历年中考数学易错题(含答案解析)
中考数学培优 易错 难题(含解析)之一元二次方程含答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114xx +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.2.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.3.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.4.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6.【答案】(1)x 1=1+6,x 2=1-6(2) x 1=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32. ∴x -1=±32=±6. ∴x 1=1+6,x 2=1-6. (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.5.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m 时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下降率; (2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元. 【解析】 【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论. 【详解】(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%; (2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.7.已知关于x 的方程x 2-(m +2)x +(2m -1)=0。
中考数学—外汇的易错题汇编含解析

一、选择题1.人民币外汇牌价(人民币/100美元)时间美元人民币2017年9月7日100元827.68元2018年9月7日100元739.68元上表情况说明( )A.外汇汇率降低,外币币值下降,人民币币值上升B.外汇汇率升高,外币币值上升,人民币币值下降C.外汇汇率升高,外币币值下降,人民币币值上升D.外汇汇率降低,外币币值上升,人民币币值下降2.2018年1月10日,1美元兑换人民币为6.5025元,而2018年11月15日,1美元兑换人民币为6.9113元。
人民币汇率按此趋势,不考虑其他因素,可以推断出A.中国对美投资规模扩大B.中国留美学生费用支出减少C.有利于中国扩大对美国出口D.中国公民前往美国旅游费用减少3.下表为中国人民银行外汇牌价变动情况。
若不考虑其他因素,下列推导正确的是①美元兑人民币升值,我国企业在美国投资成本上升,不利于我国企业到美国投资②人民币兑美元贬值,我国出口美国商品的价格下降,不利于我国商品出口到美国③欧元兑人民币升值,同等数量的人民币可以换取较少的欧元,有利于我国偿还外债④人民币兑欧元升值,我国进口欧洲商品价格相对下降有利于我国进口企业降低成本A.①③B.②③C.②④D.①④4.如果在一定时期内,人民币对美元贬值。
若不考虑其他因素,对我国这段时间对外经济造成的影响是①中国企业在美国投资成本上升,不利于中国企业在美国投资②美国商品在中国市场的价格下降,有利于中国进口美国商品③美国公民来华旅游成本下降,有利于吸引美国公民赴华旅游④中国商品在美国市场的价格上升,不利于中国商品出口美国A.①③B.②③C.①④D.②④5.《上海证券报》10月21日消息,澳洲铁矿石巨头力拓以人民币计价方式与国内企业签订了铁矿石贸易合同。
相关专家认为,这一事件将有助于人民币国际化更进一步。
海外矿企对我国企业采用人民币计价,有助于A.提升我国在国际贸易中的地位B.降低我国外贸企业的结汇成本C.加速我国外贸企业的转型升级D.增强我国人民币的国际购买力6.人民币本身的币值稳定,涉及到国内资源配置的效率,涉及到收入分配的公正,还有人民币长远的国际地位。
中考二元一次方程组易错题50题(含答案解析)

中考二元一次方程组易错题50题含答案解析一、单选题1.方程2x +y =5与下列方程构成的方程组的解为31x y =⎧⎨=-⎩的是( )A .x ﹣y =4B .x +y =4C .3x ﹣y =8D .x +2y =﹣12.下列方程是二元一次方程的是( ) A .24x x -=B .26x y -=C .23x y+= D .5xy =3.方程组25328x y x y -=⎧⎨-=⎩消去y 后得到的方程是 ( )A .5313x y -=B .()32258x x --=C .()35282y y +-= D .83252xx --= 4.已知:21x y =⎧⎨=⎩是方程5kx y -=的解,则k 的值是( )A .2B .2-C .3-D .35.已知x ,y 满足2245240x xy y y -++-=,则下面关于x ,y 描述正确地是( ) A .满足条件的整数x ,y 有2对 B .满足条件的整数x ,y 有4对 C .满足条件的整数x ,y 有8对D .满足条件的整数x ,y 有无数对6.下面各组x 、y 的值满足二元一次方程35x y +=的是( ) A .2x =-,1y = B .0x =,5y = C .2x =,1y =D .5x =,0y =7.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.521y x x y -=⎧⎨-=⎩B . 4.521x y x y -=⎧⎨-=⎩C . 4.512x y y x -=⎧⎪⎨-=⎪⎩D . 4.512y x yx -=⎧⎪⎨-=⎪⎩8.已知关于x、y的二元一次方程ax+b=y,下表列出了当x分别取值时对应的y 值.则关于x的不等式ax+b<0的解集为()A.x<1B.x>1C.x<0D.x>09.现用100张铁皮做盒子,每张铁皮可做8个盒身或9个盒底,且一个盒身与两个盒底配成一个盒子.设用x张铁皮做盒身,y张铁皮做盒底,则可得方程组()A.100289x yx y+=⎧⎨⨯=⎩B.100829x yx y+=⎧⎨=⨯⎩C.891002x yx y+=⎧⎨=⎩D.891002x yx y+=⎧⎨=⎩10.下列选项不是..方程25x y-=的解的是()A.43xy=⎧⎨=⎩B.21xy=⎧⎨=-⎩C.31xy=⎧⎨=-⎩D.31xy=⎧⎨=⎩11.与方程组+23020x yx y-=⎧⎨+=⎩有完全相同的解的是().A.x+2y-3=0B.2x+y=0C.(x+2y-3)(2x+y)=0D.|x+2y-3|+(2x+y)2=012.230a b ca b c-+=⎧⎨-+=⎩,则=a cb-()A.1B.2C.3D.4 13.下列各组数值是二元一次方程2x﹣y=5的解是()A.21xy=-⎧⎨=⎩B.5xy=⎧⎨=⎩C.15xy=⎧⎨=⎩D.31xy=⎧⎨=⎩14.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的2倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.16B.20C.25D.2615.关于x,y的方程组38x ayx y b-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则a﹣b的值是()A.1B.﹣5C.5D.﹣116.我国明代数学读本《算法统宗》一书有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托如果1托为5尺,那么索长和竿子长分别为多少尺?设索长为x尺,竿子长为y尺,可列方程组为()A.525x yx y-=⎧⎨-=⎩B.552x yxy-=⎧⎪⎨-=⎪⎩C.552x yyx-=⎧⎪⎨-=⎪⎩D.552y xyx-=⎧⎪⎨-=⎪⎩17.三元一次方程组354x yy zz x+=⎧⎪+=⎨⎪+=⎩的解为()A.23xyz=⎧⎪=⎨⎪=⎩B.123xyz=⎧⎪=⎨⎪=⎩C.13xyz=⎧⎪=⎨⎪=⎩D.311xyz=⎧⎪=⎨⎪=⎩18.二元一次方程2x+y=5的正整数解有()A.1个B.2个C.3个D.4个19.从4-,3-,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组2223x ymx y+=⎧⎨-=-⎩有解,且使关于x的分式方程12111mx x--=--有正数解,那么这五个数中所有满足条件的m的值之和是()A.1B.2C.1-D.2-二、填空题20.已知12xy=⎧⎨=⎩是方程ax-y=3的解,则a的值为________.21.由方程y ﹣3x =4可得到用x 表示y 的式子是y =______.22.若方程组234,3223x y x y m +=⎧⎨+=-⎩的解满足1x y -=,则m =_______.23.某同学解方程组223x y x y +=⎧⎨-=⎩●的解为1x y =⎧⎨=⎩★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数,=●______.24.若关于x ,y 的二元一次方程组2123x y k x y k +=-⎧⎨+=⎩的解也是二元一次方程5x y +=的解,则k 的值为____________.25.如果22m x -+y=0是二元一次方程,则m =________.26.给出下列程序:已知当输入的x 值为1时,输出值为1;当输入的x 值为﹣1时,输出值为5,则当输入的x 值为12时,输出值为_______.27.已知x ay b =⎧⎨=⎩是方程组352158213537x y x y +=⎧⎨+=⎩的解,则a ﹣b =_____.28.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____. 29.已知2728x y x y +=⎧⎨+=⎩,则x y x y +=-___. 30.若方程组5{25x y x y =+-=的解满足方程0x y a ++=,则a 的值为_____.31.