实验4 抽样定理与信号恢复
信号的采样和恢复

信号的采样和恢复一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验内容1、观察抽样脉冲、抽样信号、抽样恢复信号。
2、观察抽样过程中,发生混叠和非混叠时的波形。
三、实验仪器1、信号与系统实验箱一台(主板)。
2、系统时域与频域分析模块一块。
3、20M 双踪示波器一台。
四、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。
()t s 是一组周期性窄脉冲,见图5-1,T S 图5-1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按()x x sin 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
因此即使B f s 2=,恢复后的信号失真还是难免的。
图5-2画出了当抽样频率B f s 2≥(不混叠时)及当抽样频率B f s 2<(混叠时)两种情况下冲激抽样信号的频谱。
抽样定理与信号恢复的实验验证

实验三抽样定理的验证一、实验目的1、研究连续信号的离散化,观察抽样脉冲参数对输出波形的影响。
2、用实验的方法验证抽样定理。
二、实验原理1.对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。
2.设连续信号的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成信号中的频谱混叠现象,不可能无失真地恢复原连续信号。
三、实验内容项目一观察抽样信号波形(一)同步抽样f=1KHz,峰峰值为4V的正弦波1.抽样频率1kHZ时,Fs(t)的波形2.抽样频率2kHZ时,Fs(t)的波形3.抽样频率4kHZ时,Fs(t)的波形4.抽样频率8kHZ时,Fs(t)的波形(二)异步抽样f=1KHz,峰峰值为4V的正弦波1.抽样频率1kHZ时,Fs(t)的波形2.抽样频率2kHZ时,Fs(t)的波形3.抽样频率4kHZ时,Fs(t)的波形4.抽样频率8kHZ时,Fs(t)的波形项目二验证抽样定理与信号恢复(一)同步f=500Hz,峰峰值为4V的正弦波1.当抽样频率为1KHz时:Fs(t)的波形F’(t)波形2.当抽样频率为2KHz时:Fs(t)的波形F’(t)波形Fs(t)的波形F’(t)波形4.当抽样频率为8KHz时:Fs(t)的波形F’(t)波形(二)异步f=500Hz,峰峰值为4V的正弦波1.当抽样频率为1KHz时:Fs(t)的波形F’(t)波形Fs(t)的波形F’(t)波形3.当抽样频率为4KHz时:Fs(t)的波形F’(t)波形4.当抽样频率为8KHz时:Fs(t)的波形F’(t)波形四、实验分析1、整理数据,正确填写表格,总结离散信号频谱的特点。
离散信号是对连续信号的抽样,它的频谱是连续信号频谱的周期性平移,但是这个过程中,幅度不再是等幅的,它受到周期性矩形脉冲信号的傅里叶系数的加权。
抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告中抽样定理(Nyquist Sampling Theorem)是由半对数希尔伯特(Harry Nyquist)在1928年发布的一条定理,它提供了一种确定信号在采样范围和采样间隔的方法,可根据相关采样规则保证信号的完整性和准确性。
中抽样定理是用来描述信号抽样的必要性,即使在采样之前,某种未知事物也是有限和可采样的,否则无法恢复其原始信息。
该定理法则约定如下:1、信号必须以完整的范式采样。
信号若在采样前具有有限波道宽度,则信号必须被完整地采样,若不这样做将会丢失信号的一部分,影响整体信号的清晰度。
2、采样间隔为信号范式宽度的2倍。
中抽样定理要求,要恢复的信号必须以2倍的采样间隔范式宽度采样,这意味着要在每个信号周期内采样至少2次以上,以保证信号范型被完全恢复。
若以更短的采样间隔采样,那么信号将会出现调制失真,意味着信号会发生阵列干扰等异常信号,影响恢复准确性。
3、采样频率不能低于信号本身的频率。
在信号采样的时候,采样频率不能低于信号本身的频率,若这样则会导致在采样时信号产生抖动,因而影响信号的恢复。
中抽样定理的信号恢复实验是为了研究采样数据在恢复到信号之后,信号的完整性和可用性,也就是采样后信号是否可以被准确恢复。
实验过程如下:1)选择实验信号:首先在工作台上选择一种接近现实环境信号的实验信号,比如电磁波;2)选择合适的采样范式和采样周期:根据中抽样定理确定信号采样的范式和采样周期,确保采样时信号的完整性;3)选择合适的采样器:使用数字处理芯片对所选实验信号进行采样;4)采样后进行恢复:使用计算机程序对所采样的实验信号进行恢复,还原信号在采样之前的状态;5)检验信号重建效果:比较采样前和采样后的实验信号,观察信号恢复的精度和效果。
中抽样定理及实验报告的结果表明,采用中抽样定理的方法有效的提高了信号的清晰度和真实感,可以进行准确的信号恢复和参数测定分析。
它可以应用于传输系统和数字信号处理,在传输、抑制、延迟等方面具有重要的意义。
抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告实验报告:抽样定理与信号恢复摘要:抽样定理是数字信号处理中的重要概念,它为我们提供了从连续时间上放缩成为离散时间表示的方法。
在本实验中,我们利用数字信号处理软件进行了一系列实验,以了解抽样定理的工作原理和不同采样频率对信号恢复的影响。
