34合并同类项(二)
34合并同类项课件1

- 2 x2 y 5
的系数是
-
2y x 共有三项,其中
52, 2y 的系数是2 ,
-
2 5
x
x的
2
y
系数是-1。
合并同类项
小结:
1、一个代数式的系数是它的数字
因数。
2、一个代数式的项数是这个代数
式的加数的个数。
请填下面两表:
代数 1000 -m 式
系数 1000 -1
-0.5a -0.5
-C5 3 xyz 14
第三章 第四节
+ =2
复习提问: 1、字母可以表示任何数吗?
2、请列出八个不同的代数式。
1、字母可以表示任何数。
2、像3, st,x+y, 2(m+n), a b, A , a3 ,x+2x+(x+1) 等都是代数式 。
3、单独一个数字或一个字母 也是代数式(如3,A)。
小明为一个矩形的娱乐场提供了如下的设计方案,其中 半圆形休息区和长方形形游泳区以外的地方都是绿地
是-1, 项- 81π n2 的系数是- 81π .
一、填空:
1、a 2b 3c 是 a , 2b , -3c 三项的
和,它是一个三项式 。
2、 m2
14 n 3 7
5 6
mn
n
是
m2
n 14 n3,7 , Nhomakorabea5 6
mn
,与
的和,它是
一个 四项 式。
3、-X-Y 是 -X 与 -Y 的和,
它是一个二项 式。
-1
3 14
代数式
项数
x+5.1y 2
x2 1 x3 1 x
合并同类项(基础训练)(解析版) (2)

3.4 合并同类项【基础训练】一、单选题1.计算:23322a b b a -+=( )A .0B .23a bC .322a b -D .232a b2.若23m x y 或2n xy -是同类项,那么m n -=( )A .0B .1C .1-D .2-3.下面合并同类项正确的是( )A .23325x x x +=B .2221a b a b -=C .220xy xy -+=D .0ab ab --= 4.单项式2x a b 与3y a b -是同类项,则x y -等于( )A .2B .1C .2-D .1-5.下列各组中,是同类项的是( )A .2a 和2bB .23和32C .23m n 和2mn -D .xyz 和4yz 6.下列计算结果正确的是( )A .325x y xy +=B .22523x x -=C .222a a a +=D .22243x y x y x y -= 7.若523m x y +与382n x y 的差是一个单项式,则代数式n m -的值为( )A .-8B .9C .-9D .-68.下列各式与23a b 是同类项的是( )A .23x yB .2a b -C .25a bcD .2ab9.下列计算正确的是( ).A .5x -3x =2xB .2243y y -=C .23x y xy +=D .235325x x x += 10.下列各式中,与3x y 是同类项的是( )A .2xy -B .32x y -C .3xy -D .22x y -11.若23x y -与m x y 是同类项,则m 的值为( )A .3-B .1C .2D .312.下列各组单项式中,是同类项的是( ).A .a 3和23B .-ab 和3abcC .6x 2y 和4yx 2D .3m 3n 2和8m 2n 313.下列计算正确的是( )A .422b b -=B .22385a a a -=-C .22223m n nm m n -=-D .33a b ab +=14.下列单项式中,与2ab 是同类项的是( )A .214ab - B .22a b C .22a bD .3ab 15.下列运算正确的是( )A .2325a a a +=B .333a b ab+= C .2222a bc a bc a bc -= D .523a a a -=16.下列计算正确的是( )A .220ab ba -=B .220a b ab -=C .325a a a +=D .235a b ab+= 17.若单项式2m a b 与312n a b 的和仍是单项式,则m n 的值是() A .9 B .8 C .6D .3 18.下列各式运算正确的是( )A .235a b ab +=B .2m m m -=C .222223m n m n +=D .1455mn nm mn -+=-19.下列各组式子中,是同类项的是( )A .23x y 与23xy -B .3x 与2yC .3xy 与2yx -D .3xy 与3yz20.下列计算正确的是( )A .a 2+2a 2=3a 4B .a 2﹣b 2=0C .5a 2﹣a 2=4a 2D .2a 2﹣a 2=2 21.下列各组中,不是同类项的是( )A .312a y 与323ya B .232abx 与353bax C .26a mb 与2a bm -D .313x y 与313xy 22.下列说法正确的是( )A .22a b 和212a b -是同类项B .22x -的系数是2C .单项式2x y 的次数是2D .213x π的系数是13 23.下列计算正确的是( )A .235x y xy +=B .32ab ab ab -=C .23a a a +=D .325a a a -+=- 24.单项式12b xy +-与7313a x y -是同类项,则下列单项式与它们属于同类项的是( ) A .35x y -B .33xyC .333x yD .xy 25.如果单项式2312a x y +-与1b y x -是同类项,那么a b ,的值分别为( ) A .2a =,4b =B .1a =-,2b =C .1a =-,4b =D .2a =-,2b = 26.下列式子正确的是( )A .332286xy y x -=-B .32523a b ab a -=C .2242a a a +=D .2221433xy y x xy --=- 27.下列运算正确的是( )A .22223x x x -=-B .220x y xy -=C .2235a a a +=D .532m m -= 28.下列运算正确的是( )A .2235m m m +=B .2332330x y y x -=C .624x x -=D .325x y xy += 29.下列运算结果正确的是( )A .437x y xy +=B .642xy xy xy -=C .22235x x +=D .2254x x -= 30.如果单项式312m x y +-与432n x y +的差是单项式,那么()2021m n +的值为( )A .1-B .0C .1D .20212二、填空题 31.若单项式2n x y -与53m x y 合并后得结果还是单项式,则m n -=_______.32.若2254m n x y x y x y -+=-,则m n +=__________.33.已知代数式x ﹣2y 的值是3,则代数式y +2x +1﹣5y 的值是_____.34.如果m 13a b +与4n 73a b +-是同类项,那么m n +的值为______.35.若123m x y +与3n x y 是同类项,则m n += ______ .36.如果单项式13a x y +-与212b y x 是同类项,则2a b a b -+--的值是____________. 三、解答题37.(1)计算:20191(1)(2 1.25)[4(8)]3---⨯⨯--. (2)化简:()22323(2)x xy x y xy y --+-+.38.已知单项式21925x m n -和5325y m n 是同类项,求代数式152x y -的值. 39.合并同类项:(1)222p p p ---(2)4523x y y x -+-(3)23233542x x x x x ---++(4)224()2()5()3()a b a b a b a b ---+-+-40.已知单项式23m a bc 和322n a b c -是同类项,且q 是最大的负整数.求代数式m +n -q 的值. 41.