实验二抽样定理与信号的恢复

合集下载

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告中抽样定理(Nyquist Sampling Theorem)是由半对数希尔伯特(Harry Nyquist)在1928年发布的一条定理,它提供了一种确定信号在采样范围和采样间隔的方法,可根据相关采样规则保证信号的完整性和准确性。

中抽样定理是用来描述信号抽样的必要性,即使在采样之前,某种未知事物也是有限和可采样的,否则无法恢复其原始信息。

该定理法则约定如下:1、信号必须以完整的范式采样。

信号若在采样前具有有限波道宽度,则信号必须被完整地采样,若不这样做将会丢失信号的一部分,影响整体信号的清晰度。

2、采样间隔为信号范式宽度的2倍。

中抽样定理要求,要恢复的信号必须以2倍的采样间隔范式宽度采样,这意味着要在每个信号周期内采样至少2次以上,以保证信号范型被完全恢复。

若以更短的采样间隔采样,那么信号将会出现调制失真,意味着信号会发生阵列干扰等异常信号,影响恢复准确性。

3、采样频率不能低于信号本身的频率。

在信号采样的时候,采样频率不能低于信号本身的频率,若这样则会导致在采样时信号产生抖动,因而影响信号的恢复。

中抽样定理的信号恢复实验是为了研究采样数据在恢复到信号之后,信号的完整性和可用性,也就是采样后信号是否可以被准确恢复。

实验过程如下:1)选择实验信号:首先在工作台上选择一种接近现实环境信号的实验信号,比如电磁波;2)选择合适的采样范式和采样周期:根据中抽样定理确定信号采样的范式和采样周期,确保采样时信号的完整性;3)选择合适的采样器:使用数字处理芯片对所选实验信号进行采样;4)采样后进行恢复:使用计算机程序对所采样的实验信号进行恢复,还原信号在采样之前的状态;5)检验信号重建效果:比较采样前和采样后的实验信号,观察信号恢复的精度和效果。

中抽样定理及实验报告的结果表明,采用中抽样定理的方法有效的提高了信号的清晰度和真实感,可以进行准确的信号恢复和参数测定分析。

它可以应用于传输系统和数字信号处理,在传输、抑制、延迟等方面具有重要的意义。

实验2 抽样定理及其应用实验

实验2  抽样定理及其应用实验

实验2 抽样定理及其应用实验一、实验目的1.通过对模拟信号抽样的实验,加深对抽样定理的理解;2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点;3.学习PAM 调制硬件实现电路,掌握调整测试方法。

二、实验仪器1.PAM 脉冲调幅模块,位号:H (实物图片如下)2.时钟与基带数据发生模块,位号:G3.20M 双踪示波器1台4.频率计1台5.小平口螺丝刀1只6.信号连接线3根三、实验原理抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

通常,按照基带信号改变脉冲参量(幅度、宽度和位置)的不同,把脉冲调制分为脉幅调制(PAM )、脉宽调制(PDM )和脉位调制(PPM )。

虽然这三种信号在时间上都是离散的,但受调参量是连续的,因此也都属于模拟调制。

抽样定理实验电路框图,如图1-1所示。

图1-1 抽样的实验过程结构示意图本实验中需要用到以下5个功能模块。

1.DDS 信号源:它提供正弦波等信号,并经过连线送到“PAM 脉冲调幅模块”,作为脉冲幅度调制器的调制信号。

2.抽样脉冲形成电路模块:它提供有限高度,不同宽度和频率的的抽样脉冲序列,并经过连线送到“PAM 脉冲调幅模块”, 作为脉冲幅度调制器的抽样脉冲。

3.PAM 脉冲调幅模块:它采用模拟开关CD4066实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输DDS信号源抽样脉冲形成电路 信道模拟 信号恢复 滤波器开关抽样器 32P01 32TP01 32P02 32P03 P154SW02控制 P09P14 P03 32W01出。

因此,本模块实现的是自然抽样。

4.接收滤波器与功放模块:接收滤波器低通带宽有2.6KHZ和5KHZ两种,分别由开关K601上位和中位控制,接收滤波器的作用是恢复原调制信号。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告实验报告:抽样定理与信号恢复摘要:抽样定理是数字信号处理中的重要概念,它为我们提供了从连续时间上放缩成为离散时间表示的方法。

