fs(t)信号分 别通过截止频率为fc1和fc2低通滤波器,观察其原信号 的恢复情况,并完成以下观察和记录任务:
1台
四. 实验内容和步骤
1. 抽样信号波形的观测 2. 验证抽样定理与信号恢复
1.抽样信号波形的观测
1. 调节信号源,使之输出f=1KHz,幅度A=3V的三角波; 2. 连接信号源输出端与抽样定理模块上点P41; 3. 拨码开关K401拨至左边; 4. 用示波器观察TP42处抽样信号的波形,调整电位器 5. W41改变抽样频率,使抽样频率分别为3K、6K和12K, 6. 观察并记录这3种情况下抽样信号的波形。
2. 验证抽样定理与信号恢复
信号恢复实验方框图如图5-7:
F(பைடு நூலகம்)
抽样器
FS(t)
S(t)
低通 滤波器
F’(t)
图5-7 信号恢复实验方框图
1. 分别设计两个有源低通滤波器,电路形式如图5-6所示。 〔利用U43、R43、R44、C42与C41、C43来实现〕分别 设fc1=2KHz,fc2=4KHz,R1=R2=5.1KΩ,试计算C1 和C2值〔计算公式见5-1,5-2〕。
a. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为2KHz时Fs(t)和F'(t)的波形;
b. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为4KHz时Fs(t)和F'(t)的波形;

数字信号处理实验五

数字信号处理实验五

实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。

2、进一步加深对时域、频域抽样定理的基本原理的理解。

3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。

二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。

(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。

信号采样与恢复实验

信号采样与恢复实验

信号的采样与恢复实验1、实验目的a 熟悉信号的采样与恢复的过程b 学习和掌握采样定理c 了解采样频率对信号恢复的影响2、实验原理及内容a 采样定理采样定理:对于一个具有有限频谱且最高频率为w max 的连续信号进行采样,当采样频率w s 满足w s >=2w max 时,采样函数能够无失真地恢复出原信号。

b 采样信号的频谱连续周期信号经过经过周期矩形脉冲抽样后,抽样信号的频谱为)]([)2()(s n s s n j F n Sa T A j F ωωτωτω-=∑+∞-∞= 它包含了原信号频谱以及重复周期为 ωs 的原信号频谱的搬移,且幅度按)2(τωτs n Sa T A 规律变化。

所以抽样信号的频谱便是原信号频谱的周期性拓延。

c 采样信号的恢复将采样信号恢复成原信号,可以是用低通滤波器。

低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。

d 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。

其中的采样保持部分电路由一片 CD4052 完成。

此电路由两个输入端,其中 IN1 端输入被采样信号,Pu 端入采样脉冲。

3、测试步骤3.1 信号的采样a 使波形发生器第一路输出幅值 3V 、频率 10Hz 的三角波信号;第二路输出幅值 5V ,频率 100Hz 、占空比 50%的脉冲信号。

将第一路信号接入 IN1 端,作为输入信号;将第二路信号接入 Pu 端,作为采样脉冲。

b 用示波器分别测量 IN1 端和 OUT1 端,观察采样前后波形的差异c 增加采样脉冲的频率为 200、500、800 等值。

观察 OUT1 端信号的变化。

解释现象的产生。

图1:频率为100Hz 的采样脉冲 图2:频率为200Hz 的采样脉冲图3:频率为500Hz 的采样脉冲 图4:频率为800Hz 的采样脉冲原因:取样的周期不能过大,必须满足ms f T 21≤,)。

北航3系自控原理实验五-采样系统研究

北航3系自控原理实验五-采样系统研究

自动控制原理实验报告班级:学号:姓名:实验五 采样系统研究一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。

2. 掌握采样系统的瞬态响应与极点分布的对应关系。

3. 掌握最少拍采样系统的设计步骤。

二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。

2. 香农定理:如果选择的采样角频率s ω,满足max 2ωω≥s 条件(max ω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。

3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。

其传递函数:s e Ts--14. 采样系统的极点分布对瞬态响应的影响:Z 平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。

5. 最小拍无差系统: 通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。

对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整时间为有限个采样周期。

从上面的准则出发,确定一个数字控制器,使其满足最小拍无差系统。

三、实验内容1. 通过改变采频率s s s T 5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。

被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:系统开环脉冲传递函数为:系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。

2. 当采样周期1T s =时, ,设计D (z ),使该系统分别在单位阶跃信号作用下和单位斜坡信号作用下为最小拍无差系统,观察并记录理论与实际系统输出波形。

四、实验设备1. HHMN-1型电子模拟机一台。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告一、实验目的1、掌握抽样定理的基本原理和抽样过程。