(1)若3x 3y m 与﹣2x n y 2是同类项,求m n 的值;(2)若﹣x a y 4与4x 4y 4b 的和单项式,求(﹣1)a b 2012的值.42.如果关于x 、y 的单项式2mx 3y 与﹣5nx 2a ﹣3y 的和仍是单项式.(1)求(7a ﹣22)2015的值.(2)若2mx 3y ﹣5nx 2a ﹣3y =0,且xy≠0,求(2m ﹣5n )2014的值.43.已知单项式3m x y 与25n x y -是同类项,求m n +的值.44.合并同类项(1)22732a a a a ++-(2)()223251x x x -+- 45.合并同类项:⑴223243;a a a a -+-+ ⑴223b 472;a ab ab ab --+-46.合并同类项:(1)225682a a a a ---(2)()323222323x y xy x y xy x y --+- 47.有理数,,a b c 在数轴上的位置如图所示:(1)用>或<填空:b c -_______0,+a b _______0,c a -______0.(2)化简:||||||||a b a c b c a +-++--.48.已知多项式22332255+--x xy xy x y 的次数是a ,单项式32b x y -与单项式13c x y 是同类项. (1)将多项式22332255+--x xy xy x y 按y 的降幂排列. (2)求代数式24-c ab 的值.49.有理数a b c ,,在数轴上的位置如图所示:化简:11a b b a c c +------50.化简:(1)22223322x y xy xy x y -+-+(2)22225643a a a a a -+++-51.计算下列各题:(1) (-15)+(+7)-(-3)(2) 4x -5-3(x -2)52.合并同类项(1)4573m n n m +--;(2)()()2222322a b a b --+.53.计算:()()225214382a a a a +-+-+ 54.有理数a 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:2a -________0,4a -________0.(2)化简:|2||4|a a -+-.55.先合并同类项,再求值.(1)222243245x y xy x y ++--,其中2x =,1y =-.(2)22289726x x x x -+-+-,其中1x =-.56.已知-x m -2n y m +n 与-3x 5y 6的和是单项式,求22(2)5()2(2)()m n m n m n m n --+--++的值. 57.(1)要使多项式222233x mx x --+合并同类项后不再出现含x 2的项.求m 的值.(2)已知a ,b 为常数,且24xy 、b axy 、5xy -三个单项式相加得到的和仍是单项式,求a ,b 的值. 58.张老师给学生出了一道题:当20192020a b ==-,时,求: 3323323(763)(363103)a a b a b a a b a b a -+---++-的值.题目出完后,小明说:“老师给的条件20192020a b ==-,是多余的.”小红说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?59.计算下列各题:(1)4592358 -+-. (2)()137********⎛⎫--+⨯- ⎪⎝⎭(3)()2019424631 +÷----.(4)化简:22323ab a ab a ---.60.计算:(1)()2109251311314721422⎛⎫⎛⎫-+-÷-+⨯--- ⎪ ⎪⎝⎭⎝⎭(2)()21012005668213201920.12533π---⎛⎫⎛⎫⨯+-÷-⨯ ⎪ ⎪⎝⎭⎝⎭ (3)()24341023a a a a a a --⋅⋅-÷ 61.计算与合并同类项:(1)+4.7+(﹣4)﹣2.7﹣(﹣3.5)(2)11÷(﹣22)﹣3×(﹣11)(3)16+(﹣2)3+|﹣7|+(18-)×(﹣4) (4)0.25×(﹣2)2﹣[﹣4÷(23-)2+1]÷(﹣1)2020 (5)5x 4+3x 2y ﹣10﹣3x 2y+x 4﹣1(6)(7y ﹣3z)﹣(8y ﹣5z)(7)2(2a 2+9b)+3(﹣5a 2﹣6b)(8)﹣3(2x 2﹣xy)﹣4(x 2﹣xy ﹣6)62.直接写出下列各题结果()()-5-7+= , 7--7= , 3x x -= ,()-6-4= , 2-23⎛⎫÷= ⎪⎝⎭22-42a a += , ()1--63⎛⎫⨯= ⎪⎝⎭, 0-1-3= , 22-m m -= , ()3-26+= , ()351-1-2⎛⎫⨯= ⎪⎝⎭ 2234-77x x -= ,。
合并同类项、加(去)括号、准确数

合并同类项、加(去)括号、准确数知识点一:合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
要点诠释:1、合并同类项的法则是:同类项的系数相加,所得的结果作为合并后所得项的系数,字母和字母的指数不变。
比如:在多项式中遇到同类项,可以运用交换律、分配律合并,如===2、合并同类项的一般步骤:(1)先判断谁与谁是同类项;注:所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则合并。
(2)利用法则合并同类项;注:①合并同类项时,系数相加,字母部分不变,不能把字母的指数也相加,如 2a+5a≠7a2。
②如果两个同类项的系数互为相反数,合并同类项后,结果为0。
③合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,不能合并的项,在每一步运算中不要漏掉。
(3)写出合并后的结果。
注:合并同类项时,只要多项式中不再有同类项,就是最后的结果,结果可能是单项式,也可能是多项式。
知识点二:去括号与添括号去括号法则:括号前是“﹢”号,把括号和它前面的“﹢”号去掉,括号里的各项都不变符号;括号前是“﹣”号,把括号和它前面的“﹣”号去掉,括号里的各项都改变符号。
要点诠释:1、括号前面有数字因数时,应利用乘法分配律,先将该数与括号内的各项分别相乘,再去掉括号,以避免发生符号错误。
2、在去掉括号时,括号内的各项或者都要改变符号,或者都不改变符号,而不能只改变某些项的符号。
3、一定要注意括号前面的符号,它是去掉括号后,括号内各项是否变号的依据。
如括号前面是“-”号,去括号时常忘记改变括号内每一项的符号,出现错误,或括号前有数字因数,去括号时没把数字因数与括号内的每一项相乘,出现漏乘的现象,只有严格按照去括号法则,才能避免出错。
添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.要点诠释:1、添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原来多项式的某一项的符号“移”出来的。
《合并同类项》 教案精品 2022年数学