通过实验结果分析,我们得出结论:1. 抽样频率应大于信号带宽两倍;2. 较低的采样频率可能导致丢失重要信息;3. 采样频率高于极限频率会增加不必要的计算开销。
因此,了解抽样定理对我们使用数字信号处理工具处理不同类型信号的时候带来极大的帮助。
实验过程:1. 选择一个连续时间信号z(t)并计算其频率响应和最大频率;2. 在Matlab中选择一个采样频率,对信号进行采样,并计算采样信号的傅里叶系数;3. 选择一个重建滤波器,用于从离散时间信号中重建连续时间信号;4. 绘制信号的原始函数和重构函数,并通过对比和信号恢复误差评价重建质量。
实验结果:我们采样一个频率为5Hz的正弦波,即sq(t) = sin(2 pi 5 t)。
我们选择了三个采样频率,分别是10Hz、8Hz和6Hz。
在Matlab中运行解析和比较函数,我们得出了信号的重构函数和重构误差。
当采样频率为10Hz时,与原始信号相比,重构过程中出现了一点振荡。
这是因为重构滤波器的阶数没有达到最优值。
当采样频率降低到8Hz时,出现了更明显的振荡。
这是因为采样频率在8Hz以下不能捕捉到5Hz正弦波的一个完整波形。
进一步降低采样频率到6Hz,我们观察到信号完全失真,根本无法恢复原始信号。
结论:本实验证明了抽样定理在数字信号处理中的重要性。
对于任何采样频率低于极限的情况,都可能导致信号发生失真。
因此,理解抽样定理可以帮助我们更好地从连续时间中得到数字表示的方法。
信号的采样和恢复

深圳大学实验报告课程名称:信号与系统实验实验项目名称:信号的采样和恢复学院:信息工程学院专业:通信工程指导教师:张坤华报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验内容1、观察抽样脉冲、抽样信号、抽样恢复信号。
2、观察抽样过程中,发生混叠和非混叠时的波形。
三、实验仪器1、信号与系统实验箱一台(主板)。
2、系统时域与频域分析模块一块。
3、20M 双踪示波器一台。
四、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。
()t s 是一组周期性窄脉冲,见图5-1,T S图 5-1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按()x x sin 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
抽样定理_实验报告

1. 了解电信号的采样方法与过程。
2. 理解信号恢复的方法。
3. 验证抽样定理的正确性。
二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。
三、实验设备与器材1. 信号与系统实验箱TKSS-C型。
2. 双踪示波器。
四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。
2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。
3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。
4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。
5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。
五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。
2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。
1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。
2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。
3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。
七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。
2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。
3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。
信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。
它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。
抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。
一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。
抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。
抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。
具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。
这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。
抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。
它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。
这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。
如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。
抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。
当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。
三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。
采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。
例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。
抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告抽样定理与信号恢复实验报告引言:信号恢复是数字信号处理中的一个重要问题,其目标是通过采样和重构技术来恢复原始信号。
在实际应用中,由于各种原因,我们往往无法直接获得完整的信号,而只能通过采样来获取信号的部分信息。
因此,如何有效地从有限的采样数据中恢复原始信号成为一个关键问题。
本实验旨在通过抽样定理来解决信号恢复问题,并通过实验验证其有效性。
实验原理:抽样定理是信号处理中的基本原理之一,它指出,如果一个连续时间信号的带宽有限,并且以一定的采样频率进行采样,那么通过这些采样数据可以完全恢复原始信号。
具体而言,抽样定理要求采样频率至少是信号带宽的两倍,即Nyquist采样定理。
实验步骤:1. 准备信号源:我们选择了一个正弦信号作为原始信号源,其频率为f0,幅度为A。
通过函数生成器产生该信号,并连接到示波器上。
2. 采样:根据抽样定理,我们选择了采样频率为2f0,即原始信号频率的两倍。
通过示波器的采样功能,将信号进行采样,并记录采样数据。
3. 信号恢复:根据采样数据,我们使用重构算法对信号进行恢复。
在本实验中,我们选择了最常用的插值法进行信号恢复。
通过对采样数据进行插值处理,可以得到连续时间的信号。
4. 重构信号验证:将恢复的信号与原始信号进行对比,验证重构的准确性。
通过示波器将原始信号和恢复信号进行叠加显示,观察它们的相似程度。
实验结果与分析:在本实验中,我们选择了一个频率为1kHz的正弦信号作为原始信号源,采样频率选择为2kHz。
通过示波器进行采样,并得到了采样数据。
接下来,我们使用插值法对采样数据进行信号恢复,并将恢复的信号与原始信号进行对比。
通过观察示波器显示的结果,我们可以明显看到恢复的信号与原始信号非常接近,几乎无法区分它们之间的差异。
这表明,通过抽样定理和插值法,我们成功地从有限的采样数据中恢复了原始信号。
结论:本实验通过采样定理与信号恢复技术,成功地实现了从有限采样数据中恢复原始信号的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调整信号源,使DDS1输出1KHZ的三角波,调节电位器1W1,使输出信号幅度为1Vpp;
②连接DDS1与5P601,输入三角波信号;连接1P01与5P602,输入抽样脉冲信号;
改变抽样脉冲的频率,用示波器观察5TP603(Fs(t))的波形,此时需把拨动开关1K1拨到“空”位置进行观察;
实验
一、实验目的
1.观察离散信号频谱,了解其频谱特点;
2.验证抽样定理并恢复原信号。
二、实验设备
1.双踪示波器1台
2.信号系统实验箱1台
3.频率计1台
4.铆孔连接线 若干
三、实验原理说明
1.离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。抽样信号Fs(t)=F(t)·S(t),其中F(t)为连续信号(例如三角波),S(t)是周期为Ts的矩形窄脉冲。Ts又称抽样间隔,Fs= 称抽样频率,Fs(t)为抽样信号波形。F(t)、S(t)、Fs(t)波形如图5-1。
图5-8截止频率为2K的低通滤波器原理图
(5)设1KHz的三角波信号的有效带宽为3KHz,Fs(t)信号分别通过截止频率为fc1和fc2低通滤波器,观察其原信号的恢复情况,并完成下列观察任务。
1.当抽样频率为3KHz、截止频率为2KHz时:
Fs(t)的波形
F'(t)波形
2.当抽样频率为6KHz、截止频率为2KHz时:
以三角波被矩形脉冲抽样为例。三角波的频谱:
F(jω)=
抽样信号的频谱:
Fs(jω)=
式中
取三角波的有效带宽为3 作图,其抽样信号频谱如图5-3所示。
图5-3抽样信号频谱图
如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
3.抽样信号在一定条件下可以恢复出原信号,其条件是fs≥2Bf,其中fs为抽样频率,Bf为原信号占有频带宽度。由于抽样信号频谱是原信号频谱的周期性延拓,因此,只要通过一截止频率为fc(fm≤fc≤fs-fm,fm是原信号频谱中的最高频率)的低通滤波器就能恢复出原信号。
5.通过本实验你有何体会。
七、思考题
1.对1KHZ三角波进行抽样实验时,抽样频率为什么不能低于6KHZ?恢复滤波器载止频率为什么不能是2KHZ?
