实验2:连续信号的采样和恢复
《信号与分析》连续信号的采样与重构实验报告

axis([-2.5,1.5,-0.1,1.1]);
t=0:0.01:2*pi;
Y=2*t.*sin(t.^2);
subplot(2,1,1);
plot(t,Y);
title('原信号');
xlabel('时间/s');
ylabel('振幅');
axis([0,2*pi,-12,12]);
grid;
ylabel(‘Cn’);
xlabel(‘角频率/rad*s^(-1)’);
title(‘幅度频谱序列‘);
实验心得:
通过本次实验我学会了利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的认识,学会该软件的操作和使用方法。并且我还熟练掌握了利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
%幅度频谱Cn=2[sin(pi*n*t/T)/(pi*n)
N=10;
n=1:N;
C0=0.1; %计算n=0傅里叶级数C0及直流幅度
%计算n=1到10的傅里叶级数系数
Cn=sin(pi*n/5)/pi./n.*2; %T/t=5
CN=[C0 Cn];
nN=0:N;
subplot(1,2,2);
stem(nN,CN);
《信号与分析》连续信号的采样与重构实验报告
实验目的:1)掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。
(2)掌握利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
(3)学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。
信号的采样与恢复

信号的采样与恢复实验一、任务与目的1. 熟悉信号的采样与恢复的过程。
2. 学习和掌握采样定理。
3. 了解采样频率对信号恢复的影响。
二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。
1. 采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。
这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。
采样定理是连续时间信号与离散时间信号之间的桥梁。
采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。
三角波信号的采样如图4-1-1所示。
图4-1-1信号的采样2. 采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
某频带有限信号被采样前后频谱如图4-1-2。
图4-1-2 限带信号采样前后频谱从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。
这样只需要利用截止频率适当的滤波器便可以恢复出原信号。
3. 采样信号的恢复将采样信号恢复成原信号,可以用低通滤波器。
低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。
实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为1802f Hz RCπ=≈图4-1-3 滤波器电路4. 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。
其中的采样保持部分电路由一片CD4052完成。
此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。
三、内容与步骤本实验在脉冲采样与恢复单元完成。
1. 信号的采样(1)使信号发生器第一路输出幅值3V、频率10Hz的三角波信号;第二路输出幅值5V,频率100Hz、占空比50%的脉冲信号。
连续信号的采样和恢复

电 子 科 技 大 学实 验 报 告(二)学生姓名: 学 号: 指导教师:实验室名称:信号与系统实验室 一、 实验项目名称:连续信号的采样和恢复 三、实验原理:实际采样和恢复系统如图3.4-1所示。
可以证明,奈奎斯特采样定理仍然成立。
⊗)x t )(t P T )图3.4-1 实际采样和恢复系统采样脉冲:其中,T s πω2=,2/)2/sin(τωτωτs s k k k T a =,T <<τ。
采样后的信号: ∑∞-∞=-=−→←k s S FS k j X T j X t x )((1)()(ωωω当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。
四、实验目的与任务:()()2()FT T ksk p t P j a k ωπδωω+∞=-∞←−→=-∑目的:1、使学生通过采样保持电路理解采样原理。
2、使学生理解采样信号的恢复。
任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。
五、实验内容:1、采样定理验证2、采样产生频谱交迭的验证六、实验器材(设备、元器件):数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。
七、实验步骤:打开PC机端软件SSP.EXE,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。
【1.采样定理验证】1、连接接口区的“输入信号1”和“输出信号”,如图1所示。
图1 观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz”。
按“F4”键把采样脉冲设为10kHz。
3、点击SSP软件界面上的按钮,观察原始正弦波。
4、按图2的模块连线示意图连接各模块。
自动控制原理--信号的采样与复现