2、理解抽样频率对信号恢复的影响。

3、学会使用实验设备进行抽样和信号恢复的操作。

4、通过实验观察和数据分析,验证抽样定理的正确性。

二、实验原理1、抽样定理抽样定理指出,对于一个带宽有限的连续信号,如果抽样频率大于或等于信号最高频率的两倍,那么可以通过抽样值无失真地恢复出原始信号。

设连续信号为$f(t)$,其频谱为$F(ω)$,最高频率为$ω_m$。

以抽样间隔$T_s = 1/f_s$ 对$f(t)$进行抽样,得到抽样信号$f_s(t)$。

抽样信号的频谱$F_s(ω)$是原信号频谱$F(ω)$以抽样频率$ω_s =2πf_s$ 为周期进行周期延拓。

2、信号恢复从抽样信号恢复原始信号通常使用低通滤波器。

理想低通滤波器的频率响应为:\H(ω) =\begin{cases}1, &|ω| <ω_c \\0, &|ω| >ω_c\end{cases}\其中,$ω_c$ 为低通滤波器的截止频率,通常取$ω_c =ω_m$。

通过低通滤波器对抽样信号进行滤波,即可得到恢复后的信号。

三、实验设备1、信号发生器:用于产生连续信号。

2、抽样脉冲发生器:产生抽样脉冲。

3、示波器:用于观察信号的波形。

4、低通滤波器:实现信号的恢复。

四、实验内容及步骤1、产生连续信号使用信号发生器产生一个频率为$f_1$ 的正弦信号,调节信号的幅度和频率,使其在示波器上显示清晰稳定。

2、选择抽样频率设置不同的抽样频率$f_s$,分别为$2f_1$、$3f_1$ 和$5f_1$。

3、抽样过程将抽样脉冲与连续信号同时输入到示波器的两个通道,观察抽样信号的波形。

4、信号恢复将抽样信号通过低通滤波器,在示波器上观察恢复后的信号,并与原始信号进行比较。

5、记录数据记录不同抽样频率下抽样信号和恢复信号的波形、幅度和频率等数据。

五、实验数据及分析1、当抽样频率为$2f_1$ 时抽样信号的频谱发生了混叠,通过低通滤波器恢复的信号出现了明显的失真,幅度减小,频率也发生了变化。

信号的采样与恢复

信号的采样与恢复

实验五信号的采样与恢复一、实验目的1.了解电信号的采样方法与过程及信号的恢复。

2.验证采样定理。

二、实验设备1.THBCC-1型信号与系统.控制理论及计算机控制技术实验平台2.PC机(含THBCC-1软件)三、实验内容1 研究正弦信号和三角波信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。

2.用采样定理分析实验结果。

四、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号经采样而获得。

采样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。

S(t)是一组周期性窄脉冲。

由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。

平移的频率等于采样频率fs及其谐波频率2fs、3fs· · ·。

当采样后的信号是周期性窄脉冲时,平移后的信号频率的幅度按(sinx)/x规律衰减。

采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。

2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。

3.原信号得以恢复的条件是fs≥2B,其中fs 为采样频率,B 为原信号占有的频带宽度。

Fmin=2B 为最低采样频率。

当fs<2B 时,采样信号的频谱会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。

在实际使用时,一般取fs=(5-10)B 倍。

实验中选用fs<2B、fs=2B、fs>2B 三种采样频率对连续信号进行采样,以验证采样定理⎯要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。

4.用下面的框图表示对连续信号的采样和对采样信号的恢复过程,实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。

通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。

而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。

本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。

一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。

二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。

2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。

三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。

将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。

将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。

2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。

然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。

最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。

3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。

比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。

根据实验结果,验证信号抽样与恢复的有效性。

四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 信号抽样与恢复
一、实验目的
学会用MA TLAB 实现连续信号的采样和重建 二、实验原理 1.抽样定理
若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱
)(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。

因此,当s ω≥m ω时,不会发生频
率混叠;而当 s ω<m ω 时将发生频率混叠。

2.信号重建
经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:
)(t f =)(t f s *)(t h
其中:)(t f s =)
(t f ∑∞∞--)(s
nT t δ=∑∞

--)()(s
s
nT t nT f δ
)()(t Sa T t h c c
s ωπ
ω=
所以:
)(t f =)(t f s *)(t h =∑∞

--)()(s s nT t nT f δ*)(t Sa T c c
s
ωπ
ω =π
ω
c
s T ∑∞

--)]([)(s c
s
nT t Sa nT f ω
上式表明,连续信号可以展开成抽样函数的无穷级数。

利用MA TLAB 中的t t t c ππ)
sin()(sin =
来表示)(t Sa ,有 )(sin )(π
t c t Sa =,所以可以得到在MA TLAB 中信号由)(s nT f 重建)(t f 的表达式如下:
)(t f =π
ω
c
s T ∑


