实验五 信号的采样与恢复
信号与系统实验教程

信号与系统实验教程信号与系统实验是电子信息类专业中一门重要的实验课程。
在这门实验中,学生将学习如何利用实验仪器和软件工具来分析和处理信号,并理解信号在系统中的作用和相互之间的关系。
以下是一些常见的信号与系统实验教程:1. 实验一:信号的采集与表示- 学习使用信号采集仪器(例如信号发生器、示波器等)。
- 了解采样原理和采样频率对信号的影响。
- 学习如何将模拟信号转换为数字信号。
- 使用编程语言或工具对信号进行采样和表示。
2. 实验二:信号的变换与处理- 学习傅里叶变换和信号频谱分析的原理。
- 使用傅里叶变换工具(例如FFT算法)对信号进行频谱分析。
- 学习信号的时域和频域表示之间的转换关系。
- 学习数字滤波器的原理和应用。
3. 实验三:线性时不变系统的特性分析- 学习线性时不变系统的定义和性质。
- 了解系统的单位冲激响应和冲激响应与输入信号的卷积关系。
- 利用实验仪器测量系统的冲激响应。
- 使用软件工具对系统进行时域和频域特性分析。
4. 实验四:信号采样与重构- 学习信号采样和重构的理论基础。
- 利用实验仪器对信号进行采样和重构。
- 学习采样定理的应用和限制。
- 学习插值和抽取技术对信号进行采样和重构。
5. 实验五:系统的频率响应与稳定性- 学习系统的频率响应和稳定性分析。
- 使用频率响应仪器(例如频谱分析仪)对系统进行测量和分析。
- 学习系统的振荡和稳定条件。
- 学习系统的幅频特性和相频特性之间的关系。
以上是信号与系统实验教程的一些基本内容,具体的实验内容和教程可以根据教学大纲和教材进行更详细的设计和安排。
实验5 信号的采样与恢复

信号与系统实验报告
称为抽样周期,其
称抽样频率。
图1 矩形抽样脉冲
对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率及其谐波频率2、3……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的
抽样频率又称“奈奎斯特抽样率”。
当
___________
【实验结果】
各波形如下:
图1 低频率抽样脉冲(J8) 图2 抽样信号(8K)
图3 抽样信号(16K) 图4 高频率抽样脉冲(J8)
图5 抽样脉冲(J10)图6 抽样信号(抽样倍数:3)
图7 抽样信号(抽样倍数:4)图8 抽样信号(抽样倍数:5)
【思考】
1.如果抽样脉冲→0,抽样信号经低通后不但能复原,而且复原效果趋于原信号。
→0等同于几
乎对原信号所有的点抽样,最大保留了原信号。
2.抽样脉冲的频率应该远大于抽样恢复信号频率,为抽样频率倍原信号占有的频带宽度,不然采样不足
导致滤波输出严重失真。
实验五抽样定理及信号恢复

3. 设1KHz的三角波信号的有效带宽为3KHz,Fs(t)信号分 别通过截止频率为fc1和fc2低通滤波器,观察其原信号 的恢复情况,并完成以下观察和记录任务:
1台
四. 实验内容和步骤
1. 抽样信号波形的观测 2. 验证抽样定理与信号恢复
1.抽样信号波形的观测
1. 调节信号源,使之输出f=1KHz,幅度A=3V的三角波; 2. 连接信号源输出端与抽样定理模块上点P41; 3. 拨码开关K401拨至左边; 4. 用示波器观察TP42处抽样信号的波形,调整电位器 5. W41改变抽样频率,使抽样频率分别为3K、6K和12K, 6. 观察并记录这3种情况下抽样信号的波形。
2. 验证抽样定理与信号恢复
信号恢复实验方框图如图5-7:
F(பைடு நூலகம்)
抽样器
FS(t)
S(t)
低通 滤波器
F’(t)
图5-7 信号恢复实验方框图
1. 分别设计两个有源低通滤波器,电路形式如图5-6所示。 〔利用U43、R43、R44、C42与C41、C43来实现〕分别 设fc1=2KHz,fc2=4KHz,R1=R2=5.1KΩ,试计算C1 和C2值〔计算公式见5-1,5-2〕。
a. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为2KHz时Fs(t)和F'(t)的波形;
b. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为4KHz时Fs(t)和F'(t)的波形;
数字信号处理实验五