已知21x y =⎧⎨=⎩是二元一次方程组54ax by bx ay +=⎧⎨+=⎩的解,则a ba b +=-______. 32.x y 2y z 4z x 6+=⎧⎪+=⎨⎪+=⎩的解为______ .33.方程组28x y kx y k+=⎧⎨-=⎩的解满足x +2y >14,则k 的取值范围为___________34.如图,已知ABC 中,2AD CD =,AE BE =,BD 、CE 相交于点O .若ABC 的面积为30,则四边形ADOE 的面积为______.35.已知21x y =⎧⎨=⎩是二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解,则=a ______,b =__________.36.若537y x a b +与3x y a b --是同类项,则x y +=__________.37.若x ay b =⎧⎨=⎩是方程22x y +=的解,则42a b +=________ .38.买2只签字笔,3只圆珠笔,1个笔记本,共需32元;买3只签字笔,5只圆珠笔,1个笔记本,共需45元.那么签字笔、圆珠笔、笔记本各买一件共需_____元.39.若关于x ,y 的方程组2x y m x my n -=⎧⎨+=⎩的解是13x y =⎧⎨=⎩,则|m +n |的值是________.三、解答题 40.解方程组 (1)134342x yx y ⎧-=⎪⎨⎪-=⎩ (2)3(1)55(1)3(5)x y y x -=+⎧⎨-=+⎩41.如图,已知AB CD ∥,E ,F 分别是射线CD ,AB 上的点,AE 平分BAC ∠,EF 平分AED ∠.(1)试说明23∠∠=;(2)若230AFE ∠-∠=︒,求AFE ∠的度数.42.某天小明和小华同时求解关于x ,y 的二元一次方程组161? ax by bx ay +=⎧⎨+=⎩①②,小明把方程★抄错,求得的解为13xy=-⎧⎨=⎩,小华把方程★抄错,求得的解为32xy=⎧⎨=⎩,求a,b的值.43.长沙县为加快新农村建设,建设美丽乡村,对A,B两类村庄进行了全面改建.根据预算,改建一个A类美丽宜居村庄和一个B类美丽宜居村庄共需资金600万元;改建2个A类美丽宜居村庄和5个B类美丽宜居村庄共需资金1950万元.(1)改建一个A类美丽宜居村庄和一个B类美丽宜居村庄所需资金分别是多少万元?(2)黄兴镇拟改建A类、B类美丽宜居村庄共10个,投入资金不超过2960万元,最多改建A类美丽宜居村庄多少个?44.已知关于x、y的二元一次方程组的解x、y是一对相反数,试求m 的值.45.一家服装店老板到厂家选购A,B两种型号的服装,若购进A种型号服装9件,B 种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元(1)A,B两种型号的服装每件分别为多少元?.(2)已知A种型号服装每件的售价为108元,B种型号服装每件的售价为130元.根据市场需求,服装店老板决定,购进A种型号服装的数量要比购进B种型号服装的数量的2倍还多4件,且A种型号服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元.则有哪几种进货方案?46.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x -y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A,B两园区的面积之和并化简.(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A 园区的长比宽多350米,且整改后两园区的周长之和为980米.★求x,y的值;★若A园区全部种植C种花,B园区全部种植D种花,且C,D两种花投入的费用与吸引游客的收益如下表:求整改后A,B两园区旅游的净收益之和.(净收益=收益-投入)47.某手机店卖出甲型号手机10台和乙型号手机12台后的销售额为3.18万元;卖出甲型号手机6台和乙型号手机9台后的销售额为2.16万元.(1)请问甲型号手机和乙型号手机每台售价为多少元?(2)若甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?若所有购进的手机都可以售出,请求出所有方案中的最大利润.参考答案:1.A【分析】将31x y =⎧⎨=-⎩分别代入四个方程进行检验即可得到结果.【详解】解:A 、将31x y =⎧⎨=-⎩代入x ﹣y =4,得左边=3+1=4,右边=4,左边=右边,所以本选项正确;B 、将31x y =⎧⎨=-⎩代入x +y =4 ,得左边=3−1=2,右边=4,左边≠右边,所以本选项错误;C 、将31x y =⎧⎨=-⎩代入3x ﹣y =8,得左边=3×3+1=10,右边=8,左边≠右边,所以本选项错误;D 、将31x y =⎧⎨=-⎩代入x +2y =﹣1 ,得左边=3−2=1,右边=-1,左边≠右边,所以本选项错误;故选A .【点睛】本题考查了二元一次方程组的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 2.B【分析】根据二元一次方程的定义即可判断. 【详解】24x x -=是一元一次方程,故A 错误.26x y -= 含有两个未知数,且未知数的次数为1,是二元一次方程,故B 正确.23x y+= 是分式方程,故C 错误. 5xy = 是二元二次方程,故D 错误.故选B【点睛】本题考查的是二元一次方程的概念,关键是熟记二元一次方程要含有两个未知数,且未知数的次数为1. 3.B【分析】利用代入消元法即可求出消去y 后得到的方程 .【详解】解:25328x y x y -=⎧⎨-=⎩①②,由★得:25y x =-★,将★代入★得:32(25)8x x --=, 故选:B .【点睛】本题考查了解二元一次方程组,利用消元法是解题的关键. 4.D【分析】把方程的解代入方程转化为k 的一元一次方程求解即可.【详解】★21x y =⎧⎨=⎩是方程5kx y -=的解,★2k -1=5, 解得k =3, 故选D .【点睛】本题考查了二元一次方程的解,灵活运用方程解的定义转化为一元一次方程求解是解题的关键. 5.C【分析】将已知等式利用因式分解变形为()()22215x y y +-+=,令A =x -2y ,B =y +1,可得不同的方程组,解之可得满足条件的x 和y 的取值. 【详解】解:★2245240x xy y y -++-=, ★222442150x xy y y y -+++-=+, ★()()22215x y y +-+=, 令A =x -2y ,B =y +1, ★x ,y 均为整数,★2205A B ⎧=⎨=⎩(舍去),2214A B ⎧=⎨=⎩,2223A B ⎧=⎨=⎩(舍去),2232A B ⎧=⎨=⎩(舍去),2241A B ⎧=⎨=⎩,2250A B ⎧=⎨=⎩(舍去),★2112x y y -=±⎧⎨+=±⎩或2211x y y -=±⎧⎨+=±⎩,解得:31x y =⎧⎨=⎩或53x y =-⎧⎨=-⎩或11x y =⎧⎨=⎩或43x y =⎧⎨=-⎩或20x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩或20x y =-⎧⎨=⎩或62x y =-⎧⎨=-⎩共8对,故选C .【点睛】本题考查了因式分解的应用,二元一次方程组,解题的关键是将已知等式合理变形. 6.B【分析】把选项中的x 、y 的值代入方程进行验证即可.【详解】解:A 、当x =-2,y =1时,3x +y =3×(-2)+1=-5≠5,所以2x =-,1y =不是方程的解;B 、当x =0,y =5时,3x +y =3×0+5=5,所以0x =,5y =是方程的解;C 、当2x =,1y =时,3x +y =3×2+1=7≠5,所以2x =,1y =不是方程的解;D 、当5x =,0y =时,3x +y =3×5+0=15≠5,所以5x =,0y =不是方程的解; 故选:B .【点睛】本题主要考查方程解的概念,掌握方程的解满足方程是解题的关键. 7.D【分析】设木头长为x 尺,绳子长为y 尺,根据“用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设木头长为x 尺,绳子长为y 尺, 由题意可得 4.512y x yx -=⎧⎪⎨-=⎪⎩. 故选:D .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 8.B【分析】根据表格选取两对值代入二元一次方程组成方程组,解方程组得不等式,解不等式即可.【详解】解:由题意得出232a b a b -+=⎧⎨-+=⎩,解得11a b =-⎧⎨=⎩,则不等式为﹣x +1<0,解得x>1,故选:B.【点睛】本题考查表格信息,会利用表格信息确定方程组,会解方程组,会解一元一次不等式是解题关键.9.A【分析】设用x张铁皮做盒身,y张铁皮做盒底,根据共有100张铁皮,一个盒身与两个盒底配成一个盒子,列方程组即可.【详解】解:用x张铁皮做盒身,y张铁皮做盒底,由题意得,100 289x yx y+=⎧⎨⨯=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.10.C【分析】根据二元一次方程的解得定义把x,y代入方程检验即可.【详解】A. x=4、y=3时,左边=8-3=5,此选项不符合题意;B. x=2、y=-1时,左边=4+1=5,不符合题意;C. x=3、y=-1时,左边=6+1=7≠5,符合题意;D. x=3、y=1时,左边=6−1=5,不符合题意;故选C.【点睛】此题考查二元一次方程的解,解题关键在于把x,y代入方程检验.11.D【分析】根据二元一次方程的解的概念可对A、B、C选项进行判断,根据非负数的性质,可得关于x、y的方程组,由此可判断D选项.【详解】解:根据二元一次方程解的定义可知A,B,C选项的解有无数组,故A,B,C选项都错误,D选项根据非负数的性质可得方程组+23020x yx y-=⎧⎨+=⎩,与所给方程组完全相同,故它们的解也相同.【点睛】本题考查了二元一次方程(组)的解的概念,几个非负数的和为0,则每个数都为0.