matlab 信号抽样与恢复
matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)《信号与系统实验报告》学院:信息科学与⼯程学院专业:物联⽹⼯程姓名:学号:⽬录实验⼀、MATLAB 基本应⽤实验⼆信号的时域表⽰实验三、连续信号卷积实验四、典型周期信号的频谱表⽰实验五、傅⽴叶变换性质研究实验六、抽样定理与信号恢复实验⼀MATLAB 基本应⽤⼀、实验⽬的:学习MATLAB的基本⽤法,了解 MATLAB 的⽬录结构和基本功能以及MATLAB在信号与系统中的应⽤。
⼆、实验内容:例⼀已知x的取值范围,画出y=sin(x)的图型。
x=0:0.05:4*pi;y=sin(x);plot(y)例⼆计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。
z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,⽤subplot函数绘图。
参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表⽰1、指数信号:指数信号Ae at在MATLAB中可⽤exp函数表⽰,其调⽤形式为:y=A*exp(a*t) (例取 A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;2、正弦信号:正弦信号Acos(w0t+?)和Asin(w0t+?)分别由函数cos和sin表⽰,其调⽤形式为:A*cos(w0t+phi) ;A*sin(w0t+phi) (例取A=1,w0=2π,?=π/6) 参考程序:A=1;w0=2*pi; phi=pi/6; t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on ;3、抽样函数:抽样函数Sa(t)在MATLAB中⽤sinc函数表⽰,其定义为:sinc(t)=sin(πt)/( πt)其调⽤形式为:y=sinc(t)参考程序:t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);grid on;4、矩形脉冲信号:在MATLAB中⽤rectpuls函数来表⽰,其调⽤形式为:y=rectpuls(t,width),⽤以产⽣⼀个幅值为1,宽度为width,相对于t=0点左右对称的矩形波信号,该函数的横坐标范围由向量t决定,是以t=0为中⼼向左右各展开width/2的范围,width的默认值为1。
基于MATLAB的信号的采样与恢复、采样定理的仿真

山东建筑大学课程设计指导书课程名称:数字信号处理课程设计设计题目:信号的采样与恢复、采样定理的仿真使用班级:电信082 指导教师:张君捧一、设计要求1.对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。
2.基本教学要求:每组一台电脑,电脑安装MATLAB6.5版本以上软件。
二、设计步骤1.理论依据根据设计要求分析系统功能,掌握设计中所需理论(信号的采样、信号的恢复、抽样定理、频谱分析),阐明设计原理。
2.信号的产生和频谱分析产生一个连续时间信号(正弦信号、余弦信号、Sa函数等),并进行频谱分析,绘制其频谱图。
3.信号的采样对所产生的连续时间信号进行采样,并进行频谱分析,和连续信号的频谱进行分析比较。
改变采样频率,重复以上过程。
4.信号的恢复设计低通滤波器,采样信号通过低通滤波器,恢复原连续信号,对不同采样频率下的恢复信号进行比较,分析信号的失真情况。
三、设计成果1.设计说明书(约2000~3000字),一般包括:(1)封面(2)目录(3)摘要(4)正文①设计目的和要求(简述本设计的任务和要求,可参照任务书和指导书);②设计原理(简述设计过程中涉及到的基本理论知识);③设计内容(按设计步骤详细介绍设计过程,即任务书和指导书中指定的各项任务)I程序源代码:给出完整源程序清单。
II调试分析过程描述:包括测试数据、测试输出结果,以及对程序调试过程中存在问题的思考(列出主要问题的出错现象、出错原因、解决方法及效果等)。
III结果分析:对程序结果进行分析,并与理论分析进行比较。
(5)总结包括课程设计过程中的学习体会与收获、对Matlab语言和本次课程设计的认识以及自己的建议等内容。
(6)致谢(7)参考文献2.附件(可以将设计中得出的波形图和频谱图作为附件,在说明书中涉及相应图形时,注明相应图形在附件中位置即可;也可不要附件,所有内容全部包含在设计说明书中。
所有的实验结果图形都必须有横纵坐标标注,必须有图序和图题。
信号与系统课程设计信号的抽样与恢复-.

