信号与系统实验五信号的采样与还原.

合集下载

实验五 信号的采样与恢复

实验五 信号的采样与恢复

信号与系统实验报告【实验原理】1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。

s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S⁄称抽样频率。

图1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ⁄规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。

而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。

当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的。

因此即使f s =2B ,恢复后的信号失真还是难免的。

图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。

(a)连续信号的频谱(b)高抽样频率时的抽样信号及频谱(不混叠)(c)低抽样频率时的抽样信号及频谱(混叠)图2抽样过程中出现的两种情况4、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。

信号与系统实验-信号的抽样与恢复

信号与系统实验-信号的抽样与恢复

实验内容
1、采样冲激串的测量:在JH5004的“PAM抽样
定理”模块的D(t)输入端测量采样冲激串, 测量采样信号的频率。 2、模拟信号的加入:用短路线将“信号A组” 输出1KHz正弦信号与“PAM抽样定理”模块 的信号输入X端相连。
实验内容
3、信号采样的PAM序列观察:在“PAM抽
样定理”模块的输出端可测量到输入信
实验六 信号的抽样与恢复(PAM)
一、实验目的 二、实验设备 三、实验内容 四、实验报告及考核 五、思考题
实验目的
1、验证抽样定理 2、观察了解PAM信号形成的过程;
实验设备
1、JH5004“信号与系统”实验箱
一台;
2、20MHz示波器 一台;
实验内容
信号产生模块为模式1,在该模式下在 正弦信号16KHz、32KHz输出端产生相应 的信号输出,同时在信号A组产生1KHz 信号,在信号B组产生125KHz信号输出, 以及PAM所需的抽样时钟。
实验内容
5、用短路线连接“PAM抽样定理”模块的 A与C端,重复上述实验
实验报告
实验报告
1、描述抽样信号的时域与频域变化过程及原理框 图 2、画出示波器中原始信号、恢复信号波形
思考题
1、在实验电路中,采样冲激串 不是理想的冲激函数,通过这样的 冲激序列所采样的采样信号谱的形 状是怎样的?
思考题
2、 短路线连接“PAM抽样定理” 模块的A与C端,由外部信号源产生 一65KHz的正弦信号送入“PAM抽样 定理”模块中,再将采样序列送入 低通滤波器,用示波器测量恢复出 来的信号是什么?为什么?
号的采样序列,用示波器比较采样序列 与原始信号的关系及采样序列与采样冲
击串之间的关系。
Байду номын сангаас 实验内容

信号与系统课程设计信号的抽样与恢复-.

信号与系统课程设计信号的抽样与恢复-.

信号与系统课程设计题目:信号的抽样与恢复学生姓名:院(系、部):机电工程学院指导教师:2012年12月24日至2012年12月28日摘 要本设计是运用MATLAB 编程来实现抽样定理及其信号恢复的仿真并能在建立的图形用户界面上显示出相应的仿真结果。

目的在于能够熟练的应用MATLAB 软件来建立友好的用户界面,通过界面来显示原始信号、抽样信号以及恢复后仿真的信号。

本设计通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对抽样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。

信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。

通过MATLAB 软件中的信号分析的方法来验证抽样定理的正确性。

关键词:抽样与恢复;滤波器 ;MATLAB1 设计任务与要求(1)用MATLAB 实现常用连续信号 (2)用MATLAB 实现常用离散信号(3)根据以下三种情况用MATLAB 实现)(t Sa 的信号及恢复并求出两者误差,分析三种情况下的结果。

由于函数)(t Sa 不是严格的带限信号,其带宽m ω可根据一定的精度要求做一近似。

①)(t Sa 的临界抽样及恢复:,1=m ω,m c ωω=,m i s p T ω/4.2=; ②)(t Sa 的过抽样及恢复: 1=m ω,m c ωω1.1=,m i s p T ω/5.2=③)(t Sa 的欠抽样及恢复: 1=m ω,m c ωω=,m i s p T ω/5.2=。

2 原理分析和设计图1 总框架图2.1连续信号的抽样定理连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当抽样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

实验-信号的采样与恢复

实验-信号的采样与恢复

实验三 信号的采样与恢复一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

3、理解信号的抽样及抽样定理以及抽样信号的频谱分析;掌握和理解信号抽样以及信号重建的原理,验证抽样定理。

二、实验设备1、信号与系统实验箱(参考型号:TKSS —B 型)2、双踪示波器三、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号)(t f s 可以看成连续信号)(t f 和一组开关函数)(t s 的乘积。