2.2 整式的加减第1课时 合并同类项1.使学生理解多项式中同类项的概念,会识别同类项;(重点)2.使学生掌握合并同类项法那么,能进行同类项的合并.(重点,难点)一、情境导入周末,你和爸爸妈妈要外出游玩,中午决定在外面用餐,爸爸、妈妈和你各自选了要吃的东西,爸爸选了一个汉堡和一杯可乐,妈妈选了一个汉堡和一个冰淇淋,你选了一对蛋挞和一杯可乐,买的时候你该怎么向效劳员点餐?生活中处处有数学的存在.可以把具有相同特征的事物归为一类,在多项式中也可以把具有相同特征的单项式归为一类.自主探索:把以下单项式归归类,并说说你的分类依据.-7ab 、2x 、3、4ab 2、6ab . 二、合作探究 探究点一:同类项【类型一】 同类项的识别指出以下各题的两项是不是同类项,如果不是,请说明理由.(1)-x 2y 与12x 2y ;(2)23与-34;(3)2a 3b 2与3a 2b 3; (4)13xyz 与3xy . 解析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,对各式进行判断即可.解:(1)是同类项,因为-x 2y 与12x 2y 都含有x 和y ,且x 的指数都是2,y 的指数都是1;(2)是同类项,因为23与-34都不含字母,为常数项.常数项都是同类项;(3)不是同类项,因为2a 3b 2与3a 2b 3中,a 的指数分别是3和2,b 的指数分别为2和3,所以不是同类项;(4)不是同类项,因为13xyz 与3xy 中所含字母不同,13xyz 含有字母x 、y 、z ,而3xy 中含有字母x 、y .所以不是同类项.方法总结:(1)判断几个单项式是否是同类项的条件:所含字母相同;相同字母的指数分别相同.(2)同类项与系数无关,与字母的排列顺序无关.(3)常数项都是同类项.【类型二】 两个单项式是同类项,求字母指数的值假设-5x 2y m 与x ny 是同类项,那么m +n 的值为( ) A .1 B .2 C .3 D .4 解析:∵-5x 2y m和x ny 是同类项,∴n =2,m =1,m +n =1+2=3, 应选C.方法总结:注意掌握同类项定义中的两个“相同〞:(1)所含字母相同;(2)相同字母的指数相同,解题时易混淆,因此成了中考的常考点.探究点二:合并同类项将以下各式合并同类项. (1)-x -x -x ;(2)2x 2y -3x 2y +5x 2y ;(3)2a 2-3ab +4b 2-5ab -6b 2;(4)-ab 3+2a 3b +3ab 3-4a 3b .解析:逆用乘法的分配律,再根据合并同类项的法那么“把同类项的系数相加,所得结果作为系数,字母和字母的指数不变〞进行计算.解:(1)-x -x -x =(-1-1-1)x =-3x ;(2)2x 2y -3x 2y +5x 2y =(2-3+5)x 2y =4x 2y ;(3)2a 2-3ab +4b 2-5ab -6b 2=2a 2+(4-6)b 2+(-3-5)ab =2a 2-2b 2-8ab ;(4)-ab 3+2a 3b +3ab 3-4a 3b =(-1+3)ab 3+(2-4)a 3b =2ab 3-2a 3b .方法总结:合并同类项的时候,为了不漏项,可用不同的符号(如直线、曲线、圆圈)标记不同的同类项.探究点三:化简求值化简求值:2a 2b -2ab +3-3a 2b +4ab ,其中a =-2,b =12.解析:原式合并同类项得到最简结果,把a 与b 的值代入计算即可求出值.解:2a 2b -2ab +3-3a 2b +4ab =(2-3)a 2b +(-2+4)ab +3=-a 2b +2ab +3.将a =-2,b =12代入得原式=-(-2)2×12+2×(-2)×12+3=-1.方法总结:对多项式化简求值时,一般先化简,即先合并同类项,再代入值计算结果,在算式中代入负数时,要注意添加负号.探究点四:合并同类项的应用有一批货物,甲可以3天运完,乙可以6天运完,假设共有x 吨货物,甲乙合作运输一天后还有________吨没有运完.解析:甲每天运货物的13,乙每天运货物的16,那么两个人合作运输一天后剩余的货物为x -13x -16x =12x 吨,故填12x .方法总结:表达了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.三、板书设计1.同类项:所含字母相同,并且相同的字母指数也分别相同. 判断同类项的条件:两相同,两无关2.合并同类项法那么:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母局部不变.数学教学要紧密联系学生的生活实际,本节课从学生已有的知识和经验出发,从实际问题入手,引出合并同类项的概念.通过独立思考、讨论交流等方式归纳出合并同类项的法那么,通过例题教学、练习等方式稳固相关知识.教学中应激发学生主动参与的学习动机,培养学生思维的灵活性.第3课时 多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数; 3.能正确区分单项式和多项式.(重点)一、情境导入 列代数式:(1)长方形的长与宽分别为a 、b ,那么长方形的周长是________; (2)图中阴影局部的面积为________;(3)某班有男生x 人,女生21人,那么这个班的学生一共有________人. 观察我们所列出的代数式,是我们所学过的单项式吗?假设不是,它又是什么代数式? 二、合作探究探究点一:多项式的相关概念【类型一】 单项式、多项式与整式的识别指出以下各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断. 解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有:-x ,10,17m 2n ,a 7;多项式有:x 2+y 2,a +b3,6xy +1,2x 2-x -5;整式有:x 2+y 2,-x ,a +b3,10,6xy +1,17m 2n ,2x 2-x -5,a 7. 方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项数和次数写出以下各多项式的项数和次数,并指出是几次几项式. (1)23x 2-3x +5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式;(2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.【类型三】 根据多项式的概念求字母的取值-5x m +104x m -4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式. 解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m+2=6,解得m=4,此多项式是-5x4+104x4-4x4y2.方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】与多项式有关的探究性问题假设关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.解析:多项式不含二次项和一次项,那么二次项和一次项系数为0.解:∵关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,∴m=0,n-1=0,那么m=0,n=1.方法总结:多项式不含哪一项,那么哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影局部面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言表达中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。
3.4 合并同类项(含答案)-