例1 设 e(t) 1(t) ,试求 e* (t) 的拉氏变换。
解:显然,对于给定的 e(t),其拉式变换
为 E(s) 1 ,根据式(8-6)定义,可得
s
E* (s) e(kT ) ekTs 1 eTs e2Ts k 0
这是一个无穷等比级数,公比为eTs,求
级数和可得闭合形式
E*(s)
例3 xt Asin 0t ,求x t 和 X s 。
解:由拉式变换的一般公式,可得
L[x(t)] xs A0
s 2 02
所以 ,x(s)有两个极点 。t 0时 ,xt 0 ,
由式(8-7)得
X s
A0 T
s
1
jks 2
02
A0 T
s2
1 02
s
1
js 2
02
s
1
js 2
jT
e2
sin T
T
sin(T
/
2)
e
jT
2
T 2 2
T / 2
• 零阶保持器的频率特性如图所示
Gh j
Gh j
T
0
s
2s
3s
2
Gh j
3
• 零阶除了允许主频谱分量通过之外,还 允许一部分附加高频分量通过。因此复 现出的信号与原信号是有差别的。
4、小结
• 采样控制系统的结构; • 计算机控制的采样系统的优点; • 采样过程和采样定理; • 零阶保持器的传函和特性。
(4)随机采样:采样是随机进行的,没有固定的规律
1、信号的采样过程
et
e* t
e* t
et T e*t
0
0
t
信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。
2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。
3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。
4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。
可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。
5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。
6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。
7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。
8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。
信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。
它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。
抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。
一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。
抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。
抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。
具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。
这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。
抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。
它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。
这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。
如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。
抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。
当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。
三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。
采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。
例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。
信号分析实验报告总结