)(t s 是一组周期性的窄脉冲,如下图所示。

s T 为抽样周期,其倒数s s T f /1=称抽样频率。

图1 矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3┅┅。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按x x /sin 规律衰减。

抽样信号的频谱是原信号频谱的周期延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号的频谱中最高频率n f 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。

而B f 2min =为最低抽样频率又称“奈奎斯特抽样频率”。

当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此即使B f s 2=,恢复后的信号失真还中难免的。

下图画出了当抽样频率B f s 2>(不混叠时)及B f s 2<(混叠时)两种情况下冲激抽样信号的频谱。

信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。

2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。

3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。

4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。

可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。

5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。

6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。

7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。

8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。

信号的采样与恢复(采样定理)

信号的采样与恢复(采样定理)

实验一信号的采样与恢复(采样定理)一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。

2、验证采样定理。

二、实验设备1、Dais-XTB信号与系统实验箱一台2、双踪示波器一台3、任意函数发生器一台三、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。

采样信号x s(t)可以看成连续信号x(t)和一组开关函数s(t)的乘积。

s(t)是一组周期性窄脉冲,如图2-5-1,T s称为采样周期,其倒数f s=1/T s称采样频率。

图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于采样频率f s及其谐波频率2f s、3f s……。

当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x规律衰减。

采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、采样信号在一定条件下可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

3、原信号得以恢复的条件是f s≥2f max,f s为采样频率,f max为原信号的最高频率。

当fs <2f max时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此即使f s=2 f max,恢复后的信号失真还是难免的。

实验中选用f s<2 f max、f s=2 f max、f s>2 f max三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s必须大于信号最高频率的两倍。

4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。

除选用足够高的采样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成采样后信号频谱的混迭,但这也会造成失真。

信号的采样和恢复

信号的采样和恢复

深圳大学实验报告课程名称:信号与系统实验实验项目名称:信号的采样和恢复学院:信息工程学院专业:通信工程指导教师:张坤华报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验内容1、观察抽样脉冲、抽样信号、抽样恢复信号。

2、观察抽样过程中,发生混叠和非混叠时的波形。

三、实验仪器1、信号与系统实验箱一台(主板)。

2、系统时域与频域分析模块一块。

3、20M 双踪示波器一台。

四、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。

()t s 是一组周期性窄脉冲,见图5-1,T S图 5-1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按()x x sin 规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。

而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。

当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学实验报告
课程名称:信号与系统
实验名称:信号的卷积实验
学院名称:信息工程学院
专业名称:集成电路设计与集成系统
指导教师:廉德亮
报告人:学号:班级:二班
实验时间: 2015年6月04日
提交时间: 2015年6月18日
由此可见,当φ=0或是2π的整数倍时,如右图,x(t)
可以完全恢复。

当2
π
φ=-时,()sin(
)2
s
x t t ω=
该信号在采样周期2s πω整数倍点上的值都
是零;因此
在这个采样频率下所产生的信号全是零。

当这个零输入加到理想低通滤波器上时,所得输出当然也都是零。

实验步骤
1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错),并打开此模块的电源开关(S1、S2)。

2、用示波器测试H07“CLKR ”的波形,为256kHz 的方波,用导线将H07“CLKR ”和H12连接起来。

3、用示波器测试H01“2kHz ”的输出波形,为2kHz 的方波,用导线连接H01“2kHz ”和H02“输入”。

4、通过测试钩T01观察输入的方波经过截止频率为2kHz 的低通滤波器后得到2kHz 的正弦波。

抽样电路将对此正弦波进行抽样,然后经过还原电路还原出此正弦波。

5、用示波器观察测试钩T08“抽样脉冲序列”的波形。

通过按键“频率粗调”和按键“频率细调”可以改变抽样脉冲序列的频率。

抽样脉冲序列的频率的最小值为500Hz 最大值为11.5kHz 。

同样通过“占空比粗调”按键和“占空比细调”按键可以调节抽样脉冲序列的占空比。

“复位”按键可以使抽样脉冲序列的频率复位为500Hz 且占空比最小。

通过调节抽样脉冲的频率可以实现欠采样、临界采样、过采样。

6、用示波器观察T02“抽样信号”的波形。

7、观察抽样信号经低通滤波器还原后的波形T03。

8、改变抽样频率为fs<2B 和fs ≥2B ,观察抽样信号(T02)和复原后的信号(T03),比较其失真程度。

实验数据
原信号2kHz 正弦波
单通道 抽样脉冲序列
临界采样过采样抽样信号
大于4kHz 4kHz
恢复信号
大于4kHz 4kHz。

相关文档
最新文档