3.4 合并同类项(一)◆基础训练一、选择题1.下列各组中的两项,不是同类项的是().A.a2b与-3ab2B.-x2y与2yx2C.2πr与π2r D.35与53 2.已知34x2与3n x n是同类项,则n等于().A.4 B.3 C.2或4 D.23.代数式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值().A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关二、填空题4.若-3x m-1y4与13x2y n+2是同类项,则m=_______,n=______.5.若│a-2b│+(b-3c)2=0,那么a+b-9c的值是________.三、解答题6.合并下列各式中的同类项(1)15x+4x-10x;(2)-8ab+ba+9ab;(3)-p2-p2-p2;(4)3x2y-5xy2+2x3-7x2y+6-4x3-xy2+10;(5)-4a4-8a3+6a+1-7a+2+6a3+4a4.7.合并下列同类项,并求各式的值.(1)3c2-8c+2c3-13c2+2c-2c3+3,其中c=-4;(2)3y4-6x3y-4y4+2yx3,其中x=-2,y=3.◆能力提高一、填空题8.已知2a x b n-1与3a2b2m(m为正整数)是同类项,那么(2m-n)=_______.9.当k=________时,代数式x6-5kx4y3-4x6+15x4y3+10中不含x4y3项.二、解答题10.已知-2a2b y+1与3a x b3是同类项,试求代数式2x3-3xy+6y2的值.11.如果-4x a y a+1与mx5y b-1的和是3x5y n,求(m-n)(2a-b)的值.◆拓展训练12.已知xy+y2=3,x2+xy=-12,求2x2+3xy+y2的值.答案:1.A 2.D 3.D 4.3,2 5.06.(1)9x,(2)2ab,(3)-3p2,(4)-2x3-4x2y-6xy2+16,(5)-2a3-a+3 7.(1)-10c2-6c+3,-133,(2)-y4-4x3y,158.1 9.1 2510.28 11.a=5,b=7,m=7,n=6,值为3 12.23.4 合并同类项(二)◆基础训练一、选择题1.已知代数式ax+bx合并后的结果是零,则下列结论正确的是().A.a=b=0 B.a=b=x=0 C.a+b=0 D.a-b=0 2.下列计算正确的是().A.3a-2a=1 B.-m-m=-m2C.7x2y2-7x2y3=0 D.2x2+2x2=4x2 3.当a=-1时,代数式-5a n-a n+8a n-3a n-a n+1(n为正整数)的值为().A.a-2 B.-a或0 C.0 D.1或-1 二、填空题4.合并13a-14a-15a=________.5.一个三角形的第一边长是3a+2b(3a+2b>2),第二边长比第一边长大b-1(b>1),第三边长比第二边长大2,则该三角形的周长为_________.三、解答题6.若│x+2│+(y-12)2=0,求代数式13x3-2x2y+23x3+3x2y+5xy2+7-5xy2的值.7.观察下列代数式:-x,2x2,-3x3,4x4,-5x5,…,-19x19,20x20,…,你能写出第n个代数式吗?并写出第2007个代数式.8.当a=-34,b=12时,求2(2a+b)2-3(2a+b)-8(2a+b)2+6(2a+b)的值.◆能力提高一、填空题9.把a+b当作一个因式,合并代数式2(a+b)2+(a+b)+3(a-b)2-4(a+b)中的同类项得________.10.已知2x2+xy=10,3y2+2xy=6,则4x2+8xy+9y2的值为_________.二、解答题11.如果单项式2ax m y与单项式5bx2m-3y是关于x,y的单项式,并且它们是同类项.(1)求m的值;(2)若2ax m y+5bx2m-3y=0,且xy≠0,求(2a+5b)1999+2m的值.12.初一(1)班与初一(2)班师生外出旅游,(1)班有教师6名,学生32名,(2)•班有教师4名,学生25名.教师的旅游费用为每人m元,学生的学生为每人n元,•因是团体给予优惠,教师按8折优惠,学生按6折优惠,•问此次旅游师生共花费多少钱?•计算当m=40元,n=30元时的总费用.◆拓展训练13.有这样一道题,“当x=1213,y=-0.78时,求代数式7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3的值”.有一位同学指出,题目中给出的条件x=1213,y=-0.78是多余的,•他的说法有道理吗?答案:1.C 2.D 3.C 4.-760a 5.9a+8b6.x=-2,y=12,原式=x3+x2y+7=17.(-1)n nx n或n为奇数时,-nx n,n为偶数时,nx n,第2007个代数式为-2007x2007.8.原式=-6(2a+b)2+3(2a+b)=-99.5(a+b)2-3(a+b)10.3811.(1)3,(2)0 12.8m+34.2n,1346元13.有道理,因为原式化简后为0.。
七上计算:合并同类项50题(含答案)

合并同类项50题(一)1.5279a b a b --++ 2.223462x y y x -++.3.22753268x x x x --+-+4.12523a b a b ++-.5.22221350.7544ab a b a b ab --+6.322383649a a b a b a -+-7.223254xy y xy y --+-8.22676598a a a a +----9.222243224a b ab a b ab ++-+-.10.2223465x x x x -+--11.22223x xy x xy --+ 12.2267946a b a b +-+-+13.722a b a b +--. 14.222233224y x xy x y +---.15.2222324332x xy y xy y x +--+-16.22224335ab a b ab a b -+-17.22223567x y xy xy x y -+-18.2274233a a a a +-++19.3245a a --+.20.3233354229x x x x x x -+--+++-21.22222317326mn n m mn n m --+ 22.2332572x y x x x y -+--+23.2213(24)2(5)2x x x x ---+-+-. 24.2212(2)(612)102x y x y ---+.25.2(53)3(3)a a b a b +---26.23(2)m n --27.13(2)2(4)20092x y x y ---++.28.()(43)(53)a b a b c a b c --+---+-.29.222294(23)4m m mn n n --++.30.222212()(3)2x y x x x y +--.31.22225(3)(3)a b ab ab a b --+ 32.221[7(43)3]2x x x x ----33.22(24)(51)a a a a -+--- 34.22(4)8m mn n n ---.35.2242(231)a b ab a b ab +-+-36.116(1)(21)23x x +--37.[5(2)2]x y x z y --+-38.224(32)(21)x x x x +-+--.39.3(34)x -+40.22(212)(1)a a a a -+--+41.43[3(42)8]x x x ---+ 42.223(2)2(3)a b b a b b +--43.2()2()a a b a b ++-+ 44.22222(3)(5)1a b ab ab a b --++45.32234(3)(25)a b b a --+-+46.3(1)(5)x x ---47.22213(54)62a a a a a -+-+48.22(621)2(342)a a a a +---+49.223(2)2(3)a ab ab b ---+50.已知23A x =-,21312B x x =--,求2A B -的值.合并同类项50题(一)参考答案与试题解析1.计算:5279a b a b --++【解答】解:5279a b a b --++(57)(29)a a b b =-++-+27a b =+.2.化简:223462x y y x -++.【解答】解:原式223462x y y x =-++22(32)(46)x x y y =++-+252x y =+.3.22753268x x x x --+-+【解答】解:原式235x x =-+.4.12523a b a b ++-. 【解答】解:原式12(5)()23a ab b =++- 11123a b =+. 5.22221350.7544ab a b a b ab --+ 【解答】解:原式222213(0.75)(5)44ab ab a b a b =+-+ 22234ab a b =- 6.322383649a ab a b a -+- 【解答】解:322383649a ab a b a -+- 33228(3)(64)9a a ab a b =-+-+ 321929a ab =-. 