一、实验目的本次信号分析实验旨在通过MATLAB软件,对连续信号进行采样、重建、频谱分析等操作,加深对信号处理基本理论和方法的理解,掌握信号的时域、频域分析技巧,并学会使用MATLAB进行信号处理实验。
二、实验内容1. 连续信号采样与重建(1)实验内容:以正弦信号为例,验证采样定理,分析采样频率与信号恢复质量的关系。
(2)实验步骤:a. 定义连续信号y(t) = sin(2π×24t) + sin(2π×20t),包含12Hz和20Hz 两个等幅度分量。
b. 分别以1/4、1/2、1/3Nyquist频率对信号进行采样,其中Nyquist频率为最高信号频率的两倍。
c. 利用MATLAB的插值函数对采样信号进行重建,比较不同采样频率下的信号恢复质量。
(3)实验结果与分析:a. 当采样频率低于Nyquist频率时,重建信号出现失真,频率混叠现象明显。
b. 当采样频率等于Nyquist频率时,重建信号基本恢复原信号,失真较小。
c. 当采样频率高于Nyquist频率时,重建信号质量进一步提高,失真更小。
2. 离散信号频谱分析(1)实验内容:分析不同加窗长度对信号频谱的影响,理解频率分辨率的概念。
(2)实验步骤:a. 定义离散信号x[n],计算其频谱。
b. 分别采用16、60、120点窗口进行信号截取,计算其频谱。
c. 比较不同窗口长度对频谱的影响。
(3)实验结果与分析:a. 随着窗口长度的增加,频谱分辨率降低,频率混叠现象减弱。
b. 频率分辨率与窗口长度成反比,窗口长度越长,频率分辨率越高。
3. 调频信号分析(1)实验内容:搭建调频通信系统,分析调频信号,验证调频解调原理。
(2)实验步骤:a. 搭建调频通信系统,包括信号源、调制器、解调器等模块。
b. 产生调频信号,并对其进行解调。
c. 分析调频信号的频谱,验证调频解调原理。
(3)实验结果与分析:a. 调频信号具有线性调频特性,其频谱为连续谱。
抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告抽样定理与信号恢复实验报告引言:信号恢复是数字信号处理中的一个重要问题,其目标是通过采样和重构技术来恢复原始信号。
在实际应用中,由于各种原因,我们往往无法直接获得完整的信号,而只能通过采样来获取信号的部分信息。
因此,如何有效地从有限的采样数据中恢复原始信号成为一个关键问题。
本实验旨在通过抽样定理来解决信号恢复问题,并通过实验验证其有效性。
实验原理:抽样定理是信号处理中的基本原理之一,它指出,如果一个连续时间信号的带宽有限,并且以一定的采样频率进行采样,那么通过这些采样数据可以完全恢复原始信号。
具体而言,抽样定理要求采样频率至少是信号带宽的两倍,即Nyquist采样定理。
实验步骤:1. 准备信号源:我们选择了一个正弦信号作为原始信号源,其频率为f0,幅度为A。
通过函数生成器产生该信号,并连接到示波器上。
2. 采样:根据抽样定理,我们选择了采样频率为2f0,即原始信号频率的两倍。
通过示波器的采样功能,将信号进行采样,并记录采样数据。
3. 信号恢复:根据采样数据,我们使用重构算法对信号进行恢复。
在本实验中,我们选择了最常用的插值法进行信号恢复。
通过对采样数据进行插值处理,可以得到连续时间的信号。
4. 重构信号验证:将恢复的信号与原始信号进行对比,验证重构的准确性。
通过示波器将原始信号和恢复信号进行叠加显示,观察它们的相似程度。
实验结果与分析:在本实验中,我们选择了一个频率为1kHz的正弦信号作为原始信号源,采样频率选择为2kHz。
通过示波器进行采样,并得到了采样数据。
接下来,我们使用插值法对采样数据进行信号恢复,并将恢复的信号与原始信号进行对比。
通过观察示波器显示的结果,我们可以明显看到恢复的信号与原始信号非常接近,几乎无法区分它们之间的差异。
这表明,通过抽样定理和插值法,我们成功地从有限的采样数据中恢复了原始信号。
结论:本实验通过采样定理与信号恢复技术,成功地实现了从有限采样数据中恢复原始信号的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电 子 科 技 大 学
实 验 报 告(二)
学生姓名: 学 号: 指导教师: 一、 实验室名称:信号与系统实验室 二、 实验项目名称:连续信号的采样和恢复 三、实验原理:
实际采样和恢复系统如图3.4-1所示。
可以证明,奈奎斯特采样定理仍然成立。
⊗
)
x t )
(t P T )
图3.4-1 实际采样和恢复系统
采样脉冲:
其中,T
s π
ω2=
,2/)2/sin(τωτωτs s k k k T a =,T <<τ。
采样后的信号: ∑∞
-∞
=-=−→←
k s S F
S k j X T j X t x )((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。
()()2()
F
T
T k
s
k p t P j a k ωπδωω+∞
=-∞
←−→=-∑
四、实验目的与任务:
目的:1、使学生通过采样保持电路理解采样原理。
2、使学生理解采样信号的恢复。
任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。
五、实验内容:
1、采样定理验证
2、采样产生频谱交迭的验证
六、实验器材(设备、元器件):
数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。
七、实验步骤:
打开PC机端软件SSP.EXE,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。
【1.采样定理验证】
1、连接接口区的“输入信号1”和“输出信号”,如图1所示。
图1 观察原始信号的连线示意图
2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz”。
按“F4”键把采样脉冲设为10kHz。
3、点击SSP软件界面上的按钮,观察原始正弦波。
4、按图2的模块连线示意图连接各模块。
图2观察采样波形的模块连线示意图
5、点击SSP软件界面上的按钮,观察采样后的波形。
6、用截止频率为3kHz的低通滤波器U11恢复采样后的信号。
按图3的模块连线示意图连接各模块。
图3观察恢复波形的模块连线示意图
7、点击SSP软件界面上的按钮,观察恢复后的波形。
【2.采样产生频谱交迭的验证】
重复实验内容(一)的实验步骤1~7;注意在第2步中正弦波的频率仍设为“2.6kHz”后,按“F4”键把采样脉冲频率设为“5kHz”;在第6步中用3kHz 的恢复滤波器(U11)。
【思考问题】
(1)画出实验内容(一)的原理方框图和各信号频谱,说明为什么实验内容(一)
的输出信号恢复了输入信号?
(2)画出实验内容(二)的方框图,解释与实验内容(一)有何不同之处? (3)如果改变实验内容(二)的3kHz 恢复低通滤波器为截止频率为5kHz 的低通滤波器(U22),系统的输出信号有何变化?
八、实验数据及结果分析: 【1.采样定理验证】
【2.采样产生频谱交迭的验证】
【3.结果分析】
1、 时
2、
时
3、 时
N
s ωω>>N s ωω=N s ωω<
九、实验结论:
1.当采样频率大于信号最高频率两倍,可以用低通滤波器)
(ωj
H
r
由采样后的信号)(t
x
S
恢复原始信号)(t x。
2. 当采样频率介于信号最高频率一倍与两倍之间,用低通滤波器
)
(ωj H
r 将采样后的信号)(t
x
S
恢复,会使原始信号)(t x产生频谱交迭。
3.合理设置采样脉冲对恢复信号很重要
十、总结及心得体会:
1.当采样频率大于信号最高频率两倍,可以用低通滤波器由采样后
的信号)(t
x
S
恢复原始信号)(t x。
当采样频率介于信号最高频率一倍与两倍之间,用低通滤波器对信号)(t
x
S
恢复时,会产生频谱交迭。
2.实际问题中,合理选择采样频率很重要。
3. 通过对信号的采样与恢复加深了对采样定理的理解,验证了采样定理的正确性
4. 实际电路实验对理论课的学习有很大帮助。
十一、对本实验过程及方法、手段的改进建议:
1、产生一个5KHz的原始正弦波,并用5KHz的采样脉冲对其采样,然后用滤波器对其恢复,观察能否恢复。
2、将正弦波改成其他波形,如方波,上述频率数据不变,步骤相同,观察实验结果。
报告评分:
指导教师签字:。