2.1KHZ的正弦波用2KHZ脉冲去抽样,经2KHZ恢复滤波器会输出一个2KHZ的正弦波,为什么?
抽样频率和抽样脉冲占空比可调,恢复滤波器载止频率可调;
六、实验报告要求
1.整理数据,正确填写表格,总结离散信号频谱的特点;
2.整理在不同抽样频率(三种频率)情况下,F(t)与F′(t)波形,比较后得出结论;
3.比较F(t)分别为正弦波和三角形,其Fs(t)的频谱特点;
4.用仿真软件分析4KHZ三角波抽样频率取值和恢复滤波器载止频率取值;
Fs(t)的波形
F'(t)波形
3.抽样定理虚拟仿真
实验箱提供了基于USB或网口的采集软件与LABVIEW仿真软件,能在PC机上实时观察模拟信号、抽样脉冲、抽样信号、抽样信号的频谱,恢复滤波器采用数字滤波器,带宽可设置,如图5-9
图5-9抽样定理仿真
使用方法:
软件安装见实验17,选择“信号与系统”复选框中“抽样定理”,实验箱DSP运行在“虚拟仪器”,用USB线连接实验箱和PC机,点击软件“STOP”键,软件开始行运。
④使用不同的抽样脉冲频率,观察信号的变化。
2.验证抽样定理与信号恢复
(1)信号恢复实验方案方框图如图5-7所示。
图5-7信号恢复实验方框图
(2)信号发生器输出f=1KHz,A=1V有效值的三角波接于5P601,示波器CH1接于5TP603观察抽样信号Fs(t),CH2接于5TP604观察恢复的信号波形。
图5-5信号抽样流程图
图5-6有源低通滤波器实验电路图
四、测量点说明
测量点:
5TP601:输入信号波形观测点;
5TP603:抽样波形观测点;
5TP604:抽样信号经滤波器恢复后的信号波形观测点。
信号插孔:
5P601:信号输入插孔;
5P602:抽样脉冲信号输入插孔;
5P603:抽样信号输出插孔;
五、实验内容及步骤
FHz、截止频率为2KHz时:
Fs(t)的波形
F'(t)波形
4.当抽样频率为3KHz、截止频率为4KHz时:
Fs(t)的波形
F'(t)波形
5.当抽样频率为6KHz、截止频率为4KHz时:
Fs(t)的波形
F'(t)波形
6.当抽样频率为12KHz、截止频率为4KHz时:
(3)拨动开关1K1拨到“2K”位置,选择截止频率fc2=2KHz的滤波器;拨动开关5K601拨到“4K”位置,选择截止频率fc2=4KHz的滤波器;此时在5TP604可观察恢复的信号波形。
(4)拨动开关5K601拨到“空”位置,未接滤波器。同学们可按照图5-8,在基本运算单元搭试截止频率fc1=2K的低通滤波器,抽样输出波形5P603送入Ui端,恢复波形在Uo端测量,图中电阻可用电位器代替,进行调节。
如果fs<2Bf,则抽样信号的频谱将出现混迭,此时将无法通过低通滤波器获得原信号。
图5-4实际低通滤波器在截止频率附近频率特性曲线
在实际信号中,仅含有有限频率成分的信号是极少的,大多数信号的频率成分是无限的,并且实际低通滤波器在截止频率附近频率特性曲线不够陡峭(如图5-4所示),若使fs=2Bf,fc=fm=Bf,恢复出的信号难免有失真。为了减小失真,应将抽样频率fs取高(fs>2Bf),低通滤波器满足fm<fc<fs-fm。
图5-1连续信号抽样过程
将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图5-2所示。
2.连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱
它包含了原信号频谱以及重复周期为fs(f s = 、幅度按 Sa( )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。
为了防止原信号的频带过宽而造成抽样后频谱混迭,实验中常采用前置低通滤波器滤除高频分量,如图5-5所示。若实验中选用原信号频带较窄,则不必设置前置低通滤波器。
本实验采用有源低通滤波器,如图5-6所示。若给定截止频率fc,并取Q= (为避免幅频特性出现峰值),R1=R2=R,则:
C1= (5-1)
C2= (5-2)