掌握二元一次方程及方程组解的概念是解题的关键.12.C【分析】先用★-★得到2a b =,再将2a b =代入★得到c b =-,最后代入a c b-求值即可. 【详解】解:0230a b c a b c -+=⎧⎨-+=⎩①②, ★-★得,20a b -=,解得,2a b =,把2a b =代入★得,c b =-, 则2()3a c b b b b---==, 故选:C .【点睛】本题考查了加减消元法,求出a 、b 、c 之间的关系是解题的关键.13.D【分析】将选项中的解分别代入方程2x ﹣y =5,使方程成立的即为所求.【详解】解:A. 把21x y =-⎧⎨=⎩代入方程2x ﹣y =5,-4-1=-5≠5,不满足题意; B. 把05x y =⎧⎨=⎩代入方程2x ﹣y =5,0-5=-5≠5,不满足题意; C. 把15x y =⎧⎨=⎩代入方程2x ﹣y =5,2-5=-3≠5,不满足题意; D. 把31x y =⎧⎨=⎩代入方程2x ﹣y =5,6-1=5,满足题意; 故选:D .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.14.A【分析】设小长方形的长为a ,宽为b ,则大长方形的长为2a ,宽为2b ,根据图形中大小长方形长与宽之间的关系,可得出关于a 、b 的二元一次方程组,解之即可得出a 、b 的值,在利用正方形面积公式可求出结论.【详解】解:设小长方形的长为a ,宽为b ,则大长方形的长为2a ,宽为2b ,依题意,得:122a b a b a b=+⎧⎨=++⎩, 解得:3212a b ⎧=⎪⎪⎨⎪=⎪⎩, 2231(22)(22)1622a b ∴+=⨯+⨯=, 故选:A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.B【分析】把方程组的解代入原方程可求出a 和b 的值,即得答案.【详解】解:把21x y =⎧⎨=⎩代入原方程得6821a b -=⎧⎨+=⎩, 解得23a b =-⎧⎨=⎩, 5a b ∴-=-.故选:B .【点睛】本题考查了方程组的解的概念,数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.16.B【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】解:设索长为x 尺,竿子长为y 尺, 根据题意,可列方程组为552x y x y -=⎧⎪⎨-=⎪⎩, 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.17.B【详解】在方程组354x y y z z x ⎧+=⎪+=⎨⎪+=⎩①②③中,★+★+★得6x y z ++=④,由★-★得3z =,由★-★得1x =,由★-★得2y =,所以方程组的解为123x y z =⎧⎪=⎨⎪=⎩,所以选择B .18.B【详解】试题分析:方程的正整数解为:13x y 和21x y =⎧⎨=⎩. 考点:二元一次方程的正整数解.19.D【分析】分别解出二元一次方程组,分式方程,根据题意得到满足条件的m 的值,计算即可. 【详解】解:解方程组2223x y mx y +=⎧⎨-=-⎩, 解得:14264x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当方程组有解时,4m ≠-, 解分式方程12111m x x--=--,得4x m =-, ★关于x 的分式方程12111m x x --=--有正数解, ★40m ->,解得,4m <,当1x =,即3m =时,分式方程无解,★3m ≠,★3m =-或1,★满足条件的m 的值之和为:312-+=-.故选:D .【点睛】本题考查分式方程的解法、二 元一次方程组的解法, 正确解出分式方程、二元一次方程组是解题的关键.20.5【详解】解:将12x y =⎧⎨=⎩代入方程可得: a -2=3解得a =5,故答案为5.21.4+3x【分析】根据等式的性质,通过移项得43y x +=.【详解】解:34y x -=移项,得43y x +=.故答案为43x +.【点睛】本题考查了解二元一次方程,能灵活运用等式的性质进行变形是解决本题的关键. 22.4【分析】利用两式相减,直接得到x y -即可解答.【详解】解:2343223x y x y m +=⎧⎨+=-⎩①② -②①可得:27x y m -=-,1x y -=,271m ∴-=,解得:4m =.故答案为4.【点睛】本题考查的是解二元一次方程组,熟练掌握加减消元法和代入消元法是解题的关键.23.-1【分析】两个数●和★分别用a 、b 表示,把1x y =⎧⎨=⎩★代入即可得到一个关于a 、b 的式子,即可求解.【详解】解:两个数●和★分别用a 、b 表示.根据题意得:12123b a b +=⎧⎨-=⎩,两式相加得:2=3+a ,解得:a =-1.故答案是:-1.【点睛】本题考查了方程组的解的定义,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.24.4 【分析】把两个方程相加即可求出413-+=k x y ,再利用5x y +=,从而可得4153-=k ,然后进行计算即可解答. 【详解】解:2123x y k x y k +=-⎧⎨+=⎩①②, ★+★得:3341+=-x y k , ★413-+=k x y , ★5x y +=, ★4153-=k , ★4k =,故答案为:4【点睛】本题考查了二元一次方程组的解,二元一次方程的解,运用整体思想是解题的关键.25.3【分析】根据二元一次方程的定义即可求解.【详解】依题意可得m-2=1解得m=3故答案为:3.【点睛】此题主要考查二元一次方程的定义,解题的关键是熟知二元一次方程的特点. 26.2【分析】根据程序,输入的x 值为1时,输出值为1,当输入的x 值为﹣1时,输出值为5,可列出方程15k b k b +=⎧⎨-+=⎩,解出k 和b 的值,当12x =时,即可确定出所求. 【详解】★输入的x 值为1时,输出值为1;当输入的x 值为﹣1时,输出值为5★15k b k b +=⎧⎨-+=⎩ 解得2{3k b =-= ★当12x =时,()12322kx b +=⨯-+= ★输出值为:2故答案为:2.【点睛】本题考查二元一次方程的知识,解题的关键是掌握解二元一次的方法:代入法和加减消元法.27.32【分析】把x a y b =⎧⎨=⎩代入方程组,★-★可以直接求出a -b 的值. 【详解】解:把x a y b =⎧⎨=⎩代入方程组得352158213537a b a b +=⎧⎨+=⎩①②, ★-★得14a -14b =21,★14(a -b )=21,★a -b =32, 故答案为:32. 【点睛】本题考查了二元一次方程组的解,把a -b 看作整体,直接求出来是解题的关键. 28.-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:★点()36,415A x y -+,点()5,B y x 关于x 轴对称,★3654150x y y x -=⎧⎨++=⎩; 解得:33x y =-⎧⎨=-⎩, ★=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.29.-5【分析】利用加减法分别求得x+y,x-y的值,然后整体代入求解.【详解】解:2728x yx y+=⎧⎨+=⎩①②,★+★,得:3x+3y=15,★x+y=5,★-★,得:x-y=-1,★51x yx y+=--=-5,故答案为:-5.【点睛】本题考查求分式的值,解二元一次方程组,掌握解二元一次方程组的步骤,利用整体思想解答是关键.30.5【分析】首先解方程组求得x、y的值,然后代入方程中即可求出a的值.【详解】解:解525x yx y=+⎧⎨-=⎩得5xy=⎧⎨=-⎩把5xy=⎧⎨=-⎩代入0x y a++=得:5a=故答案为5.31.3【分析】直接把21xy=⎧⎨=⎩代入方程组,得到关于a、b的方程组,然后求出3a b+=,1a b-=,即可得到答案.【详解】解:★21xy=⎧⎨=⎩是二元一次方程组54ax bybx ay+=⎧⎨+=⎩的解,★25 24a bb a+=⎧⎨+=⎩,由两式相加,得339a b +=,★3a b +=;由两式相减,得1a b -=; ★331a b a b +==-; 故答案为:3.【点睛】本题考查了解二元一次方程组,以及二元一次方程组的解,解题的关键是掌握解二元一次方程组的方法,正确的求出3a b +=,1a b -=.32.x 2y 0z 4=⎧⎪=⎨⎪=⎩【分析】先消元求出z ,再依次求解.【详解】246x y y z z x ⎧⎪⎨⎪⎩+=①+=②+=③,★-★得:z -x =2 ★,★+★得:2z =8,解得:z =4,把z =4代入★得:y =0,把y =0代入★得:x =2,则原方程组的解是:20.4x y z ⎧⎪⎨⎪⎩=== 【点睛】本题考查的是三元一次方程组,熟练掌握三元一次方程组是解题的关键. 33.k <﹣2##﹣2>k【分析】解方程组求得x 、y 的值,进而求得x +2y =﹣7k ,根据已知得出不等式﹣7k >14,求出即可.【详解】解:28x y k x y k +=⎧⎨-=⎩①②,★+★得:3x=9k,解得:x=3k,把x=3k代入★得:3k-y=8k,解得:y=﹣5k,★x+2y=﹣7k,★x+2y>14,★﹣7k>14.★k<﹣2,故答案为:k<﹣2.【点睛】本题考查了二元一次方程组的解和解一元一次不等式组的应用,关键是能得出关于k的不等式.34.12.5【分析】连接AO,依据同高三角形的面积等于对应底边的关系,所以根据AE=BE可得:S△ACE=S△BEC,S△AOE=S△BOE,根据AD=2CD可得:S△ABD=23S△ABC=20,S△AOD=2S△ODC,设S△COD=x,S△AOE=a,列方程组可得结论.【详解】解:连接AO,★★ABC的面积为30,AE=BE,★S△ACE=S△BEC=12S△ABC=12×30=15,S△AOE=S△BOE,★AD=2CD,★S△ABD=23S△ABC=23×30=20,S△AOD=2S△ODC,设S△COD=x,S△AOE=a,★S△BOE=a,S△AOD=2x,★3152220x aa x+=⎧⎨+=⎩,解得:7.52.5ax=⎧⎨=⎩,★四边形ADOE 的面积=S △AOE +S △AOD =a +2x =7.5+5=12.5.