信号与系统课程设计题目:信号的抽样与恢复学生姓名:院(系、部):机电工程学院指导教师:2012年12月24日至2012年12月28日摘 要本设计是运用MATLAB 编程来实现抽样定理及其信号恢复的仿真并能在建立的图形用户界面上显示出相应的仿真结果。
目的在于能够熟练的应用MATLAB 软件来建立友好的用户界面,通过界面来显示原始信号、抽样信号以及恢复后仿真的信号。
本设计通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对抽样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。
信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。
通过MATLAB 软件中的信号分析的方法来验证抽样定理的正确性。
关键词:抽样与恢复;滤波器 ;MATLAB1 设计任务与要求(1)用MATLAB 实现常用连续信号 (2)用MATLAB 实现常用离散信号(3)根据以下三种情况用MATLAB 实现)(t Sa 的信号及恢复并求出两者误差,分析三种情况下的结果。
由于函数)(t Sa 不是严格的带限信号,其带宽m ω可根据一定的精度要求做一近似。
①)(t Sa 的临界抽样及恢复:,1=m ω,m c ωω=,m i s p T ω/4.2=; ②)(t Sa 的过抽样及恢复: 1=m ω,m c ωω1.1=,m i s p T ω/5.2=③)(t Sa 的欠抽样及恢复: 1=m ω,m c ωω=,m i s p T ω/5.2=。
2 原理分析和设计图1 总框架图2.1连续信号的抽样定理连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。
严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。
当抽样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。
信号与系统实验(MATLAB_西电版)实验14_信号的抽样与恢复教材教学课件

实验14 信号的抽样与恢复
二、实验内容和原理
信号的抽样与恢复示意图如图14.1所示。
实验14 信号的抽样与恢复 图 14.1 信号的抽样与恢复示意图
实验14 信号的抽样与恢复
抽样定理指出,一个有限频宽的连续时间信号f(t),其最
高频率为ωm,经过等间隔抽样后,只要抽样频率ωs不小于信 号 最高频率ωm的两倍,即满足ωs≥2ωm,就能从抽样信号fs(t)中
恢复源信号,得到f0(t)。f0(t)与f(t)相比没有失真,只有幅度
和相位的差异。一般把最低的抽样频率ωsmin=2ωm称为奈 奎斯特抽样频率。当ωs<2ωm时,fs(t)的频谱将产生混迭现象,
此时将无法恢复源信号。
实验14 信号的抽样与恢复
f(t)的幅度频谱为|F(ω)|。开关信号s(t)为周期矩形脉冲, 其脉宽τ相对于周期Ts非常小,故将其视为冲激序列,所以s(t) 的幅度频谱|S(ω)|亦为冲激序列; 抽样信号fs(t)的幅度频谱为 |Fs(ω)|。f0(t)的幅度频谱为|F0(ω)|。
实验14 信号的抽样与恢复
set(gfp,′position′,[100 100 400 300]); subplot(2,1,1); stem(n,x(1:100)); title(′输入序列′); subplot(2,1,2); m=0:(100/M)-1; stem(m,y(1:100/M)); title(′输出序列′); 信号的采样结果如图14.11所示。
实验14 信号的抽样与恢复
k=0:length(n)-1; stem(k,xs); grid; xlabel(′时间n′); ylabel(′幅值′); title(′离散时间信号x[n]′); subplot(2,2,4) wd=0:pi/255:pi; hd=freqz(xs,1 ,wd); plot(wd/(T*pi), T*abs(hd)); grid; xlabel(′频率,kHz′); ylabel(′幅值′); title(′|X(e^{j\omega})|′); axis([0 1/T 0 2]) 信号采样的性质如图14.5所示。
信号采样与恢复过程中的混叠及其滤波的实验

信号采样与恢复过程中的混叠及其滤波一、实验目的:(1)理解连续时间信号的采样过程及混叠产生的原理;(2)掌握采样序列的频域分析和滤波,信号的恢复,掌握Shannon 采样定理; (3)学会利用MA TLAB 软件分析信号采样、滤波与恢复的过程。
二、实验内容:给定原始信号如下式所示:121()1sin 22sin 22f t f t f t ππ=++,(1)其中,12,f f 是信号原始频率(本实验中为自选常数,1f 为低频,2f 为高频)。
确定一个采样频率s f 对()f t 进行采样,再将采样得到的序列进行DFT ,画出过程中各信号的图形。
进行频域高、低频滤波,再反变换得出处理后恢复出来的信号。
将实验过程中得到的图形与理论图形进行比较,发现不同点并加以解释。
三、实验过程:先选定115f Hz =、2220f Hz =,则原始信号表示为:1()1sin(215)2sin(2220)2f t t t ππ=+⨯+⨯(2)1、 原信号时域截取:因为在计算机中只能计算离散的点列,若要用MA TLAB 处理图形,只能先对信号进行截取和采样。
