信号与系统-实验报告-实验五

合集下载

信号与系统综合实验报告

信号与系统综合实验报告

目录实验一常用信号的观察 (4)实验二零输入、零状态及完全响应 (7)实验五无源与有源滤波器 (8)实验六低通、高通、带通、带阻滤波器间的变换 (14)实验七信号的采样与恢复实验 (19)实验八调制与解调实验 (31)实验体会 (35)实验一常用信号的观察一、任务与目标1。

了解常用信号的波形和特点。

2。

了解相应信号的参数。

3。

学习函数发生器和示波器的使用。

二、实验过程1.接通函数发生器的电源。

2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。

三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x—π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0。

0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。

2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案.二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线.四、实验报告上图为零输入响应、零状态响应和完全响应曲线。

五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。

因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

信号实验报告

信号实验报告

第一部分正文实验一常用信号观察一、实验目的:1.了解常用波形的输出和特点;2.了解相应信号的参数;3.了解示波器与函数发生器的使用;4.了解常用信号波形的输出与特点。

二、实验原理:描述信号的方法有很多可以是数学表达式(时间的函数),也可以是函数图形(即为信号的波形)。

信号的产生方式有多种,可以是模拟量输出,也可以是数字量输出。

本实验由数字信号发生器产生,是数字量输出,具体原理为数字芯片将数字量通过A/D 转换输出,可以输出广泛频率范围内的正弦波、方波、三角波、锯齿波等等。

示波器可以暂态显示所观察到的信号波形,并具有信号频率、峰值测量等功能。

三、实验内容:1.由数字信号发生器产生正弦波、三角波、方波以及锯齿波并输入示波器观察其波形。

2.使用示波器读取信号的频率与幅值。

四、实验设备:1.函数信号发生器一台2.数字示波器一台。

五、实验步骤:1.接通函数发生器的电源,连接示波器。

2.利用函数发生器产生各种基本信号波形,并将波形结果导入计算机中,保存图像,写出各种信号的数学表达式。

六、实验结果:根据实验测量的数据,绘制各个信号的波形图,并写出相应的数学函数表达式。

该试验包括交流:① 该正弦信号的数学表达式为:)1001sin(4t y π=图1-1输入正弦波(Hz 504,V ±) ② 该方波的数学表达式为: )]02.001.0()02.0([4∑∞-∞=----=k k t u k t u y图1-2 输入方波(Hz 504,V ±) ③ 该三角波的数学表达式为:∑∞-∞=-------+-----=k k t u k t u k t k t u k t u k t y )]}02.002.0()02.001.0()][02.0(02.0[800)]02.001.0()02.0()[02.0(800{图1-3 输入三角波(Hz 504,V ±) ④ 该锯齿波的数学表达式为:∑∞-∞=-----=k k t u k t u k t y )]}02.002.0()02.0()[02.0(400{图1-4 输入锯齿波(Hz 504,V ±) 实验的一些问题:数字信号发生器的示值与示波器测量有一定的误差。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统 matlab实验报告

信号与系统 matlab实验报告

信号与系统 matlab实验报告信号与系统 Matlab 实验报告引言:信号与系统是电子信息类专业中的一门重要课程,它研究了信号的产生、传输和处理过程,以及系统对信号的响应和影响。