故答案为:12.5.【点睛】本题主要考查了三角形面积和三角形中线的性质的运用,解决问题的关键是设S △COD =x ,S △AOE =a ,结合方程组解决问题.35. 1 2【分析】将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩可得关于a 、b 的方程组,继而再利用加减消元法进行求解即可.【详解】解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩①②, ★×2-★得:3a =3,解得:a =1,把a =1代入★得2+b =4,解得:b =2,故答案为:1;2.【点睛】本题考查了二元一次方程组的解,解二元一次方程组,熟练掌握加减消元法是解本题的关键.36.-1【分析】根据同类项定义得到533y x x y +=⎧⎨=-⎩,求解即可得到答案. 【详解】解:★537y x a b +与3x y a b --是同类项,★533y x x y +=⎧⎨=-⎩,解得23x y =⎧⎨=-⎩, ★x +y =2-3=-1,故答案为:-1.【点睛】此题考查了利用同类项求参数,解二元一次方程组,正确理解同类项定义得到二元一次方程组是解题的关键.37.4【分析】先代入求出22a b +=,再变形,最后整体代入求出即可.【详解】★x a y b =⎧⎨=⎩是方程22x y +=的解, ★22a b +=,★()4222224a b a b +=+=⨯=.【点睛】本题考查了二元一次方程的解和求代数式的值的应用,用了整体代入思想. 38.19【分析】设买1只签字笔需要x 元,买1只圆珠笔需要y 元,买1个笔记本需要z 元,由“买2只签字笔,3只圆珠笔,1个笔记本,共需32元;买3只签字笔,5只圆珠笔,1个笔记本,共需45元”,可得出关于x ,y ,z 的三元一次方程组,由2×★-★,可得出x+y+z 的值,此题得解.【详解】设买1只签字笔需要x 元,买1只圆珠笔需要y 元,买1个笔记本需要z 元, 根据题意得:23323545x y z x y z ++⎧⎨++⎩=①=②, 2×★-★,得:x+y+z=19.故答案为19.【点睛】本题考查了三元一次方程组,找准等量关系,正确列出三元一次方程组是解题的关键.39.3【详解】将x=1,y=3代入方程组得:23{13m m n-=+=, 解得: 1{2m n =-=-, 则|m+n|=|−1−2|=|−3|=3.故答案为340.(1)64x y =⎧⎨=⎩ ;(2)57x y =⎧⎨=⎩. 【分析】(1)方程组整理后利用加减消元法求出解即可;(2)方程组整理后利用加减消元法求出解即可.【详解】解:(1)原方程组整理得:4312342x y x y -=⎧⎨-=⎩①②★×3-★×4得: 7y=28,解得:y=4,把y=4代入★得:x=6,则原方程组的解是64x y =⎧⎨=⎩; (2)原方程组整理得:383520x y x y -⎧⎨--⎩=①=② , ★-★得:4y=28,解得:y=7,把y=7代入★得:3x-7=8,解得:x=5,则原方程组的解是57x y =⎧⎨=⎩ . 故答案为(1)64x y =⎧⎨=⎩ ;(2)57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.41.(1)见详解;(2)70AFE ∠=︒【分析】(1)由平行线的性质(两直线平行,内错角相等)和角平分线的性质(平分所在的角)求证即可;(2)根据平行线的性质和角平分线的性质,由已知230AFE ∠-∠=︒和平角的定义,设★1=x ,AFE ∠=y 建立二元一次方程组求解即可;(1)解:★AB CD ∥★13∠=∠.又★AE 平分BAC ∠,★12∠=∠,★23∠∠=.(2)解:★AB CD ∥,★AFE DEF ∠=∠.又★EF 平分AED ∠,★AEF DEF ∠=∠,★AFE AEF DEF ∠=∠=∠.设123x ∠=∠=∠=︒,AFE AEF DEF y ∠=∠=∠=︒,则302180y x x y -=⎧⎨+=⎩,解得4070x y =⎧⎨=⎩, ★70AFE ∠=︒.【点睛】本题考查平行线的性质,角平分线的性质,利用二元一次方程组求角度,熟记其性质是解题关键.42.25a b ⎧⎨⎩==. 【分析】根据小明的算法方程★的x 、y 值,根据小颖的算法,可得方程★的x 、y 值,把方程x 、y 的值代入,可得关于a 、b 方程组,解方程组,可得a 、b 的值【详解】由161?ax by bx ay +=⎧⎨+=⎩①②小明把方程★抄错,求得的解为13x y =-⎧⎨=⎩,得-b+3a=1★, 小颖把方程★抄错,求得的解为32x y =⎧⎨=⎩,得3a+2b=16★, 联立★★,313216b a a b -+⎧⎨+⎩==,解得25a b ⎧⎨⎩==. 【点睛】此题考查了二元一次方程组的解,二元一次方程组的解必须同时满足方程组中的两个方程.43.(1)改建一个A 类美丽村庄需要资金350万元,改建一个B 类美丽村庄需要资金250万元.(2)最多改建A 类美丽宜居村庄4个【分析】(1)设改建一个A类美丽宜居村庄需要资金x万元,改建一个B类美丽宜居村庄需要资金y万元,根据“改建一个A类美丽宜居村庄和一个B类美丽宜居村庄共需资金600万元;改建2个A类美丽宜居村庄和5个B类美丽宜居村庄共需资金1950万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设改建A类美丽宜居村庄a个,则改建B类美丽宜居村庄(10-a)个,利用总价=单价×数量,结合总价不超过2960元,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再取其中的最大整数值即可得出结论.【详解】(1)设改建一个A类美丽宜居村庄需要资金x万元,改建一个B类美丽宜居村庄需要资金y万元,依题意得:600 251950x yx y+=⎧⎨+=⎩解得:350250xy=⎧⎨=⎩.答:改建一个A类美丽村庄需要资金350万元,改建一个B类美丽村庄需要资金250万元.(2)设改建A类美丽宜居村庄a个,则改建B类美丽宜居村庄(10-a)个,依题意得:350a+250(10-a)≤2960解得a≤4.6,a是正整数,∴a的最大值是4.答:最多改建A类美丽宜居村庄4个.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.44.7 5【详解】试题分析:把x=﹣y代入方程组可得到关于y、m的方程组,解此方程组可求得m的值.试题解析:解:由题意可知x=﹣y,代入方程组可得34{223y y my y m--=-+=+,整理可得7{23m yy m=-=+,把y=2m+3代入m=﹣7y可得m=﹣14m﹣21,解得m=﹣75,即m的值为﹣75.考点:二元一次方程组的解45.(1)A种型号服装每件90元,B种型号服装每件100元.(2)有三种进货方案:B型服装购进10件,A型服装购进24件;B型服装购进11件,A型服装购进26件;B型服装购进12件,A型服装购进28件.【分析】(1)根据题意可知,本题中的相等关系是“A种型号服装9件,B种型号服装10件,需要1810元”和“A种型号服装12件,B种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式组,结合实际意义求解.【详解】(1)解:设A种型号服装每件x元,B种型号服装每件y元.依题意可得9101810 1281880 x yx y+=⎧⎨+=⎩解得90100 xy=⎧⎨=⎩答:A种型号服装每件90元,B种型号服装每件100元.(2)解:设B型服装购进m件,则A型服装购进(24)m+件.根据题意得()()() 1089024130100699 2428m mm⎧-++-≥⎨+≤⎩,解不等式得19122m≤≤,因为m是正整数,所以10m=,11,12,2424m+=,26,28,答:有三种进货方案:B型服装购进10件,A型服装购进24件;B型服装购进11件,A 型服装购进26件;B型服装购进12件,A型服装购进28件.【点睛】利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.像这种利用不等式组解决方案设计问题时,往往是在解不等式组的解后,再利用实际问题中的正整数解,且这些正整数解的个数就是可行的方案个数.46.(1)2x 2+6xy +8y 2;(2)★3010x y =⎧⎨=⎩★57600元; 【分析】(1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)★根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;★代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)A ,B 两园区的面积之和:(x +y )(x ﹣y )+(x +3y )(x +3y )=x 2﹣y 2+x 2+6xy +9y 2=2x 2+6xy +8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)★整改后的长为:(x +y )+(11x ﹣y )=x +y +11x ﹣y=12x (米),整改后的宽为:(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x +2y=y (米),依题意有:123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩. ★由题意得:12xy =12×30×10=3600(平方米),(x +3y )(x +3y )=x 2+6xy +9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元.【点睛】考点:整式的混合运算.47.(1)甲型号手机每台售价为1500元,乙型号手机每台售价为1400元;(2)一共有五种进货方案,所有方案中最大利润为11200元.【分析】(1)设甲型号手机每台售价为x 元,乙型号手机每台售价为y 元,根据题意建立二元一次方程组求解即可;(2)设甲型号手机购进a 台,则乙型号手机购进(20-a )台,根据预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机建立不等式组求出整数解即可,设利润为W ,根据题意得出相应的函数关系,判断出增减性,从而求算最大利润.【详解】解:(1)设甲型号手机每台售价为x 元,乙型号手机每台售价为y 元,根据题意得:1012318006921600x y x y +=⎧⎨+=⎩①② 由★得:336002x y =-★ 将★代入★得:310360012318002y y ⎛⎫-+= ⎪⎝⎭ ,解得:1400y = 将1400y =代入★得:1500x =★15001400x y =⎧⎨=⎩答:甲型号手机每台售价为1500元,乙型号手机每台售价为1400元;(2)设甲型号手机购进a 台,则乙型号手机购进(20-a )台,根据题意得:()()1000800201840010008002017600a a a a ⎧+-≤⎪⎨+-≥⎪⎩①② 由★得:12a ≤由★得:8a ≥★不等式组的解集为:812x ≤≤。
