信号与系统实验-信号的抽样与恢复
信号与系统实验报告(一) 大二下

电气学科大类级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号专业班号同组者1 学号专业班号同组者2 学号专业班号指导教师日期实验成绩评阅人综合实验和实验报告要求信号与控制综合实验,是集多门技术基础课程以及其它延伸课程理论于一体的综合性实验课程,需要综合多门学科理论知识和实验方法来体现,因此,实验目的不是简单的课程理论验证和练习,而是综合应用、研究开发、设计创新。
应采用尽可能好的设计,使所设计的电路和系统达到要实现的功能,步骤和方案自行拟定,实现对设计思路的实验验证。
完成多个实验项目的,应将实验内容整理综合后写成一份总报告,以利于锻炼整理归纳和总结能力,在总报告中以第二级标题形式依次写下所完成的实验项目、内容及实验设计过程。
实验报告按“题目、目录、正文(分所完成的各实验项目)、结论、心得与自我评价、参考文献”6个部分撰写;正文主要包括以下几个内容:任务和目标、总体方案设计(原理分析与方案设计特点,选择依据和确定)、方案实现和具体设计(过程)、实验设计与实验结果、结果分析与讨论。
(格式方面请注意:每个图应该有图号和图名,位于图的下方,同一图号的分图应在同一页,不要跨页;每个表应该有表号和表名,位于表的上方,表号表名与表(数据)也应在同一页,不要跨页;建议各部分题目采用四号黑体、设计报告内容文字采用小四号宋体)注:报告中涉及实验指导书或教材内容,只需注明引用位置,不必在报告中再加以阐述。
不得不加引用标记地抄袭任何资料。
每一基本实验部分按计划学时100分成绩计算(100%),需要完成60分的实验项目;实验报告、设计部分和创新研究内容另外计分(分别为10%、20%和10%)。
再按照学时比例与本课程其它部分实验综合成为总实验成绩。
每一部分实验均为:基本实验:0~60分,考核基本理论的掌握和基本操作技能、实验室道德规范;实验报告:0~10分,考核思考和总结表述能力;完成设计性实验:0~20分,评价设计能力;完成创新性实验:0~10分,鼓励创新。
信号与系统实验四实验报告

实验四 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率sam f 大于等于2倍的信号最高频率m f ,即m sam f f 2≥。
时域抽样是把连续信号x (t )变成适于数字系统处理的离散信号x [k ] ;信号重建是将离散信号x [k ]转换为连续时间信号x (t )。
非周期离散信号的频谱是连续的周期谱。
计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。
三.实验内容1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。
)102cos()(1t t x ⨯=π答: 函数代码为: t0 = 0:0.001:0.1;x0 =cos(2*pi*10*t0);plot(t0,x0,'r')hold onFs =50;t=0:1/Fs:0.1;x=cos(2*pi*10*t); stem(t,x); hold offtitle('连续信号及其抽样信号')函数图像为:)502cos()(2t t x ⨯=π同理,函数图像为:)0102cos()(3t t x ⨯=π同理,函数图像为:由以上的三图可知,第一个图的离散序列,基本可以显示出原来信号,可以通过低通滤波恢复,因为信号的频率为20HZ,而采样频率为50>2*20,故可以恢复,但是第二个和第三个信号的评论分别为50和100HZ,因此理论上是不能够恢复的,需要增大采样频率,解决的方案为,第二个信号的采样频率改为400HZ,而第三个的采样频率改为1000HZ,这样可以很好的采样,如下图所示:2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘制波形。
信号与系统实验