7.化简:223254xy y xy y --+-【解答】解:223254xy y xy y --+-22(35)(24)xy xy y y =-+-+226xy y =-.8.化简:22676598a a a a +----【解答】解:原式22(65)(79)(68)a a a a =-+--+2214a a =-+-.9.合并同类项:222243224a b ab a b ab ++-+-.【解答】解:222243224a b ab a b ab ++-+-2222(42)(34)(2)a a b b ab ab =-+++-2227a b ab =++.10.合并同类项:2223465x x x x -+--【解答】解:原式22(24)(36)5x x x x =++---2695x x =--.11.化简:22223x xy x xy --+【解答】解:原式22223x x xy xy =--+22(2)(23)x x xy xy =-+-+2x xy =-+.12.2267946a b a b +-+-+【解答】解:原式22(64)(7)(96)a a b b =++-+-+21063a b =+-.13.化简:722a b a b +--.【解答】解:722a b a b +--(72)(12)a b =-+-5a b =-.14.合并同类项:222233224y x xy x y +---.【解答】解:原式22(32)2(34)x xy y =--+-222x xy y =--15.2222324332x xy y xy y x +--+-【解答】解:原式2222(32)(23)(43)x xy y x xy y =-+-+-+=--. 16.22224335ab a b ab a b -+-【解答】解:原式22224335ab ab a b a b =+--2278ab a b =-.17.化简:22223567x y xy xy x y -+-【解答】解:原式2222(37)(65)4x y xy x y xy =-+-=-+.18.2274233a a a a +-++【解答】解:原式22(72)(43)3a a a a =-+++2573a a =++.19.计算;3245a a --+.【解答】解:3245a a --+(34)(25)a a =-+-+3a =-+.20.3233354229x x x x x x -+--+++-【解答】解:3233354229x x x x x x -+--+++-3332(32)5(2)(49)x x x x x x =-++++-+--2513x x =+-.21.22222317326mn n m mn n m --+ 【解答】解:原式22317(1)326mn =--+ 283mn =-. 22.2332572x y x x x y -+--+【解答】解:233223572322x y x x x y x y x -+--+=--.23.去括号,合并同类项:2213(24)2(5)2x x x x ---+-+-.【解答】解:原式2223612210151611x x x x x x =-++-+-=-++.24.先去括号,再合并同类项:2212(2)(612)102x y x y ---+. 【解答】解:2212(2)(612)102x y x y ---+ 22243610x y x y =--++2210x y =-++.25.去括号,合并同类项:2(53)3(3)a a b a b +---【解答】解:2(53)3(3)a a b a b +---10639a a b a b =+--+83a b =+.26.化简:23(2)m n --【解答】解:原式236m n =-+.27.去括号,并合并同类项:13(2)2(4)20092x y x y ---++. 【解答】解:13(2)2(4)2009638200914220092x y x y x y x y x y ---++=-+--+=-++. 28.去括号,合并同类项:()(43)(53)a b a b c a b c --+---+-.【解答】解:原式435325a b a b c a b c a b =-++----+=--.29.计算:222294(23)4m m mn n n --++.【解答】解:原式2222981244m m mn n n =-+-+212m mn =+.30.化简:222212()(3)2x y x x x y +--. 【解答】解:原式222223x y x x x y =+-+2232x y x =-.31.化简:22225(3)(3)a b ab ab a b --+【解答】解:原式22221553a b ab ab a b =---22126a b ab =-.32.计算:221[7(43)3]2x x x x ----【解答】解:原式2217(43)32x x x x =-+-+ 22174332x x x x =-+-+ 27332x x =--. 33.计算:22(24)(51)a a a a -+---【解答】解:原式222451a a a a =-+-++, 2653a a =-++.34.化简:22(4)8m mn n n ---.【解答】解:原式2288m mn n n =-+- 22m mn =-.35.计算:2242(231)a b ab a b ab +-+-.【解答】解:原式224462a b ab a b ab =+--+ 52ab =-+.36.116(1)(21)23x x +-- 【解答】解:原式213633x x =+-+ 71933x =+. 37.[5(2)2]x y x z y --+-【解答】解:原式(1052)x y x z y =----, 1052x y x z y =-+++,115x y z =++.38.化简:224(32)(21)x x x x +-+--.【解答】解:原式2243221x x x x =+-+-+, 2224231x x x x =-+-++,224x x =-++.39.3(34)x -+【解答】解:3(34)912x x -+=--.40.化简:22(212)(1)a a a a -+--+【解答】解:原式222121a a a a =-+-+- 2a a =+.41.43[3(42)8]x x x ---+【解答】解:原式439(42)24x x x =-+-- 43361824x x x =-+--1712x =-+.42.化简:223(2)2(3)a b b a b b +--【解答】解:原式223626a b b a b b =+-+ 212a b b =+.43.化简:2()2()a a b a b ++-+【解答】解:原式222a a b a b =++-- a b =-.44.22222(3)(5)1a b ab ab a b --++【解答】解:原式22226251a b ab ab a b =---+ 22571a b ab =-+45.化简:32234(3)(25)a b b a --+-+【解答】解:原式322341225a b b a =-+-+ 3210a b =+.46.化简:3(1)(5)x x ---【解答】解:原式335x x =--+22x =+.47.计算:22213(54)62a a a a a -+-+ 【解答】解:原式222135462a a a a a =---+ 21112a a =--. 48.化简:22(621)2(342)a a a a +---+【解答】解:原式22621684a a a a =+--+- 22107a a =+-.49.化简:223(2)2(3)a ab ab b ---+【解答】解:原式22(36)(62)a ab ab b =---+ 223662a ab ab b =-+-2232a b =-.50.已知23A x =-,21312B x x =--,求2A B -的值. 【解答】解:221232(31)2A B x x x -=---- 61x =-.。