在本实验中,我们利用数字信号处理软件进行了一系列实验,以了解抽样定理的工作原理和不同采样频率对信号恢复的影响。

通过实验结果分析,我们得出结论:1. 抽样频率应大于信号带宽两倍;2. 较低的采样频率可能导致丢失重要信息;3. 采样频率高于极限频率会增加不必要的计算开销。

因此,了解抽样定理对我们使用数字信号处理工具处理不同类型信号的时候带来极大的帮助。

实验过程:1. 选择一个连续时间信号z(t)并计算其频率响应和最大频率;2. 在Matlab中选择一个采样频率,对信号进行采样,并计算采样信号的傅里叶系数;3. 选择一个重建滤波器,用于从离散时间信号中重建连续时间信号;4. 绘制信号的原始函数和重构函数,并通过对比和信号恢复误差评价重建质量。

实验结果:我们采样一个频率为5Hz的正弦波,即sq(t) = sin(2 pi 5 t)。

我们选择了三个采样频率,分别是10Hz、8Hz和6Hz。

在Matlab中运行解析和比较函数,我们得出了信号的重构函数和重构误差。

当采样频率为10Hz时,与原始信号相比,重构过程中出现了一点振荡。

这是因为重构滤波器的阶数没有达到最优值。

当采样频率降低到8Hz时,出现了更明显的振荡。

这是因为采样频率在8Hz以下不能捕捉到5Hz正弦波的一个完整波形。

进一步降低采样频率到6Hz,我们观察到信号完全失真,根本无法恢复原始信号。

结论:本实验证明了抽样定理在数字信号处理中的重要性。

对于任何采样频率低于极限的情况,都可能导致信号发生失真。

因此,理解抽样定理可以帮助我们更好地从连续时间中得到数字表示的方法。

抽样定理_实验报告

抽样定理_实验报告

1. 了解电信号的采样方法与过程。

2. 理解信号恢复的方法。

3. 验证抽样定理的正确性。

二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。

三、实验设备与器材1. 信号与系统实验箱TKSS-C型。

2. 双踪示波器。

四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。

2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。

3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。

4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。

5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。

五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。

2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。

1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。

2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。

3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。

七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。

2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。

3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。

《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验设备1、信号与系统实验箱2、双踪示波器三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s(t)可以看成连续f(t)和一组开关函数s (t)的乘积。

s (t)是一组周期性窄脉冲,见实验图5-1,T s(t)称为抽样周期,其倒数f s(t)= 1/T s称为抽样频率。

图5-1 矩形抽样脉冲对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。

平移的频率等于抽样频率f s(t)及其谐波频率2f s、3f s》》》》》》。

当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s 2,其中f s为抽样频率,为原信号占有的频带宽度。

而f min=2 为最低抽样频率又称“柰奎斯特抽样率”。

当f s<2 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是及少的,因此即使f s=2 ,恢复后的信号失真还是难免的。

图5-2画出了当抽样频率f s>2 (不混叠时)f s<2 (混叠时)两种情况下冲激抽样信号的频谱。

t f(t)0F()t 0m ωm ω-(a)连续信号的频谱Ts t 0f s (t)F()t0m ωm ω-s ω-s ω()(b)高抽样频率时的抽样信号及频谱 不混叠图5-2 冲激抽样信号的频谱实验中f s >2 、f s =2 、f s <2 三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f s 必须大于信号频率中最高频率的两倍。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。

它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。

抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。

一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。

抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。

抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。

具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。

这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。

抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。

它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。

这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。

如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。

抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。

当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。

三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。

采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。

例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告抽样定理与信号恢复实验报告引言:信号恢复是数字信号处理中的一个重要问题,其目标是通过采样和重构技术来恢复原始信号。