实验一信号与系统认知一、实验目的1、了解实验室的规章制度、强化安全教育、说明考核方法。
2、学习示波器、实验箱的使用、操作知识;3、学习常用连续周期信号的波形以及常用系统的作用。
二、实验仪器1、信号与系统实验箱(本次实验使用其自带的简易信号源,以及实验箱上的“信号通过系统”部分。
)2、示波器三、实验原理1、滤波器滤波器是一种常用的系统,它的作用为阻止某些频率信号通过,或只允许某些频率的信号通过。
滤波器主要有四种:这是四种滤波器的理想状态,实际上的滤波器只能接近这些效果,因此通常的滤波器有一些常用的参数:如带宽、矩形系数等。
通带范围:与滤波器最低衰减处比,衰减在3dB以下的频率范围。
2、线性系统线性系统是现实中广泛应用的一种系统,线性也是之后课程中默认为系统都具有的一种系统性质。
系统的线性表现在可加性与齐次性上。
齐次性:输入信号增加为原来的a倍时,输出信号也增加到原来的a倍。
四、预习要求1、复习安全操作的知识。
2、学习或复习示波器的使用方法。
3、复习典型周期信号的波形及其性质。
4、复习线性系统、滤波器的性质。
5、撰写预习报告。
五、实验内容及步骤1、讲授实验室的规章制度、强化安全教育、说明考核方法2、通过示波器,读出实验箱自带信号源各种信号的频率范围(1)测试信号源1的各种信号参数,并填入表1-1。
(2)测试信号源2的各种信号参数,并填入表1-2。
3、测量滤波器根据相应测量方法,用双踪示波器测出实验箱自带的滤波器在各频率点的输入输出幅度(先把双踪示波器两个接口都接到所测系统的输入端,调节到都可以读出输入幅度值,并把两侧幅度档位调为一致,记录下这个幅度值;之后,将示波器的一侧改接入所测系统的输出端,再调节用于输入的信号源,将信号频率其调至表1-3中标示的值,并使输入信号幅度保持原幅度值不变。
观察输出波形幅度的变化,并与原来的幅度作比较,记录变化后的幅度值。
),并将相应数据计入表1-3中。
4、测量线性系统(1)齐次性的验证自选一个输入信号,观察输出信号的波形并记录输入输出信号的参数,将输入信号的幅度增强为原信号的一定倍数后,再对输入输出输出参数进行记录,对比变化前后的输出。
信号与系统实验总结

信号与系统实验总结转眼间,信号与系统实验课已接近尾声。
和蔼的老师,亲切的同组同学,每一个新奇的信号实验,都给刚入大二的我留下了许多深刻印象。
这一学期,共做了“信号的分类与观察”、“非正弦信号的频谱分析”、“信号的抽样与恢复(PAM)”、和“模拟滤波器实验”共四个信号与系统实验。
此学期的实验课程加深了我对信号与系统这门课的感性认知与体会,也增强了我的实际动手能力,有效地处理了实验过程中遇到的问题,收获颇丰。
众所周知,信号与系统这门课程对于电子信息科学与技术专业的我们是何等的重要。
而每周一次的实验,培养了我分析问题和处理问题的能力,使抽象的概念和理论形象化、具体化、对增强学习的兴趣有了极大的好处,针对各个实验及实验中的具体问题,现总结如下:一.信号的分类与观察对于一个系统的特性进行研究,重要的一个方面是研究它的输入—输出关系,即在特定输入信号下,系统输出的响应信号。
因而对信号进行研究是研究系统的出发点,是对系统特性观察的基本方法和手段。
在这个实验中,对常用信号及其特性进行了分析、研究。
由实验箱中元件产生正弦波、指数信号、指数衰减正弦信号三种波形,示波器观察,并根据数据求出函数表达式。
此次实验我最大的收获,就是了解了示波器的使用方法和各个按钮的作用。
初步了解了信号与系统实验箱的各个模块作用。
比如示波器上无法显示波形,先调节辉度按钮,如还未出现,调节垂直POSITION按钮,看波形是不是在屏幕之外,波形不稳,调节触发电平或TIME/DIV,等等。
示波器在各种实验中都起到很重要的作用,所以了解它的原理和使用方法是必备的基础知识,为以后的实验打下了坚实的基础。
作图在实验数据处理中也是很重要的一步。
准确的记录,描点,坐标分度,看似很小的事情真的做起来就会觉得不是那么容易。
把每一个平凡的小事做好,就是一种不平凡。
在数据处理中,我学会了耐心的处理事情。
最后的正弦,指数,和指数衰减正弦信号都在坐标纸上有了很好的体现。
信号的采样与恢复