人教版七年级数学上册同步备课 2.2.1 合并同类项(教学设计)

2.2.1 合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.2.1 合并同类项,内容包括:同类项的概念、合并同类项的法则、在合并同类项的基础上进行化简、求值运算.2.内容解析本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题.合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础.另一方面,这节课与前面所学的知识的联系非常密切:合并同类项的法则是建立在有理数的加减运算的基础之上;在合并同类项过程中,要不断运用有理数的运算.可以说合并同类项是有理数加减运算的延伸与拓展.基于以上分析,确定本节课的教学重点为:知道同类项的概念,会识别同类项,理解和熟练应用合并同类项法则.二、目标和目标解析1.目标(1)知道同类项的概念,会识别同类项.(2)掌握合并同类项的法则,并能准确合并同类项.(3)能在合并同类项的基础上进行化简、求值运算.2.目标解析通过观察、对比、分析,理解同类项的定义,能够识别同类项.根据分配律,类比数的计算进行式的计算,从而理解合并同类项的概念,掌握合并同类项的法则.通过例题学习和习题训练,会利用合并同类项的法则化简多项式,会代入具体的值进行计算.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.激发学生的求知欲,在独立思考和合作交流的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益,体验成功的喜悦.三、教学问题诊断分析学生前面已经学会了有理数运算,掌握了单项式、多项式的有关概念等知识,为本节课的学习做好了铺垫.七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇.但我所教班级学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,也有强烈的好奇心和好胜心,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容.学生在找同类项中问题不大,这部分的内容学生自己可以消化,而在合并同类项时对同类项中利用乘法交换律时容易出错,还有在多项式中找同类项时易将单项式的系数找错,特别是系数是负数的,学生容易遗漏,老师要在课堂上加以讲解.基于以上学情分析,确定本节课的教学难点为:能在合并同类项的基础上进行化简、求值运算.四、教学过程设计(一)问题引入1.银行职员数钞票时,把100元票面、50元票面、20元票面、10元票面…的人民币分类来数,在多项式中是否也有类似的情形呢?2.下图中有两个三角形,两个矩形,你能用式子表示这四个图形的面积和吗?四个图形面积和:2a+ab+3a+2ab=___________.(二)合作探究探究一:(1) 运用运算律计算:100×2+252×2=______________;100×(﹣2)+252×(﹣2)=________________;(2) 根据(1)中的方法完成下面的运算,并说明其中的道理:100t+252t=____________.在(1)中,我们知道,根据分配律可得100×2+252×2=(100+252)×2=352×2=704100×(﹣2)+252×(﹣2)=(100+252)×(﹣2)=352×(﹣2)=﹣704在(2)中,式子100t+252t表示100t与252t两项的和.它与(1)中的两个式子有相同的结构,并且字母t代表的是一个因(乘)数,因此根据分配律也应该有100t +252t=(100+252)t=352t.探究二:填空:(1)100t -252t=( )t ;(2)3x 2+2x 2=( )x 2;(3)3ab 2-4ab 2=( )ab 2.上述运算有什么共同特点,你能从中得出什么规律吗?对于上面的(1)(2)(3),利用分配律可得100t -252t=(100-252)t=﹣152t3x 2+2x 2=(3+2)x 2=5x 23ab 2-4ab 2=(3-4)ab 2=﹣ab 2观察:多项式100t -252t 的项100t 和﹣252t ,它们含有相同的字母t ,并且t 的指数都是1;多项式3x 2+2x 2的项3x 2和2x 2,它们含有相同的字母x ,并且x 的指数都是2;多项式3ab 2-4ab 2的项3ab 2和﹣4ab 2,它们含有相同的字母a 、b ,并且a 的指数都是1次,b 的指数都是2次.【归纳】同类项的概念像100t 与﹣252t ,3x 2与2x 2,3ab 2与﹣4ab 2这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项. 几个常数项也是同类项. 例如5与﹣3.(三)考点解析例1.下列各组式子中,是同类项的是( )①2x 3y 5与x 5y 3;①x 6y 7z 与﹣3x 6y 7;①6xy 与53xy ;①x 4与34;①4x 2y 与3yx 2;①﹣100与15A.①①①B.①①①①C.①①①D.只有①【总结提升】同类项的判别方法(1)同类项只与字母及其指数有关,与系数无关,与字母在单项式中的排列顺序无关;(2)抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指数要相同,这两个条件缺一不可.(3)不要忘记几个单独的数也是同类项.【迁移应用】1.下列单项式中,ab 3的同类项是( )A.a 3b 2B.3a 2b 3C.a 2bD.ab 32.下列各选项中,不是同类项的是( )A.3a 2b 和﹣5ba 2B.12x 2y 和12xy 2C.6和23D.5x n 和﹣3x n 43.在多项式x 3﹣x+4﹣6x 3﹣5+7x 的每一项中,_____与x 3,____与﹣x ,____与4分别是同类项.(四)自学导航因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,4x 2+2x +7+3x -8x 2-2=4x 2-8x 2+2x +3x +7-2 (交换律)=(4x 2-8x 2)+(2x +3x)+(7-2) (结合律)=(4-8)x 2+(2+3)x +(7-2) (分配律)=-4x 2+5x +5通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x +5也可以写成5+5x -4x 2.(五)考点解析例2.多项式3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列正确的是( )A .3x 2y +4x 5y 2+2+xy 3B .−4x 5y 2+3x 2y −xy 3+2C .4x 5y 2+3x 2y −xy 3+2D .2-xy 3+3x 2y -4x 5y 2【分析】把一个多项式按照某一字母的指数从大到小的顺序排列起来,叫做把多项式按照这个字母降幂排列.解:3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列为−4x 5y 2+3x 2y −xy 3+2【迁移应用】1.代数式3m 2n −4m 3n 2+2mn 3−1按m 的降幂排列,正确的是( )A .−4m 3n 2+3m 2n +2mn 3−1B .2mn 3+3m 2n −4m 3n 2−1C .−1+3m 2n −4m 3n 2+2mn 3D .−1+2mn 3+3m 2n −4m 3n 22.多项式5x2y+y3−3xy2−x3按y的降幂排列是()A.5x2y−3xy2+y3−x3B.y3−3xy2+5x2y−x3C.5x2y−x3−3xy2+y3D.y3−x3+5x2y−3xy2(六)自学导航1.把多项式中的同类项合并成一项叫做合并同类项.2.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(七)考点解析例3.