为了使之接近原图形且又便于看清楚,我选定矩形截取窗口的宽度为200T ms =,截取窗口函数为:11002000t tt T ⎧---≥⎪⎛⎫⎛⎫∏=∏=⎨⎪ ⎪---⎝⎭⎝⎭⎪⎩其他,其傅立叶变换为:(){}sin()Ts tF TT Tsππ∏=,截取窗口的时域和频谱图形如下图:-2002000.20.40.60.81t(ms)[T =200ms]f (t )f(t)=π(t/T )-10-5510-0.50.511.52Frequency(Hz)A m p li t u d eFrequency Figure图(1) 矩形截取窗函数的时域图形及其频谱图在MA TLAB 中设计横坐标轴的长度时其实就由计算机完成了对原连续函数截断和采样的过程(尽管有时候我们并没有意识到),其过程相当于原函数在时域乘以tT ⎛⎫∏⎪⎝⎭,而在频域则与sin()Ts TTs ππ做卷积运算,所以虽然截断信号为()()()200t t g t f t f t T ⎛⎫⎛⎫=∏=∏ ⎪ ⎪⎝⎭⎝⎭,但在MA TLAB 中画图时就不用画()g t ,而只要选好画图窗口宽度为200T ms =和采样点数为1024N =,(采样频率为5120s Tf Hz N==)并画出()f t 的图形就可以了(这里未考虑信号数字化时的采样孔径影响)。
MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。
二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。
为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。
时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求,即只有带限信号才能适用采样定理。
)(2) 取样频率不能过低,必须 >2 (或 >2)。
(对取样频率的要求,即取样频率要足够大,)(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号采得的样值要足够多,才能恢复原信号。
)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号。
一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。
根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。
(a)(b)(c)图2.1抽样定理a) 等抽样频率时的抽样信号及频谱(不混叠) b) 高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠) 2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T sδ⋅=,其中,冲激采样信号)(t sT δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n ss n )(ωωδω,其中ssT πω2=。
设)(ωj F ,)(ωj F s分别为)(t f ,)(t f s的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n ss n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω若设)(t f 是带限信号,带宽为mω, )(t f 经过采样后的频谱)(ωj F s就是将)(ωj F 在频率轴上搬移至ΛΛ,,,,,02ns ssωωω±±±处(幅度为原频谱的sT 1倍)。
使用Matlab进行音频信号处理和复原

使用Matlab进行音频信号处理和复原随着数字技术的发展,音频信号处理和复原已经成为了一个重要的研究领域。
音频信号处理涉及到对音频信号的录制、存储、编辑、分析和修复等一系列操作。
而音频复原则是指通过一系列的算法和技术,将被损坏或失真的音频信号恢复到原先的状态。
在这篇文章中,我们将探讨如何使用Matlab进行音频信号处理和复原。
一、音频信号的基本概念和特性在深入了解如何处理和复原音频信号之前,我们需要先了解音频信号的基本概念和特性。
音频信号是一种连续的时间信号,通常以波形图的形式呈现。
在Matlab中,可以使用`audioread`函数将音频文件读入到一个向量中,并使用`plot`函数绘制出波形图。
二、音频信号处理的常用技术和算法音频信号处理涉及到一系列的技术和算法,下面简要介绍其中几个常用的:1. 频谱分析:频谱分析可以将音频信号从时域转换到频域,以便更好地理解信号的频率特性。
在Matlab中,可以使用`fft`函数对音频信号进行傅里叶变换,并使用`plot`函数将频谱图绘制出来。
2. 滤波处理:滤波是音频信号处理中常用的一种方法。
滤波可以通过去除不需要的频率成分来改善音频信号的质量。
在Matlab中,可以使用`filter`函数进行低通、高通、带通和带阻滤波等操作。
3. 噪声消除:噪声是音频信号处理中常见的一个问题。
Matlab提供了一些常用的噪声消除算法,如均值滤波、中值滤波、小波去噪等。
这些算法可以有效地减少噪声对音频信号的影响。
三、音频信号复原的方法和技术音频信号复原是指将被损坏或失真的音频信号恢复到原先的状态。
常见的音频信号复原方法包括插值法、谱减法、模型算法等。
下面我们介绍其中的一种复原方法:谱减法。
谱减法是一种常用的音频信号复原方法,它基于频谱的差异来估计噪声和信号的功率谱密度。
具体步骤如下:1. 读入音频文件并转换为频谱。
2. 计算音频信号的原始频谱和噪声频谱。
3. 根据原始频谱和噪声频谱的差异,估计噪声的功率谱密度。
maab信抽样与恢复

实验一 信号抽样与恢复一、实验目的学会用MATLAB 实现连续信号的采样和重建二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。