信号的采样与恢复实验一、任务与目的1. 熟悉信号的采样与恢复的过程。
2. 学习和掌握采样定理。
3. 了解采样频率对信号恢复的影响。
二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。
1. 采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。
这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。
采样定理是连续时间信号与离散时间信号之间的桥梁。
采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。
三角波信号的采样如图4-1-1所示。
图4-1-1信号的采样2. 采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
某频带有限信号被采样前后频谱如图4-1-2。
图4-1-2 限带信号采样前后频谱从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。
这样只需要利用截止频率适当的滤波器便可以恢复出原信号。
3. 采样信号的恢复将采样信号恢复成原信号,可以用低通滤波器。
低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。
实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为1802f Hz RCπ=≈图4-1-3 滤波器电路4. 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。
其中的采样保持部分电路由一片CD4052完成。
此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。
三、内容与步骤本实验在脉冲采样与恢复单元完成。
1. 信号的采样(1)使信号发生器第一路输出幅值3V、频率10Hz的三角波信号;第二路输出幅值5V,频率100Hz、占空比50%的脉冲信号。
信号与系统实验报告

电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名丁玮学号U201216149 专业班号水电1204 同组者1 余冬晴学号U201216150 专业班号水电1204 同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表基本实验实验编号名称/内容实验分值评分实验一常用信号的观察实验二零输入响应、零状态相应及完全响应实验五无源滤波器与有源滤波器实验六LPF、HPF、BPF、BEF间的变换实验七信号的采样与恢复实验八调制与解调设计性实验实验名称/内容实验分值评分创新性实验实验名称/内容实验分值评分教师评价意见总分目录1.实验一常用信号的观察 (1)2.实验二零输入响应、零状态响应及完全响应 (4)3.实验五无源滤波器与有源滤波器 (7)4.实验六 LPF、HPF、BPF、BEF间的转换 (14)5.实验七信号的采样与恢复 (19)6.实验八调制与解调 (29)7.实验心得与自我评价 (33)8.参考文献 (34)实验一常用信号的观察一.任务与目标1.了解常见信号的波形和特点;2.了解常见信号有关参数的测量,学会观察常见信号组合函数的波形;3.学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系;4.掌握基本的误差观察与分析方法。
二.总体方案设计1.实验原理描述信号的方法有许多种,可以用数学表达式(时间的函数),也可以使用函数图形(信号的波形)。
信号可以分为周期信号和非周期信号两种。
普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。
目前,常用的数字示波器可以方便地观察周期信号及非周期信号的波形。
2.总体设计⑴观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形,如y=sin(nx)+cos(mx)。
⑵用示波器测量信号,读取信号的幅值与频率。
三.方案实现与具体设计1.用函数发生器产生正弦波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;2.用函数发生器产生方波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;3.用函数发生器产生三角波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;4.用函数发生器产生锯齿波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;5.用函数发生器产生两个不同频率的正弦波,分别设定波形的峰值及频率,用示波器叠加波形,并观察组合函数的波形。
信号与系统实验四-信号的采样及恢复

信号与系统实验四-信号的采样及恢复实验四信号的采样及恢复⼀、实验⽬的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进⾏抽样和恢复的基本⽅法;3、通过实验验证抽样定理。
⼆、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进⾏抽样,试画出抽样后序列的波形,并分析产⽣不同波形的原因,提出改进措施。
(1))102cos()(1t t x ?=π(2))502cos()(2t t x ?=π(3))1002cos()(3t t x ?=π2、产⽣幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。
3、对连续信号)4cos()(t t x π=进⾏抽样以得到离散序列,并进⾏重建。
(1)⽣成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。
(2)以10=sam f Hz 对信号进⾏抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利⽤抽样内插函数)/1()(sam r f T T t Sa t h =??=π恢复连续信号,画出重建信号)(t x r 的波形。
)(t x 与)(t x r 是否相同,为什么?(3)将抽样频率改为3=sam f Hz ,重做(2)。
4、利⽤MATLAB 编程实现采样函数Sa 的采样与重构。
三、实验仪器及环境计算机1台,MATLAB7.0软件。
四、实验原理对连续时间信号进⾏抽样可获得离散时间信号,其原理如图8-1。
采样信号)()()(t s t f t f s ?=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。
其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f π⼤于等于2倍的原信号频率m f 时,即m s f f 2≥(抽样时间间隔满⾜ms f T 21≤),抽样信号的频谱才不会发⽣混叠,可⽤理想低通滤波器将原信号从采样信号中⽆失真地恢复。
东北大学秦皇岛分校 信号与系统实验报告三 抽样定理实验 2020.04.30