合并同类项:(1)4a2﹣9b﹣3a2+8b;(2)x3﹣3x2﹣2+4x2﹣1;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4.解:(1)4a2﹣9b﹣3a2+8b=(4a2﹣3a2)+(﹣9b+8b) =(4﹣3)a2+(﹣9+8)b=a2﹣b;(2)x3﹣3x2﹣2+4x2﹣1=x3+(﹣3x2+4x2)+(﹣2﹣1)=x3+(﹣3+4)x2+(﹣2﹣1)=x3+x2﹣3;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4=(﹣4a2b﹣2a2b)+(﹣3ab+3ab)+(1﹣4)=(﹣4﹣2)a2b+(﹣3+3)ab+(1﹣4)=﹣6a2b﹣3.【总结提升】“合并同类项”的方法:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可.【迁移应用】1.﹣4a2b+3ab=(﹣4+3)a2b=﹣a2b,上述运算依据的运算律是( )A.加法交换律B.乘法交换律C.分配律D.乘法结合律2.下列计算正确的是( )A.3x2﹣x2=3B.a+b=abC.3+x=3xD.﹣ab+ab=03.合并同类项:(1)﹣2x2y﹣3x2y+5x2y; (2)3x2+2xy﹣5x﹣3y2﹣6xy.解:(1)原式=(﹣2﹣3+5)x2y=0;(2)原式=(3﹣5)x2+(2﹣6)xy﹣3y2=﹣2x2﹣4xy﹣3y2.例4.求多项式3x2+4x﹣2x2﹣x+x2﹣3x﹣1的值,其中x=﹣3.解:原式=(3x2﹣2x2+x2)+(4x﹣x﹣3x)﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1当x=﹣3时,原式=2×(﹣3)2﹣1=17.【迁移应用】1.当x=2025时,3x2+x﹣4x2﹣2x+x2+2024的值为______.2.求多项式a2b﹣6ab﹣3a2b+5ab+2a2b的值,其中a=0.1,b=0.01.解:原式=(a2b﹣3a2b+2a2b)+(﹣6ab+5ab)=(1﹣3+2)a2b+(﹣6+5)ab=﹣ab当a=0.1,b=0.01时,原式=﹣0.1×0.01=﹣0.001.例5.七年级有三个班参加了植树活动,其中一班植树x棵,二班植树棵数比一班的2倍少5,三班植树棵数比一班的一半多10.这三个班一共植树多少棵?x+10)棵,解:根据题意,得二班植树(2x﹣5)棵,三班植树(12所以这三个班一共植树(单位:棵)x+10x+2x﹣5+12)x+(﹣5+10)=(1+2+12=7x+5.2【迁移应用】张老师家住房结构如图所示(图中长度单位:m),他打算在卧室和客厅铺上木地板.请你帮他算一算,他至少需要木地板_____m 2.例6.已知4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式,求5m+3n ﹣p 的值. 解:因为4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式, 所以4a 4b m c 与﹣72b 2a n+3c p ﹣2是同类项所以4=n+3,m=2,1=p ﹣2,所以m=2,n=1,p=3.当m=2,n=l ,p=3时,5m+3n ﹣p=5×2+3×1﹣3=10.【迁移应用】1.若多项式5a 3b m +a n b 2+1可以进一步合并同类项,则m ,n 的值分别是( )A.m=3,n=1B.m=3,n=2C.m=2,n=1D.m=2,n=32.若13x 3y m+2与12x 1﹣n y 4的差是单项式,则这个差的结果是_________. 3.已知﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,求(m ﹣n)(2a ﹣b)的值.解:因为﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,所以﹣4+m=3,a=5,a+1=b ﹣1=n.所以a=5,b=7,m=7,n=6.所以(m ﹣n)(2a ﹣b)=(7﹣6)×(2×5﹣7)=3.例7.已知关于x ,y 的多项式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2的值与字母x 的取值无关,求a ,b 的值.解:2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2=(2﹣2b)x 2+(a+3)x+(﹣1﹣5)y+(6﹣2)=(2﹣2b)x2+(a+3)x﹣6y+4因为多项式的值与x的取值无关所以2﹣2b=0,a+3=0,所以a=﹣3,b=1.【迁移应用】1.若关于x的多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,则m,n的值分别为( )A.﹣1,﹣3B.1,3C.﹣1,3D.1,﹣32.若关于x,y的多项式mx3+3nxy2﹣2x3﹣xy2+y中不含三次项,则2m+3n的值为______.3.有这样一道题:“当x=1,y=2025时,求多项式7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3+3的值.”小聪4同学说:“就算不给出x=1,y=2 025,也能求出多项式的值.”他的说法有道理吗?请说明理由.4解:有道理.理由如下:原式=(7+3﹣10)x3+(﹣6+6)x3y+(3﹣3)x2y+3=3.该多项式的值与x,y的取值无关.所以小聪同学的说法有道理.(八)小结梳理五、教学反思。
苏科版数学七年级上册3.4.2《合并同类项》说课稿

苏科版数学七年级上册3.4.2《合并同类项》说课稿一. 教材分析《合并同类项》是苏科版数学七年级上册3.4.2节的内容,本节内容是在学生已经掌握了整式的加减、同类项的概念等知识的基础上进行授课的。
通过本节课的学习,使学生掌握合并同类项的方法和技巧,提高学生解决实际问题的能力。
教材中通过丰富的例题和练习题,引导学生自主探究,合作交流,培养学生的逻辑思维能力和创新能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对整式的加减、同类项的概念有一定的了解。
但学生在合并同类项时,容易出错,对同类项的判断和合并方法掌握不牢固。
因此,在教学过程中,教师需要关注学生的掌握情况,引导学生正确判断同类项,熟练掌握合并同类项的方法。
三. 说教学目标1.知识与技能目标:使学生掌握合并同类项的概念和方法,能够正确、熟练地合并同类项。
2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的创新精神和团队合作意识。
四. 说教学重难点1.教学重点:合并同类项的概念和方法。
2.教学难点:如何引导学生正确判断同类项,熟练掌握合并同类项的方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、讨论法等,引导学生自主探究、合作交流。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习平台、练习软件等现代教育技术手段,提高教学效果。
六. 说教学过程1.导入新课:通过复习同类项的概念,引出合并同类项的概念和方法。
2.自主探究:学生自主完成教材中的例题,理解并掌握合并同类项的方法。
3.合作交流:学生分组讨论,分享合并同类项的心得体会,互相解答疑问。
4.课堂讲解:教师针对学生的疑问,进行讲解,重点讲解如何判断同类项和合并同类项的方法。
5.练习巩固:学生完成教材中的练习题,教师及时批改,纠正错误,巩固所学知识。
6.拓展提高:教师给出一些实际问题,引导学生运用合并同类项的方法解决,提高学生的应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互
动 问题1: 如图,建筑工人用两种不同颜色的 探 大理石铺设地面。请问这两个长方形面积怎
样表示?