通过实验,我们可以更直观地理解信号与系统的基本概念和原理,并掌握使用 Matlab 进行信号与系统分析和处理的方法。

实验一:信号的产生与显示在信号与系统课程中,我们首先需要了解不同类型的信号,以及如何产生和显示这些信号。

在 Matlab 中,我们可以使用一些函数来生成常见的信号波形,如正弦波、方波、三角波等。

通过编写简单的 Matlab 程序,我们可以实现信号的产生和显示。

实验二:信号的采样与重构在实际应用中,信号通常以连续时间的形式存在,但在数字系统中需要将其转换为离散时间的信号进行处理。

这就需要进行信号的采样和重构。

在 Matlab 中,我们可以使用采样函数和重构函数来模拟这一过程,并观察采样率对信号重构质量的影响。

实验三:信号的滤波与频谱分析信号滤波是信号处理中的重要环节,它可以去除信号中的噪声和干扰,提高信号质量。

在 Matlab 中,我们可以使用滤波函数来实现不同类型的滤波器,并观察滤波对信号频谱的影响。

此外,我们还可以使用频谱分析函数来研究信号的频谱特性,如频谱密度、功率谱等。

实验四:系统的时域与频域分析系统是信号处理中的重要概念,它描述了信号在系统中的传输和变换过程。

在Matlab 中,我们可以使用系统函数来模拟不同类型的系统,并观察系统对信号的时域和频域响应。

通过实验,我们可以深入理解系统的时域特性和频域特性,如冲击响应、频率响应等。

实验五:信号的调制与解调信号调制是将信息信号转换为调制信号的过程,而解调则是将调制信号恢复为原始信号的过程。

在 Matlab 中,我们可以使用调制函数和解调函数来模拟不同类型的调制和解调方式,如调幅、调频、调相等。

通过实验,我们可以了解不同调制方式的原理和特点,并观察调制和解调对信号的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 连续信号与系统的S 域分析学院 班级 姓名 学号一、实验目的1. 熟悉拉普拉斯变换的原理及性质2. 熟悉常见信号的拉氏变换3. 了解正/反拉氏变换的MATLAB 实现方法和利用MATLAB 绘制三维曲面图的方法4. 了解信号的零极点分布对信号拉氏变换曲面图的影响及续信号的拉氏变换与傅氏变换的关系二、 实验原理拉普拉斯变换是分析连续时间信号的重要手段。

对于当t ∞时信号的幅值不衰减的时间信号,即在f(t)不满足绝对可积的条件时,其傅里叶变换可能不存在,但此时可以用拉氏变换法来分析它们。

连续时间信号f(t)的单边拉普拉斯变换F(s)的定义为:拉氏反变换的定义为:显然,上式中F(s)是复变量s 的复变函数,为了便于理解和分析F(s)随s 的变化规律,我们将F(s)写成模及相位的形式:()()()j s F s F s e ϕ=。

其中,|F(s)|为复信号F(s)的模,而()s ϕ为F(s)的相位。

由于复变量s=σ+jω,如果以σ为横坐标(实轴),jω为纵坐标(虚轴),这样,复变量s 就成为一个复平面,我们称之为s 平面。

从三维几何空间的角度来看,|()|F s 和()s ϕ分别对应着复平面上的两个曲面,如果绘出它们的三维曲面图,就可以直观地分析连续信号的拉氏变换F(s)随复变量s 的变化情况,在MATLAB 语言中有专门对信号进行正反拉氏变换的函数,并且利用 MATLAB 的三维绘图功能很容易画出漂亮的三维曲面图。

①在MATLAB 中实现拉氏变换的函数为:F=laplace( f ) 对f(t)进行拉氏变换,其结果为F(s)F=laplace (f,v) 对f(t)进行拉氏变换,其结果为F(v)F=laplace ( f,u,v) 对f(u)进行拉氏变换,其结果为F(v)②拉氏反变换f=ilaplace ( F ) 对F(s)进行拉氏反变换,其结果为f(t)f=ilaplace(F,u) 对F(w)进行拉氏反变换,其结果为f(u)f=ilaplace(F,v,u ) 对F(v)进行拉氏反变换,其结果为f(u)注意: 在调用函数laplace( )及ilaplace( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w )等进行说明,即要将这些变量说明成符号变量。

对laplace( )中的f 及ilaplace( )中的F 也要用符号定义符sym 将其说明为符号表达式。

具体方法参见第一部分第四章第三节。

例①:求出连续时间信号 ()sin()()f t t t ε=的拉氏变换式,并画出图形求函数拉氏变换程序如下:syms t s %定义符号变量ft=sym('sin(t)*Heaviside(t)'); %定义时间函数f(t)的表达式Fs=laplace(ft) %求f(t)的拉氏变换式F(s)运行结果:Fs = 1/(s^2+1)绘制拉氏变换三维曲面图的方法有2种:方法一:syms x y ss=x+i*y; %产生复变量sFFs=1/(s^2+1); %将F(s)表示成复变函数形式FFss=abs(FFs); %求出F(s)的模ezmesh(FFss); %画出拉氏变换的网格曲面图ezsurf(FFss); %画出带阴影效果的三维曲面图colormap(hsv); %设置图形中多条曲线的颜色顺序方法二:figure(2) %打开另一个图形窗口x1=-5: 0.1:5; %设置s 平面的横坐标范围y1=-5: 0.1: 5; %设置s 平面的纵坐标范围[x,y]=meshgrid(x1,y1); %产生矩阵s=x+i*y; %产生矩阵s 来表示所绘制曲面图的复平面区域,%其中矩阵s 包含了复平面-6<σ<6,-6<j ω<6范围内%以间隔0.01取样的所有样点 fs=1./(s.*s+1); %计算拉氏变换在复平面上的样点值ffs=abs(fs); %求幅值mesh(x,y,ffs); %绘制拉氏变换的三维网格曲面图surf(x,y,ffs); %绘制带阴影效果的三维曲面图axis([-5,5,-5,5,0,8]); %设置坐标显示范围colormap(hsv); %设置图形中多条曲线的颜色顺序说明:从拉普拉斯变换的三维曲面图中可以看出,曲面图上有象山峰一样突出的尖峰,这些峰值点在s 平面的对应点就是信号拉氏变换的极点位置。