历年中考数学易错题汇编-平行四边形练习题含详细答案

历年中考数学易错题汇编-平行四边形练习题含详细答案一、平行四边形1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,3AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=12PF=1,HF=3,OH=2﹣3, ∴OP=()2212362+-=-.如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=233, 综上所述:OP 的长为62-或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON ,使点N 在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角三角形MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O 向线段OM 作垂线,此直线与格点的交点为N ,连接MN 即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?465225【解析】【分析】分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,2222B N'+;如图2,当∠AFB′=90°+DN= 3.2 5.6时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,2222B N'+;+DN=22【详解】如图1,当∠AB′F=90°时,此时A、B′、E三点共线,∵∠B=90°,∴AE=2222AB BE=86++=10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+ =4655;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+ =22;综上,可得B′D 4655或2【点睛】本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.5.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3)2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG5∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×25,∴CM=GH45,∴MG=CH22CG CM355,∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.6.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
中考数学图形与几何专题知识易错题50题-含参考答案

中考数学图形与几何专题知识易错题50题含答案一、单选题1.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,只考虑路径、时间、路程等因素,下列结论正确的为()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定哪只蚂蚁先到2.一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,下面关于这个圆柱描述正确的是()A.底面直径6厘米,高10厘米B.底面直径10厘米,高6厘米C.底面半径6厘米,高10厘米D.底面半径10厘米,高6厘米3.下列说法正确的是()A.213的倒数是52B.计算弧长的公式是2180πnl r=⨯C.1是最小的自然数D.1的因数只有14.在长方体中,与一条棱异面的棱有()A.2条B.3条C.4条D.5条5.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π6.将下图沿着虚线折起来,可折成一个正方体,这时正方体的5号面所对的面是()A.1B.2C.3D.47.如图,线段AB是图中最大的半圆的直径,而AA1、A1A2、A2A3、A3A4、A4B分别是另外五个小的半圆的直径,有两只小虫以相同的速度同时从点A出发到点B,甲虫沿着用实线表示的大的半圆爬行,乙虫沿用虚线表示的五个小的半圆爬行,则下列结论正确的是()A.甲先到点B B.乙先到点BC.甲、乙同时到点B D.无法确定8.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,则圆锥的体积是圆柱体积的()A.12B.13C.16D.2倍9.比较下图长方形内阴影部分面积的大小,甲()乙A.>B.<C.=D.无法确定10.下列语句中正确的是()A.线段AB就是A、B两点间的距离B.如果AB=BC,那么B是线段AC的中点C.比较两个角的大小的方法只有度量法D.长方形纸片能检测平面与平面平行11.如图,一圆柱形油桶中恰好装有半桶油,现将油桶由直立状态放倒成水平放置状态,在整个过程中,桶中油面的形状不可能是()A.B.C.D.12.已知小圆半径是2cm,大圆半径是4cm,小圆周长是大圆周长的()A.12B.14C.16D.1813.与长方体中任意一条棱既不平行也不相交的棱有()A.2条B.4条C.6条D.8条14.小圆的半径是2,大圆的半径是4,小圆的面积是大圆面积的()A.18B.14C.12D.215.用同样长的铁丝分别围成长方形、圆形和正方形,围成()的面积最大.A.长方形B.正方形C.圆D.无法确定16.圆的半径由3厘米增加了6厘米,圆的面积增加了()平方厘米A.72πB.27πC.36πD.82π17.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算瓶子的容积是()立方厘米.A.24πB.28πC.32πD.40π18.如果一个扇形的半径扩大到原来的3倍,圆心角缩小到原来的13,那么这个扇形的面积()A.扩大到原来的3倍B.不变C.缩小为原来的13D.扩大到原来的9倍19.一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转的圈数是().A.270B.135C.100D.12020.一个圆形花坛周围围上了一圈栅栏,栅栏长18.84米,又沿栅栏一周砌有一条宽1米的鹅卵石小路.若每平方米约需鹅卵石100颗,则共需鹅卵石()A.1570颗B.1884颗C.2198颗D.2512颗二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.如图,是将一个长方体沿它的底面切去一刀后剩下的部分.(1)与棱HD 平行的棱有______________________________________. (2)与棱EF 异面的棱有______________________________________. (3)与棱NQ 相交的棱有______________________________________.23.数学老师的教具里有一个圆柱和一个圆锥,老师告诉大家,圆柱和圆锥的体积相等,底面积也相等,已知圆锥的高是2厘米.请你算一算,这个圆柱的高是_______厘米.24.如图所示,在长方体1111ABCD A B C D 中与棱BC 垂直的平面是_________.25.在一个边长为6cm 的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.26.将一个正方体放在桌面上,且已知正方体的边长为4厘米,那么与桌面垂直的平面面积之和为________.27.一个圆柱的侧面展开图是正方形,这个圆柱底面周长与高的比是__________. 28.将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形中最大的圆心角的度数为_________.29.半径为r ,圆心角为n°的扇形面积S 扇=______.30.一扇形面积是所在圆面积的23,扇形的圆心角是=_________.31.将一个长为4厘米,宽为3厘米的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是___________.32.一个圆锥的高不变,底面半径扩大到原来的2倍,底面积扩大到原来的( )倍,体积扩大到原来的( )倍.33.一个圆环,外圆的半径是内圆半径的3倍,这个圆环的面积和内圆面积的比是( ).34.一个正方体的棱长是12cm,把它削成一个最大的圆柱体,圆柱体的体积是_____ 3cm,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积是_____3cm.35.