实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。
2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。
(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。
信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。
2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。
3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。
4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。
可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。
5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。
6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。
7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。
8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。
信号的采样与恢复

深圳大学实验报告课程名称:信号与系统实验项目名称:信号的采样与恢复学院:信息工程专业:电子信息指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务部制一、实验目的和要求1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证采样定理。
二、实验内容和原理实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。
采样信号x s (t )可以看成连续信号x (t )和一组开关函数s (t )的乘积。
s (t )是一组周期性窄脉冲,如图2-5-1,T s 称为采样周期,其倒数f s =1/T s 称采样频率。
图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于采样频率f s 及其谐波频率2f s 、3f s ……。
当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x 规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、采样信号在一定条件下可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
3、原信号得以恢复的条件是f s ≥2f max ,f s 为采样频率,f max 为原信号的最高频率。
当fs <2 f max 时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此即使f s =2 f max ,恢复后的信号失真还是难免的。
实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s 必须大于信号最高频率的两倍。
4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。
信号采样与恢复实验

信号的采样与恢复实验1、实验目的a 熟悉信号的采样与恢复的过程b 学习和掌握采样定理c 了解采样频率对信号恢复的影响2、实验原理及内容a 采样定理采样定理:对于一个具有有限频谱且最高频率为w max 的连续信号进行采样,当采样频率w s 满足w s >=2w max 时,采样函数能够无失真地恢复出原信号。
b 采样信号的频谱连续周期信号经过经过周期矩形脉冲抽样后,抽样信号的频谱为)]([)2()(s n s s n j F n Sa T A j F ωωτωτω-=∑+∞-∞= 它包含了原信号频谱以及重复周期为 ωs 的原信号频谱的搬移,且幅度按)2(τωτs n Sa T A 规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
c 采样信号的恢复将采样信号恢复成原信号,可以是用低通滤波器。
低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。
d 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。
其中的采样保持部分电路由一片 CD4052 完成。
此电路由两个输入端,其中 IN1 端输入被采样信号,Pu 端入采样脉冲。
3、测试步骤3.1 信号的采样a 使波形发生器第一路输出幅值 3V 、频率 10Hz 的三角波信号;第二路输出幅值 5V ,频率 100Hz 、占空比 50%的脉冲信号。
将第一路信号接入 IN1 端,作为输入信号;将第二路信号接入 Pu 端,作为采样脉冲。
b 用示波器分别测量 IN1 端和 OUT1 端,观察采样前后波形的差异c 增加采样脉冲的频率为 200、500、800 等值。
观察 OUT1 端信号的变化。
解释现象的产生。
图1:频率为100Hz 的采样脉冲 图2:频率为200Hz 的采样脉冲图3:频率为500Hz 的采样脉冲 图4:频率为800Hz 的采样脉冲原因:取样的周期不能过大,必须满足ms f T 21≤,)。
信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验报告
【实验原理】
1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。
s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S
⁄称抽样频率。
图1矩形抽样脉冲
对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。
当抽样信
号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ⁄规律衰减。
抽样信号的频谱是原信号
频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。
而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。
当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
因此即使f s =2B ,恢复后的信号失真还是难免的。
图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。
(a)连续信号的频谱
(b)高抽样频率时的抽样信号及频谱(不混叠)
(c)低抽样频率时的抽样信号及频谱(混叠)
图2抽样过程中出现的两种情况
4、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。
但这也会造成失真。
原始的语音信号带宽为40Hz到10000Hz,但实际中传输的语音信号的带宽为300Hz到3400Hz,并不影响我们的听觉效果,因此本实验加了前置滤波器。
【实验结果与数据处理】
图1 抽样脉冲
图3 抽样倍数为5时的复原信号
图5 抽样倍数为3时的复原信号。