而曲面图上的谷点则对应着拉氏变换的零点位置。

因此,信号拉氏变换的零极点位置决定了其曲面图上峰点和谷点位置。

例②:求出函数21()1F s s =+的拉氏反变换式 MATLAB 程序如下:syms t s %定义符号变量Fs =sym('1/(1+s^2)'); %定义F(s)的表达式ft=ilaplace(Fs) %求F(s)的拉氏反变换式f(t)运行结果:ft=sin(t)注意: 在MATLAB 中,求拉氏反变换的函数ilaplace(),在默认情况下是指拉氏右变换,其运行结果是单边函数。

如例②中的运行结果为ft= sin(t),实际上是指ft= sin(t)。

三、 实验内容1. 求出下列函数的拉氏变换式,并用MATLAB 绘制拉氏变换在s 平面的三维曲面图 ① 3()2()5()t tf t e t e t εε--=+解:syms t sft=sym('(-2*exp(-t)+5*exp(-3*t))*Heaviside(t)');Fs=laplace(ft)syms x y ss=x+i*y;FFs=-2/(s+1)+5/(s+3);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv② ()()(2)f t t t εε=--解:syms t sft=sym('Heaviside(t)-Heaviside(t-2)');Fs=laplace(ft)syms x y ss=x+i*y;FFs=1/s-exp(-2*s)/s;FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);③ 3()sin()()t f t e t t ε-=解:syms t sft=sym('exp(-3*t)*sin(t)*Heaviside(t)');Fs=laplace(ft)syms x y ss=x+i*y;FFs=1/((s+3)^2+1);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);④ []()sin()()(2)f t t t t πεε=--解:syms t sft=sym('sin(pi*t)*(Heaviside(t)-Heaviside(t-2))');Fs=laplace(ft)syms x y ss=x+i*y;FFs=pi/(s^2+pi^2)-exp(-2*s)*pi/(s^2+pi^2);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);2. 已知信号的拉氏变换如下,请用MATLAB 画出其三维曲面图,观察其图形特点,说出函数零极点位置与其对应曲面图的关系,并且求出它们所对应的原时间函数f (t ), ①22(3)(3)()(5)(16)s s F s s s -+=-+ 解:syms x y ss=x+i*y;FFs=(2*(s-3)*(s+3))/((s-5)*(s^2+16));FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);②(1)(3)()(2)(5)s s F s s s s ++=++ 解:syms x y ss=x+i*y;FFs=((s+1)*(s+3))/((s+2)*(s+5)*s);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);3. 已知连续时间信号[]()s(2)()(4)f t co t t t πεε=--,请分别求出该信号的拉氏变换()F s 及其傅里叶变换()F j ω,并用MATLAB 绘出()F s 的曲面图及振幅频谱()F j ω的波形,观察()F s 的曲面图在虚轴上的剖面图,并将它与信号的振幅频谱曲线进行比较,分析两者的对应关系。

解:syms t sft=sym('cos(2*pi*t)*(Heaviside(t)-Heaviside(t-4))');Fs=laplace(ft)syms x y ss=x+i*y;FFs=s/(s^2+4*pi^2)-exp(-4*s)*s/(s^2+4*pi^2);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);syms t wGt=sym('cos(2*pi*t)*(Heaviside(t)-Heaviside(t-4))'); Fw=fourier(Gt,t,w);FFw=maple('convert',Fw,'piecewise');FFP=abs(FFw);ezplot(FFP,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2])。

相关文档
最新文档