在实际应用中,由于各种原因,我们往往无法直接获得完整的信号,而只能通过采样来获取信号的部分信息。

因此,如何有效地从有限的采样数据中恢复原始信号成为一个关键问题。

本实验旨在通过抽样定理来解决信号恢复问题,并通过实验验证其有效性。

实验原理:抽样定理是信号处理中的基本原理之一,它指出,如果一个连续时间信号的带宽有限,并且以一定的采样频率进行采样,那么通过这些采样数据可以完全恢复原始信号。

具体而言,抽样定理要求采样频率至少是信号带宽的两倍,即Nyquist采样定理。

实验步骤:1. 准备信号源:我们选择了一个正弦信号作为原始信号源,其频率为f0,幅度为A。

通过函数生成器产生该信号,并连接到示波器上。

2. 采样:根据抽样定理,我们选择了采样频率为2f0,即原始信号频率的两倍。

通过示波器的采样功能,将信号进行采样,并记录采样数据。

3. 信号恢复:根据采样数据,我们使用重构算法对信号进行恢复。

在本实验中,我们选择了最常用的插值法进行信号恢复。

通过对采样数据进行插值处理,可以得到连续时间的信号。

4. 重构信号验证:将恢复的信号与原始信号进行对比,验证重构的准确性。

通过示波器将原始信号和恢复信号进行叠加显示,观察它们的相似程度。

实验结果与分析:在本实验中,我们选择了一个频率为1kHz的正弦信号作为原始信号源,采样频率选择为2kHz。

通过示波器进行采样,并得到了采样数据。

接下来,我们使用插值法对采样数据进行信号恢复,并将恢复的信号与原始信号进行对比。

通过观察示波器显示的结果,我们可以明显看到恢复的信号与原始信号非常接近,几乎无法区分它们之间的差异。

这表明,通过抽样定理和插值法,我们成功地从有限的采样数据中恢复了原始信号。

结论:本实验通过采样定理与信号恢复技术,成功地实现了从有限采样数据中恢复原始信号的目标。

信号的采样与恢复

信号的采样与恢复
grid
当输入n=10时,所得结果如下:
图3 当n=10时采样后的信号和频谱
当输入n=50时,所得结果如下:
图4 当n=50时采样后的信号和频谱
由抽样定理可知,抽样后的信号频谱是原信号频谱以抽样频率为周期进行周期延拓形成的,周期性在上面两个图中都有很好的体现。但是从10点和50点采样后的结果以及与员连续信号频谱对比可以看出,10点对应的频谱出现了频谱混叠而并非原信号频谱的周期延拓。这是因为N取值过小导致采样角频率 ,因此经周期延拓出现了频谱混叠。而N取50时,其采样角频率 ,从而可以实现原信号频谱以抽样频率为周期进行周期延拓,并不产生混叠,从而为下一步通过低通滤波器滤出其中的一个周期(即不失真的原连续信号)打下了基础。
若设 是带限信号,带宽为 , 经过采样后的频谱 就是将 在频率轴上搬移至 处(幅度为原频谱的 倍)。因此,当 时,频谱不发生混叠;而当 时,频谱发生混叠。
一个理想采样器可以看成是一个载波为理想单位脉冲序列 的幅值调制器,即理想采样器的输出信号 ,是连续输入信号 调制在载波 上的结果,如图2所示。
图2 信号的采样
对连续信号y=sin(t)进行抽样并产生其频谱,采样后的信号和频谱如图3、图4所示
MATLAB部分程序为:
n1=input('请输入采样点数n:');
n=0:n1;
zb=size(n);
figure
sinf=sin(8*pi*n/zb(2));
subplot(211);
stem(n,sinf,'.');
[5]方建邦锁相环原理及应用1988
[6]刘彩霞、刘波粒 高频电子线路 科学出版社 2008.7
[7]罗兰锁相环的设计,模拟与应用2003
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令 xa (t ) e1000|t|,求出并绘制其傅里叶变换 Xa ( j。) 用三个不同的抽样频率对其进行采样,分别求出并绘 制离散时间傅里叶变换 X (e j ) 。三个频率分别为:
plot(w,h1);
grid;
xlabel('角频率'); ylabel('幅度');
title('H(jw)的幅频特性');
subplot(2,1,2)
plot(w,h2*180/pi);
grid;
xlabel('角频率');
ylabel('相位');
title('H(jw)的相频特性');
连续时间信号幅度调制的matlab实现
%产生‘pm’调制信号 y=modulate(x,fc,fs,'pm'); subplot(4,1,2) plot(t(1:200),y(1:200)) xlabel('times(s)'); axis([0,0.2,-1,1]); title('Modulated signal (pm)');
axis([-2 2 -0.2 1.2])
通过该例子,可以比较直观地了解 Fourier 级数的物理意义,并观察到当对谐波次数进行 修改其对波形的影响。
非周期信号的傅立叶变换
非周期信号不能直接用傅立叶级数表示,但可以
利用傅立叶分析方法导出非周期信号的傅立叶变