究
8
5
n
n
合
作
交
8n 和 5n
步骤:化简、代值、计算。
练习五
温馨提示:
化简、代值、计算
求代数式的值:
8p2-7q+6q-7p2-7 ,其中p=3,q=3 解:原式=(8-7)p2 +(-7+6)q-7
= p2 -q-7 当p=3,q=3时,
原式=32 -3-7=-1
这节课你学到了什么? 给你留下印象最深刻的是什么? 本节课应注意什么? 你还有什么问题?
究
合
作
–7a2b+2a2b =(–7+2)a2b =–5a2b
交 流
把代数式中的同类项合并成一项, 叫做合并同类项.
合并同类项的法则:
把同类项的系数_相__加__ , 字母和字母 的_指___数__不__变___.
简记为:(一加,两不变)
依据是:乘法的分配律的逆运算:
ac+bc = (a+b)c
例1、合并同类项:
念、如何合并同类项,学习了怎样求 代数式的值以及分类讨论的数学思想。 从中也体会到数学知识与现实生活有 着密切的联系,所以老师希望大家不 但要会学数学,更重要的是要会做数 学、用数学,从而体会数学的真正价 值。
作业
1.课本p118习题3.5:知识技能 第1题, 第2题的(1)、(3) .
2. 易百分p46 :合并同类项(2).
流
互
如果把这两种不同颜色的大理石拼成一个
动
探 长方形,这个长方形的面积可以用代数式表示吗?
有几种表示方法?
8
5
究
n
n
合
作
8 n + 5 n 或( 8 + 5 ) n = 13 n
交
流
8 n + 5 n = ( 8 + 5 ) n = 13 n
你还记得:(a+b)c=ac+bc吗? 自
主
探
8n+5n = ( 8+5)n = 13n
3.4 合并同类项(二)
1、计算:1 1 23 1 23
4
4
2、下列代数式是几项的和?每项的系
数分别是什么?
a3 -3a2b +a - 5a2b -2a3 哪些项可以归为同一类呢?
-2xy+x+5xy-y+7+yx
观察a3 与-2a3 , -3a2b与-5a2 b , - 2xy、5xy与 yx
= –x-2
练习四:
合并同类项(写出过程):
(1) 3b 3a3 1 a3 2b (2) 2y 6 y 2xy 5- 2xy- 3y
(3) -(a+b)3+3(a+b)3
解:(3)原式=(-1+3)(a+b)3 =2 (a+b)3
注意步骤
例2: 求代数式 3x2 5x 0.5x2 x 1 的值,其中 x 2 .说一说你是怎样 算的。
如果关于字母x的代数式 -3x2 +mx+nx2 – x+3与x的取值无关, 求(m+n)(m-n)的值。 基本思路: 先合并同类项; 令x、x2项的系数为零,求出m、n的值; 将m、n的值代入所求的代数式中计算。
回顾建构 形成体系
同类项
两个特点 两相同
(1)所含字母相同;
(2)相同字母的指数分 别相同;
合并同类项 法则
一加两不变
(1)系数相加作为 结果的系数。
(2)字母不变
相同字母的指数
也不变。
回顾建构 形成体系
判断和合并同类项口诀: 同类项,需判断,两相同,是条件; 合并时,要计算,系数加,两不变。
. 今天我们共同学习了同类项的概
1、m、n为何值时,-5x2ny2与2x3ym 是同类项?
2、说出2x2y3的同类项?
3、下列各题的结果是否正确,若有错,请指 出错在何处:
(1)3x 3y 6xy( );(2)7x 5x 12x2
( );
(3)16 y2 7 y2 9( );(4)19a2b 9ab2 10ab( ).
归为同一类的项有什么共同特征?
同类项的概念
所含字母 相同,并且相同字母 的 指数 也相同的项,叫做同类项。
a3 与-2a3 , -3a2b与-5a2 b , - 2xy、5xy与yx
两个条件缺一不可 ; 同类项与系数无关,与字母的排 列顺序也无关; 所有的有理数都是同类项.
练习一:
下列各组是否是同类项?为什么?
(1) 7a-3a2+2a+a2+3 (2) 4ab 8 2b2 9ab 8 解:(1)原式=(7+2)a+(-3+1)a2+3
=9a-2a2+3
两组同类项之间用“+”连接
步骤 (1)找出同类项(用线画出来); (2)系数相加作为结果的系数,字母和字母的指数不变。
(3)单独的项写在后面。(不是同类项不能合并)
练习三:
仔 细
合并同类项:2x2-5x+x2+4x-3x2-2
斟
解:原式=2x2+x2-3x2–5x+4x-2 (第一步) 酌
=(2+1-3)x2-(5+4)x-2 (第二步)
= x2 –9x-2 (第三步)
观察上述解题过程,有几处错误? 错在哪一步?怎样改正。
改为:= (2+1-3)x2+(-5+4)x-2