2K
2K 正弦波
4K
2K
2K 正弦波
8K
2K
2K 正弦波
16K
2K
1K 三角波
16K
2K
1K 三角波
16K
6K
自己尝试设计某种组合进行扩展
说明 1.5 倍抽样脉冲 2 倍抽样脉冲 4 倍抽样脉冲 8 倍抽样脉冲 复杂信号恢复 复杂信号恢复
3. 频谱混叠现象验证
(1) 设置各信号参数 设置原始信号为:“正弦”,频率:1KHz,幅度设置指示为 50;设置抽样脉冲频率: 8KHz,占空比:4/8(50%);恢复滤波器截止频率:2K;
m(t) T (t) 的傅立叶变换是M() 和T () 的卷积:
M () = 1 M () () = 1
M (− n) s
T
s
2
T n =−
该式表明,已抽样信号 ms(t) 的频谱 需要注意,若抽样间隔 T 变得大于
Ms1
() 是无穷多个间隔为 ωs 的 M () 相迭加而成。 , 则 M () 和 () 的卷积在相邻的周期内存在
(5) 抽样信号时域观测 用四通道示波器,在 2P1 可观测原始信号,在 2P2 可观测抽样脉冲信号,在 2P7 可观测PAM 取
样信号;
(6) 抽样信号频域观测 使用示波器的 FFT 功能或频谱仪,分别观测 2P1,2P2,2P7 测量点的频谱;
(7) 恢复信号观察 鼠标点击框图上的“恢复滤波器”按钮,设置恢复滤波器的截止频率为 3K(点击截止频率数
3. 当模拟信号为 2KHz 正弦波、抽样频率为 8KHz、恢复滤波器为 2KHz 时: 原始信号波形、抽样脉冲波形、抽样输出波形、恢复信号波形
4. 当模拟信号为 2KHz 正弦波、抽样频率为 16KHz、恢复滤波器为 2KHz 时: 原始信号波形、抽样脉冲波形、抽样输出波形、恢复信号波形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验内容
1、采样冲激串的测量:在JH5004的“PAM抽样
定理”模块的D(t)输入端测量采样冲激串, 测量采样信号的频率。 2、模拟信号的加入:用短路线将“信号A组” 输出1KHz正弦信号与“PAM抽样定理”模块 的信号输入X端相连。
ห้องสมุดไป่ตู้验内容
3、信号采样的PAM序列观察:在“PAM抽
样定理”模块的输出端可测量到输入信
实验六 信号的抽样与恢复(PAM)
一、实验目的 二、实验设备 三、实验内容 四、实验报告及考核 五、思考题
实验目的
1、验证抽样定理 2、观察了解PAM信号形成的过程;
实验设备
1、JH5004“信号与系统”实验箱
一台;
2、20MHz示波器 一台;
实验内容
信号产生模块为模式1,在该模式下在 正弦信号16KHz、32KHz输出端产生相应 的信号输出,同时在信号A组产生1KHz 信号,在信号B组产生125KHz信号输出, 以及PAM所需的抽样时钟。
号的采样序列,用示波器比较采样序列 与原始信号的关系及采样序列与采样冲
击串之间的关系。
实验内容
4、PAM信号的恢复:用短路线将“PAM抽 样定理”模块输出端的采样序列与“无 源与有源滤波器” 单元的“八阶切比 雪夫低通滤波器”的输入端相连。在滤 波器输出端可测量出恢复出的模拟信号, 用示波器比较恢复出信号与原始信号的 关系与差别。
实验内容
5、用短路线连接“PAM抽样定理”模块的 A与C端,重复上述实验
实验报告
实验报告
1、描述抽样信号的时域与频域变化过程及原理框 图 2、画出示波器中原始信号、恢复信号波形
思考题
1、在实验电路中,采样冲激串 不是理想的冲激函数,通过这样的 冲激序列所采样的采样信号谱的形 状是怎样的?
思考题
2、 短路线连接“PAM抽样定理” 模块的A与C端,由外部信号源产生 一65KHz的正弦信号送入“PAM抽样 定理”模块中,再将采样序列送入 低通滤波器,用示波器测量恢复出 来的信号是什么?为什么?