换。
正变换
F ( j)
f
(t)e jt dt
f
(t)
a0 2
n1
(an
cos nt
bn
sin
nt)
a0 2
n1
cn
cos n t
n )
1
j (nt n )
2 n Ane
傅立叶分析
频域分析主要采用傅立叶分析方法。
周期信号的傅立叶级数
三角傅立叶级数
f
(t)
a0 2
n1
(an
cos nt
bn
sin
nt )
指数傅立叶级数
f
t=-2:0.001:2; %信号的抽样点
N=input('N=');
c0=0.5;
fN=c0*ones(1,length(t));%计算抽样上的直流分量
for n=1:2:N
%偶次谐波为零
fN=fN+cos(pi*n*t)*sinc(n/2);
end
Figure %绘图
plot(t,fN)
title(['N=' num2str(N)])
线性时不变系统的频域分析法是一种变换域分 析法,它把时域中求解响应的问题通过傅立叶 变换转换成频域中的问题。主要研究信号频谱 通过系统后产生的变化。利用频域分析法可分 析系统的频率响应、波形失真、物理可实现等 实际问题。
已知一RLC二阶低通滤波器,其电路图如图所示,
该电路的频率响应为
H(jω)
=
y=modulate(x,fc,fs,'am'); subplot(4,1,4) plot(t(1:200),y(1:200)) xlabel('times(s)'); axis([0,0.2,-1,1]); title('Modulated signal (am)');
抽样与抽样定理
抽样 称为取样或采样,它利用抽样脉冲序列从连续信号中
已知信号 f (t) sin(20 t) ,载波信号为频率
100HZ的正弦信号,试绘制其在不同调制方式下的 波形。
%绘制原始信号 fm=10;fc=100;fs=1000; N=1000;k=0:N-1; t=k/fs; x=sin(2.0*pi*fm*t); subplot(4,1,1) plot(t(1:200),x(1:200))
%产生'fm'调制信号
y=modulate(x,fc,fs,'fm'); subplot(4,1,3) plot(t(1:200),y(1:200)) xlabel('times(s)'); axis([0,0.2,-1,1]); title('Modulated signal (fm)');
%产生'am'调制信号
MATLAB提供专门的函数modulate()用于实现信 号的调制。 调用格式: y=modulate(x,fc,fs,’method’) [y,t]=modulate(x,fc,fs) 其中,x为被调信号,fc为载波频率,fs为信号 x的抽样频率,method为所采用的调制方式, ‘method’常用方式‘am’、’pm’、’fm’。
1-
1 ω2LC +
jω设L
R
R = L ,L = 0.8H,c = 0.1F,R = 2Ω ,试用matlab的
2C
freqs()函数绘出该频率响应。
b=[0 0 1];
a=[0.08,0.4,1];
[h,w]=freqs(b,a,100);
h1=abs(h);
h2=angle(h);
subplot(2,1,1)
实验二 抽样定理与信号的恢复
一、实验目的:
加强 Matlab 编程能力。 掌握周期信号的频谱—— Fourier 级数的分析方法
及其物理意义。 深入理解信号频谱的概念,掌握典型信号的频谱以及
Fourier 变换的主要性质。 验证抽样与抽样定理
二、实验原理
Fourier 级数的理论告诉我们:任何周期信号只要满 足狄里赫利条件就可以分解成许多指数分量之和(指 数 Fourier 级数)或直流分量与正弦、余弦分量之和 (三角 Fourier 级数)如式所示:
“抽取”一系列离散样值,其获得的信号为抽样信号。 抽样定理
对一个有限频宽(最高频率为fm或wm)信号进行理想抽 样,当抽样频率s 2m ( fs 2 fm ) 时,抽样值唯一确
定,当此抽样信号通过截止频率 wc (m c s m ) 的
理想低通滤波器后,原信号能完全重建。
抽样与抽样定理的MATLAB实现
反变换
f(t)= 1
2

(
j
)e
jt
d
试求f(t)=e-2|t|的傅立叶变换,并画出f(t)及 其幅度频谱图
syms t函数符 x=exp(-2*abs(t)); F=fourier(x); subplot(2,1,1) ezplot(x) subplot(2,1,2) ezplot(F)
连续时间系统的频域分析
(t )
1 2
n
j (nt n )
Ane
• 周期信号的频谱
利用傅立叶级数展开式求取各分量的振幅、相位,
并将这些关系绘成图形即为周期信号的频谱
三、实验内容
周期信号的傅立叶级数
例:宽度为1,高度为1,周期为2的正方波, 傅立叶级数(前N项)逼近。 对一定的周期 T,取不同项数(即谐波次数) 时有限项级数逼近函数的情况。
相关文档
最新文档