时钟的分针长3厘米,从9点到9点40分;分针扫过区域的面积是_______平方厘米,分针的针尖走的路程长_______厘米.36.如果一个扇形的圆心角扩大为原来的3倍,半径长缩小为原来的13,那么所得的扇形的面积与原来扇形的面积的比为____.37.如右下图所示,长方体按如图方式截去一个角之后,余下的几何体有_________个面,_________个顶点,_________条棱.38.如图,在长方体ABCD-EFGH中(1)长方体中棱AB与___________个面平行,分别是____________长方体中棱BC与___________个面平行,分别是____________长方体中棱AE与___________个面平行,分别是____________通过观察思考可以得到:长方体中每条棱都与__________个面平行.(2)长方体中面ABCD与___________条棱平行,分别是____________长方体中面ADHE与___________条棱平行,分别是____________长方体中面ABFE与___________条棱平行,分别是____________通过观察思考可以得到:长方体中每个面都与____________条棱平行(3)长方体中一共可以写出多少对棱与面的平行关系?39.如图,已知在矩形ABCD 中,AB =1,BC P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,连接C 1C .当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段C 1C 扫过的区域的面积是_______.三、解答题40.如图,在长方体ABCD EFGH 中,分别写出与棱EH 相交、平行、异面的所有的棱.41.补画长方体(被遮住的线段用虚线表示).42.小磊房间窗户的装饰物如图阴影部分所示,它们由两个半径相同的四分之一圆组成(单位:米).(1)请用字母表示装饰物的面积(结果保留π):_.(2)请用字母表示窗户能射进阳光的部分面积(结果保留π):_.(3)若23a=,2b=时,请求出窗户能射进阳光的面积(π取3).43.如图,准备在一个广场中心建一个直径为24m的圆形花坛,并将圆形花坛分割成面积相等的四个部分.(1)请你求出花坛中小圆部分的周长;(2)如果在花坛中小圆以外的三个区域内种上不同品种的花卉,已知A品种与B品种的费用之比为25:0.5,B品种和C品种的费用之比为2:3,如果购买C品种花卉比购买A品种花卉多花了7000元,那么购买三种花卉总费用多少元?44.求出如图图形的体积.45.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米.这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?46.如图是用两个正方形(边长如图所示)和一个直角三角形拼成的五边形,(1)用含a的代数式表示阴影部分的面积.(结果要化简)(2)求当a=2时,阴影部分的面积.47.如图,是一个长为x米,宽为y米的长方形休闲广场,在它的四角各修建一块半径均为r米的四分之一圆形的花坛(阴影部分),其余部分作为空地.(1)用代数式表示空地的面积;(2)若长方形休闲广场的长为50米,宽为20米,四分之一圆形花坛的半径为8米,求长方形广场空地的面积.( 取3)48.用斜二测画法画长方体直观图:(1)补全长方体ABCD﹣A1B1C1D1;(2)量得B1C1的长度是cm,所表示的实际长度是cm.(3)与平面A1ABB1,平行的平面是.49.(1)如图1,ABC是等边三角形,曲线CDEFGH……叫做“等边三角形的渐开线”,曲线的各部分均为圆弧.设ABC的边长为3厘米,求前5段弧长的和(即曲线CDEFGH的长)是多少厘米?(2)如图2,有一只狗被拴在一建筑物的墙角上,这个建筑物是边长为400厘米的正方形,拴狗的绳子长18米.现狗从点A出发,将绳子拉紧按顺时针方向跑,可跑多少米?参考答案:1.C【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】根据平移可得出两蚂蚁行程相同,∵甲乙两只蚂蚁的行程相同,且两只蚂蚁的爬行速度也相同,∵两只蚂蚁同时到达点B.故选C.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.2.D【分析】根据题意可知,以长方形的宽边为周旋转一周得到一个圆柱,这个圆柱的底面半径是10厘米,高是6厘米.据此解答.【详解】解:一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,关于这个圆柱描述正确的是底面半径是10厘米,高是6厘米.故选:D.【点睛】此题主要考查了圆柱的特征及应用.3.D【分析】依次对各选项进行分析.【详解】A选项:213的倒数是35,故错误;B选项:计算弧长的公式是180πnl r=⨯,故错误;C选项:0是最小的自然数,故错误;D选项:1的因数只有1,故正确.故选:D.【点睛】考查了倒数、弧长的公式、自然数和因数,解题关键是熟记相关概念、计算公式.答案第1页,共21页【分析】直接根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与棱AB 异面的棱有:111111A D B C DD CC 棱、棱、棱、棱;所以棱在长方体中,与一条棱异面的棱有4条,故选C .【点睛】本题主要考查长方体的棱与棱之间的位置关系,熟记概念是解题的关键. 5.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米,∵横截面半径是3分米即0.3米,∵横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D .【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.6.B【分析】如图,属于正方体展开图的“1-3-2”型,折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.【详解】折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.故选:B .【点睛】正方体展开图分四种类型,11种情况,每种情况折成正方体后哪些面相对是有规律的,可自己动手操作一下并记住,能快速解答此类题.【详解】解:1123243411()22AA A A A A A A A B AB ππ++++=⨯,因此乙虫走的四段半圆的弧长正好和甲虫走的大半圆的弧长相等,因此甲、乙同时到点B .故选:C . 【点睛】本题考查的是弧长的计算,解题的关键是掌握弧长公式:180n R l π=(弧长为l ,圆心角度数为n ,圆的半径为R)是解题的关键.8.C【分析】由一个圆柱和一个圆锥的底面积相等,可设圆柱和圆锥的底面积为S ,由圆柱的高是圆锥高的2倍,可设圆锥的高为h ,圆柱的高为2h ,根据圆柱与圆锥的体积公式,分别求出它们的体积,利用比的意义,即可求解.【详解】解:设圆柱和圆锥的底面积为S ,设圆锥的高为h ,圆柱的高为2h , 圆柱的体积=S ×2h = 2Sh ,圆锥的体积=13Sh , 则圆锥的体积是圆柱体积的比是:11:2:61:636Sh Sh Sh Sh , 答:圆锥的体积是圆柱体积的16. 故选C .【点睛】本题考查了圆柱与圆锥的体积计算以及比的意义的应用,灵活应用圆柱与圆锥的体积计算公式是解题的关键.9.C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积.【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积.故选:C.【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键.10.D【分析】根据线段的性质,中点的性质,面与棱之间的关系,角的比较方法逐项分析判断即可.【详解】A选项:线段AB的长度就是A、B两点间的距离,则此选项语句错误,不符合题意,故A错误;B选项:如果AB=BC,且点B在线段AB上,那么B是线段AC的中点,则此选项语句错误,不符合题意,故B错误;C选项:比较两个角的大小的方法常用的有叠合法和度量法,则此选项语句错误,不符合题意,故C错误;D选项:长方形纸片有直角,则可以使用长方形纸片检测平面与平面是否平行,则此选项语句正确,符合题意,故D正确;故选D.【点睛】本题考查了线段的性质,中点的性质,面与棱之间的关系,角的比较方法,掌握以上知识是解题的关键.11.C【分析】根据油桶由直立状态放倒成水平放置状态的整个过程,从不同方向观察油桶中的油的形状,即可.【详解】A、油桶处于水平放置状态时,从油桶的上方向下看,得到,不符合题意;B、油桶处于倾斜状态,从油桶的开口观察,可以得到,不符合题意;C、油桶由直立状态放倒成水平放置状态,在整个过程中无法得到,符合题意;D、油桶处于直立状态时,可以得到,不合题意.故选:C.【点睛】本题考查圆柱的截面的认识,解题的关键是从油桶的不同状态,观察油桶中油面的形状.12.A【分析】根据圆的面积公式计算即可.【详解】∵小圆半径是2cm ,大圆半径是4cm ,∵小圆的周长是2×2π=4π(cm ),大圆周长的周长是2×4π=8π(cm ),∵小圆周长是大圆周长的4π÷8π=12, 故选:A .【点睛】本题考查了圆的面积的计算,熟练掌握圆的面积公式是解题的关键.13.B【分析】根据题意,画出图形即可得出结论.【详解】解:看图以AB 为例,与它既不平行也不相交的棱有HD 、GC 、HE 和GF ,共有4条,故选B .【点睛】此题考查的是长方体的特征,根据题意画出图形是解决此题的关键.14.B【分析】根据圆的面积公式分别计算出小圆和大圆的面积,从而得出答案.【详解】解:根据题意知,小圆的面积为22=4ππ⨯,大圆的面积为2416ππ⨯=, 所以小圆的面积是大圆的面积的41=164,故B 正确. 故选:B .【点睛】本题主要考查圆的面积公式的应用,比值的计算,解题的关键是掌握圆的面积公式2S r π=.15.C【分析】要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.