2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即: )(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c c sωπω =πωc s T ∑∞∞--)]([)(s c snT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωc s T ∑∞∞--)]([sin )(s c s nT t c nT f πω我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、上机实验内容1.验证实验原理中所述的相关程序;2.设f(t)=0.5*(1+cost)*(u(t+pi)-u(t-pi)) ,由于不是严格的频带有限信号,但其频谱大部分集中在[0,2]之间,带宽wm 可根据一定的精度要求做一些近似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 信号抽样与恢复
一、实验目的
学会用MATLAB 实现连续信号的采样和重建
二、实验原理
1.抽样定理
若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。
2.信号重建
经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:
)(t f =)(t f s *)(t h
其中:)(t f s =)
(t f ∑∞∞--)(s nT t δ=∑∞
∞
--)()(s s nT t nT f δ 所以: )(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c c s
ωπ
ω =πωc s T ∑∞∞--)]([)(s c s
nT t Sa nT f ω
上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(π
t c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:
)(t f =πωc s T ∑∞∞--)]([sin )(s c s nT t c nT f π
ω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :
三、上机实验内容
1.验证实验原理中所述的相关程序;
2.设f(t)=0.5*(1+cost)*(u(t+pi)-u(t-pi)) ,由于不是严格的频带有限信号,但其频谱大部分集中在[0,2]之间,带宽wm可根据一定的精度要求做一些近似。
试根据以下两种情况用MATLAB实现由f(t)的抽样信号fs(t)重建f(t) 并求两者误差,分析两种情况下的结果。
(1) wm=2 , wc=1.2wm , Ts=1;
(2) wm=2 , wc=2 , Ts=2.5
3.对以下simulink ch6example1_He7.mdl低通采样定理以程序实现,具体参数参考框图内参数。
五.参考程序
例1-1 Sa(t)的临界采样及信号重构;
wm=1; %信号带宽
wc=wm; %滤波器截止频率
Ts=pi/wm; %采样间隔
ws=2*pi/Ts; %采样角频率
n=-100:100; %时域采样电数
nTs=n*Ts %时域采样点
f=sinc(nTs/pi);
Dt=0.005;t=-15:Dt:15;
fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构
t1=-15:0.5:15;
f1=sinc(t1/pi);
subplot(211);
stem(t1,f1);
xlabel('kTs');
ylabel('f(kTs)');
title('sa(t)=sinc(t/pi)的临界采样信号');
subplot(212);
plot(t,fa)
xlabel('t');
ylabel('fa(t)');
title('由sa(t)=sinc(t/pi)的临界采样信号重构sa(t)');
grid;
例1-2 Sa(t)的过采样及信号重构和绝对误差分析
程序和例4-1类似,将采样间隔改成Ts=0.7*pi/wm , 滤波器截止频率该成wc=1.1*wm ,
添加一个误差函数
wm=1;
wc=1.1*wm;
Ts=0.7*pi/wm;
ws=2*pi/Ts;
n=-100:100;
nTs=n*Ts
f=sinc(nTs/pi);
Dt=0.005;t=-15:Dt:15;
fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));
error=abs(fa-sinc(t/pi)); %重构信号与原信号误差
t1=-15:0.5:15;
f1=sinc(t1/pi);
subplot(311);
stem(t1,f1);
xlabel('kTs');
ylabel('f(kTs)');
title('sa(t)=sinc(t/pi)的采样信号');
subplot(312);
plot(t,fa)
xlabel('t');
ylabel('fa(t)');
title('由sa(t)=sinc(t/pi)的过采样信号重构sa(t)');
grid;
subplot(313);
plot(t,error);
xlabel('t');
ylabel('error(t)');
title('过采样信号与原信号的误差error(t)');
例1-3 Sa(t)的欠采样及信号重构和绝对误差分析
程序和例4-2类似,将采样间隔改成Ts=1.5*pi/wm , 滤波器截止频率该成wc=wm=1。