--)]([
sin )(s c
s nT t c nT f π
ω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。

我们取理想低通的截止频率c ω=m ω。

下面程序实现对信号)(t f =)(t Sa 的采样及由该采样
信号恢复重建)(t Sa :
例5-1 Sa(t)的临界采样及信号重构;
wm=1; %信号带宽
wc=wm; %滤波器截止频率 Ts=pi/wm; %采样间隔
ws=2*pi/Ts; %采样角频率 n=-100:100; %时域采样电数 nTs=n*Ts %时域采样点 f=sinc(nTs/pi);
Dt=0.005;t=-15:Dt:15;
fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构 t1=-15:0.5:15; f1=sinc(t1/pi); subplot(211); stem(t1,f1); xlabel('kTs'); ylabel('f(kTs)');
title('sa(t)=sinc(t/pi)的临界采样信号'); subplot(212); plot(t,fa) xlabel('t'); ylabel('fa(t)');
title('由sa(t)=sinc(t/pi)的临界采样信号重构sa(t)'); grid;
例5-2 Sa(t)的过采样及信号重构和绝对误差分析
程序和例4-1类似,将采样间隔改成Ts=0.7*pi/wm , 滤波器截止频率该成wc=1.1*wm , 添加一个误差函数 wm=1;
wc=1.1*wm; Ts=0.7*pi/wm; ws=2*pi/Ts; n=-100:100; nTs=n*Ts
f=sinc(nTs/pi);
Dt=0.005;t=-15:Dt:15;
fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); error=abs(fa-sinc(t/pi)); %重构信号与原信号误差 t1=-15:0.5:15; f1=sinc(t1/pi); subplot(311); stem(t1,f1); xlabel('kTs');
ylabel('f(kTs)');
title('sa(t)=sinc(t/pi)的采样信号'); subplot(312); plot(t,fa) xlabel('t'); ylabel('fa(t)');
title('由sa(t)=sinc(t/pi)的过采样信号重构sa(t)'); grid;
subplot(313); plot(t,error); xlabel('t');
ylabel('error(t)');
title('过采样信号与原信号的误差error(t)');
例5-3 Sa(t)的欠采样及信号重构和绝对误差分析
程序和例4-2类似,将采样间隔改成Ts=1.5*pi/wm , 滤波器截止频率该成wc=wm=1
三、上机实验内容
1.验证实验原理中所述的相关程序;
-15
-10
-5051015
kTs
f (k T s )
-15
-10-5
051015
-0.500.51t
f a (t )
由sa(t)=sinc(t/pi)的临界采样信号重构sa(t)
-15
-10
-5
051015
kTs
f (k T s )
-15-10
-5
051015
-202t
f a (t )
由sa(t)=sinc(t/pi)的过采样信号重构sa(t)
-15
-10
-5
05
10
15
00.51-5
t
e r r o r (t )
过采样信号与原信号的误差error(t)
-15
-10
-5
051015
kTs
f (k T s )
-15
-10
-5
0510
15
-202t
f a (t )
由sa(t)=sinc(t/pi)的过采样信号重构sa(t)
-15
-10
-5
05
10
15
00.51t
e r r o r (t )
过采样信号与原信号的误差error(t)
2.设f(t)=0.5*(1+cost)*(u(t+pi)-u(t-pi)) ,由于不是严格的频带有限信号,但其频谱大部分集中在[0,2]之间,带宽wm 可根据一定的精度要求做一些近似。

试根据以下两种情况用 MATLAB 实现由f(t)的抽样信号fs(t)重建f(t) 并求两者误差,分析两种情况下的结果。

(1) wm=2 , wc=1.2wm , Ts=1; (2) wm=2 , wc=2 , Ts=2.5
kTs
f (k T s )
0.5*(1+cost)*(u(t+pi)-u(t-pi))的采样信

-15-10
-5051015
-101t
f a (t )
由0.5*(1+cost)*(u(t+pi)-u(t-pi))的过采样信号重构sa(t)-15
-10
-5
05
10
15
012-3
t
e r r o r (t )
过采样信号与原信号的误差error(t)
kTs
f (k T s )
0.5*(1+cost)*(u(t+pi)-u(t-pi))的采样信

-15
-10
-5
0510
15
-505t
f a (t )
由0.5*(1+cost)*(u(t+pi)-u(t-pi))的欠采样信号重构sa(t)-15
-10
-5
05
10
15
024t
e r r o r (t )
欠采样信号与原信号的误差error(t)。

相关文档
最新文档