【详解】解:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:()8162ππ÷=, 面积为:2864π20.38ππ⎛⎫⨯=≈ ⎪⎝⎭; 正方形的边长为:1644÷=,面积为:4416⨯=;长方形的长、宽越接近面积越大,就取长为5宽为3,面积为:5315⨯=,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形,圆面积最大.故选:C .【点睛】此题主要考查长方形、正方形、圆形的周长、面积公式,根据周长求出面积是解题的关键.16.A【分析】根据题意可得半径增加后圆增加的面积等于半径增加后圆的面积减去原来圆的面积,即可求解.【详解】解:根据题意得:圆的面积增加了22363 2293819 72.故选∵A【点睛】本题主要考查求圆环的面积,熟练掌握圆的面积公式是解题的关键.17.C【分析】由图可知瓶子底部的半径是2厘米,然后求出水的体积和空余部分的体积即可得出答案.【详解】解:由图得:瓶子底部的半径是2厘米,∵水的体积是:22624ππ⋅⨯=(立方厘米),空余部分的体积是:()221088ππ⋅⨯-=(立方厘米),∵瓶子的容积是24π+8π=32π(立方厘米),故选:C .【点睛】本题考查了圆柱的体积计算,有理数的混合运算,正确计算是解题的关键.18.A【分析】πR 2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角缩小到原来的13,面积缩小到原来的13,(圆心角缩小的基础上)半径扩大3倍面积扩大9倍,总的算起来面积扩大到原来3倍.【详解】原扇形面积=圆心角÷360°×π×R 2,新扇形面积=(圆心角×13)÷360°×π×(3R )2=圆心角÷360×13×π×9R 2 =圆心角÷360°×π×R 2×3,所以新扇形面积:原扇形面积=3:1=3.故选:A【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.19.B【分析】已知一个铁环直径是60厘米,可计算的其周长,再结合滚动的圈数即可计算得操场东端滚到西端长度,再根据另一个铁环的直径,即可求出其周长和它从东端滚到西端要转的圈数.【详解】∵一个铁环直径是60厘米∵铁环周长=π⨯直径=60π∵铁环从操场东端滚到西端转了90圈∵操场东端滚到西端长度=6090=5400ππ⨯∵另一个铁环的直径是40厘米∵另一个铁环周长=π⨯直径=40π∵另一个铁环从东端滚到西端要转的圈数=操场东端滚到西长度÷铁环周长∵另一个铁环从东端滚到西端要转的圈数=540040135ππ÷=故选:B .【点睛】本题考查了圆的周长的知识;求解的关键是熟练掌握圆的周长计算方法,从而完成求解.20.C【分析】由题意知,要求这条小路的面积就是求圆环的面积,已知内圆的周长是18.84米,利用C=2πr 可求得内圆半径,用内圆半径加上环宽1米就是外圆半径,再利用S 圆环=π(R 2-r 2)求得环形的面积,最后再乘以100即可.【详解】内圆半径:18.84÷3.14÷2=3(米),外圆半径:3+1=4(米);小路的面积:3.14×(42-32)=3.14×(25-9)=3.14×7=21.98(平方米);⨯=(颗) .则共需鹅卵石:10021.982198答:共需鹅卵石2198颗.故选:C.【点睛】本题考查了圆环的面积公式的灵活应用,解答关键是把实际问题转化成数学问题中,再把对应的数据代入圆环公式计算即可.解答此题要注意:求圆环的面积要先知道内、外圆的半径,再用外圆面积减去内圆面积.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.故答案为:2【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22.(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ【分析】(1)根据长方体的棱与棱之间的位置关系解答即可;(2)根据长方体棱与面之间的位置关系直接解答即可;(3)根据长方体棱与棱之间的位置关系解答即可.【详解】由题意及图形可得:(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ.故答案为(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ 、棱PQ ;(3)棱MN 、棱NF 、棱BQ 、棱PQ .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键.23.4【分析】根据圆锥的体积公式、圆柱的体积公式计算即可.【详解】解:设圆锥和圆柱的底面积都是s ,圆柱的高为h ,则圆锥的体积=13sh =13s ×12=4s ,圆柱的体积=sh , 由题意得,sh =4s ,解得,h =4,即圆柱的高是4厘米,故答案为:4.【点睛】本题考查的是圆锥、圆柱的计算,解题的关键是掌握圆锥的体积公式、圆柱的体积公式.24.面11ABB A 、面11CDD C【分析】根据长方体的认识,即可求解.【详解】解:由图可知,与棱BC 垂直的平面为面11ABB A 、面11CDD C .故答案为:面11ABB A ,面11CDD C【点睛】本题主要考查了长方体的认识,熟练掌握长方体的特征是解题的关键. 25.4π 【分析】在一个边长为6cm 的正方形纸片上剪下一个最大的圆,则这个最大的圆的直径就是这个正方形的边长即6厘米,由此利用圆的面积=πr 2和正方形的面积=a 2代入数据即可解决问题.【详解】解:π(6÷2)2÷(6×6)=9π÷364π=, 故答案为:4π 【点睛】本题考查了圆的面积与正方形的面积,掌握圆的面积公式与正方形的面积公式是解题的关键.26.64平方厘米【分析】根据正方体的边长为4厘米,可得到正方形的每个面的面积,而与桌面垂直的平面有4个,即可求解.【详解】解:∵正方体的边长为4厘米∵该正方形的每个面:S4416=⨯=(平方厘米)∵与桌面垂直的平面面积之和为:16464⨯=(平方厘米)故答案为:64平方厘米.【点睛】此题主要考查正方形的面积,正确理解与桌面垂直的平面有4个是解题关键.27.1:1【分析】根据圆柱的侧面展开图是正方形,即可知道圆柱底面周长与高相等,即可得出答案.【详解】解:设圆柱底面周长为a,高为h,∵圆柱的侧面展开图是正方形,∵a h=,∵:1:1a h=,故答案为:1:1.【点睛】本题考查了圆柱的展开图,求比值,数形结合得出圆柱的侧面展开图是本题的关键.28.160°【分析】根据面积之比即为圆心角度数之比进行求解即可.【详解】解:由题意可知,三个圆心角的和为360°,∵三个扇形的面积比为2:3:4,∵三个扇形的圆心角度数之比为2:3:4,∵最大的圆心角度数为:4360160234︒⨯=︒++.故答案为:160°.【点睛】本题考查了扇形圆心角的度数问题,掌握周角的度数即三个扇形圆心角的和是360°是解题关键.29.2 360 n rπ【分析】根据扇形的面积公式即可填写本题.【详解】解:半径为r ,圆心角为n°的扇形面积2360n r S π=扇. 故答案为:2360n r π. 【点睛】本题考查了扇形的面积公式的字母表示形式,熟记和掌握公式是解题的关键. 30.240° 【分析】扇形的面积是它所在圆面积的23,那么扇形的圆心角就是它所在圆的圆心角的23,圆的圆心角为360°,那么可用圆心角乘扇形的圆心角占它所在圆的圆心角的分率即可得到答案.【详解】解:360°×23=240°, 故答案为:240°.【点睛】此题主要考查的是:扇形面积与它所在圆的面积的比等于扇形的圆心角与它所在圆的圆心角的比,掌握知识点是解题关键.31.36π或48π立方厘米【分析】根据圆柱体的体积=底面积×高,由于没有说清楚是绕长方形的哪条边旋转,所以分两种情况讨论.【详解】解:绕长所在的直线旋转一周得到圆柱体积为:23436ππ⨯⨯=(立方厘米); 绕宽所在的直线旋转一周得到圆柱体积:24348ππ⨯⨯=(立方厘米).故得到的几何体的体积是36π或48π立方厘米,故答案为:36π或48π立方厘米.【点睛】本题考查圆柱体的体积的求法及面动成体的知识,注意分两种情况讨论,不要漏解.32. 4 4【分析】根据圆锥的体积公式:213V r h π=,圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,体积扩大到原来的4倍,据此解答即可.【详解】解:∵圆的面积公式为2S r π=,∵圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,∵圆锥的体积公式:213V r h π=,∵圆锥的体积扩大到原来的4倍. 故答案为:4;4.【点睛】本题主要考查圆锥体积公式和圆的面积公式的灵活运用,解题的关键关键是熟记圆的面积公式2S r π=和圆锥的体积公式213V r h π=.33.8∵1【分析】设内圆的半径为a ,则外圆的半径为3a ,圆环的面积等于外圆的面积减去内圆的面积,则问题得解.【详解】设内圆的半径为a ,则外圆的半径为3a , 则外圆的面积为:()2239S a a ππ==外圆,内圆的面积为:22S a a ππ==内圆,则圆环的面积为:22298S S S a a a πππ=-=-=圆环外圆内圆, ∵()22881S S a a ππ==圆环内圆:::, 故答案为:8:1.【点睛】本题考查了比的知识、圆的面积以及圆环面积的计算,掌握圆面积的计算公式是解答本题的关键. 34. 1356.48 452.16【分析】由题意知,削成的最大圆柱体的底面直径是12cm ,高也是12cm ,可利用V =sh 求出它的体积,再把圆柱削成最大的圆锥体,则圆锥是与圆柱等底等高的,圆锥的体积就是圆柱体积的13,其要求圆锥的体积可用圆柱的体积乘13即可.【详解】()233.1412212 3.1436121356.48cm ⨯÷⨯=⨯⨯= 311356.48452.16cm 3⨯=故答案为:1356.48;452.16.【点睛】本题考查圆柱、圆锥的体积计算,正确理解题意并熟练掌握体积公式是解题的关键.35. 18.84 12.56【分析】分析:因为从上午9点到9点40分,经过了40分钟,则分针的针尖扫过区域为。
中考数学 平行四边形 培优 易错 难题练习(含答案)附答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析. 【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题; 试题解析:解:(1)AC=AD+AB . 理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°, ∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB , ∴∠DAC=∠BAC=60°, ∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA ≌△CBE , ∴AD=BE , ∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°, ∴AE =245ACAC cos ︒= ∴2AD AB AC +=.2.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD , ∴∠OBE=∠ODF , 在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ), ∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF , 设BE=x ,则 DE=x ,AE=6-x , 在Rt △ADE 中,DE 2=AD 2+AE 2, ∴x 2=42+(6-x )2,解得:x= 133, ∵BD=22AD AB + =213,∴OB=12BD=13, ∵BD ⊥EF ,∴EO=22BE OB -=213, ∴EF=2EO=4133. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标; (2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证△ADB ≌△AOB ; ②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344+. 【解析】 【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题; (2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22=4,AD AC∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.30334-S30334+【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.4.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、622+;(3)、3212++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=2222215OC CD+=+=(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=12,3在Rt△OCE中,222231122OE CE⎛⎫⎛⎫+=++⎪ ⎪⎪⎝⎭⎝⎭622.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=22, ∵FH=223DF DH -=, ∴OF=OM+MH+FH=2132++=321++. ∴OF 的最大值为321++. 考点:四边形综合题.5.如图(1)在正方形ABCD 中,点E 是CD 边上一动点,连接AE ,作BF ⊥AE ,垂足为G 交AD 于F(1)求证:AF =DE ;(2)连接DG ,若DG 平分∠EGF ,如图(2),求证:点E 是CD 中点; (3)在(2)的条件下,连接CG ,如图(3),求证:CG =CD .【答案】(1)见解析;(2)见解析;(3)CG =CD ,见解析. 【解析】 【分析】(1)证明△BAF ≌△ADE (ASA )即可解决问题.(2)过点D 作DM ⊥GF ,DN ⊥GE ,垂足分别为点M ,N .想办法证明AF =DF ,即可解决问题.(3)延长AE ,BC 交于点P ,由(2)知DE =CD ,利用直角三角形斜边中线的性质,只要证明BC =CP 即可. 【详解】(1)证明:如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=1BP=BC,2∴CG=CD.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【答案】(1)见解析;(2)S△B′EC=108 25.【解析】【分析】(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.【详解】(1)由折线法及点E是BC的中点,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B'EC是等腰三角形,又∵EF⊥B′C∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,即AE⊥EF;(2)连接BB'交AE于点O,由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2将AB=4cm,BE=3cm,AE=5cm,∴AO=165cm,∴BO22AB AO125cm,∴BB′=2BO=245cm,∴在Rt △BB 'C 中,B ′C =22BC BB '-=518cm , 由题意可知四边形OEFB ′是矩形,∴EF =OB ′=125, ∴S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.8.猜想与证明:如图1,摆放矩形纸片ABCD 与矩形纸片ECGF ,使B 、C 、G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM 、ME ,试猜想DM 与ME 的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为 .(2)如图2摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME ,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.9.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等;(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因为S△ABC=12 BC•AP,S△DFC=12FC•DQ,所以S△ABC=S△DFC;(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×12×3×4=18.(1)证明:在△ABC与△DFC中,∵{AC DCACB DCFBC FC∠∠===,∴△ABC≌△DFC.∴△ABC与△DFC的面积相等;(2)解:成立.理由如下:如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.∴∠APC=∠DQC=90°.∵四边形ACDE,BCFG均为正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴{APC DQCACP DCQAC CD∠∠∠∠===,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题10.如图1,在长方形纸片ABCD中,AB=mAD,其中m⩾1,将它沿EF折叠(点E. F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设AMnAD=,其中0<n⩽1.(1)如图2,当n=1(即M点与D点重合),求证:四边形BEDF为菱形;(2)如图3,当12n=(M为AD的中点),m的值发生变化时,求证:EP=AE+DP;(3)如图1,当m=2(即AB=2AD),n的值发生变化时,BE CFAM-的值是否发生变化?说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析.【解析】试题分析:(1)由条件可知,当n=1(即M点与D点重合),m=2时,AB=2AD,设AD=a,则AB=2a,由矩形的性质可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出结论.(2)延长PM交EA延长线于G,由条件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性质就可以得出结论.(3)如图1,连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,通过证明△ABM∽△KFE,就可以得出EK KFAM AB=,即BE BK BCAM AB-=,由AB=2AD=2BC,BK=CF就可以得出BE CFAM-的值是12为定值.(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD ,∴AB-AE="CD-CF." ∴BE="DF." ∴BE=DE .Rt △AED 中,由勾股定理,得222AE DE AD =-,即2222AE AD AE AD ()=--,∴AE=34AD. ∴BE=2AD-34AD=54. ∴554334AD BE AE AD ==. (2)如图3,延长PM 交EA 延长线于G ,∴∠GAM=90°.∵M 为AD 的中点,∴AM=DM .∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠A=∠B=∠C=∠D=90°,AB ∥CD.∴∠GAM=∠PDM .在△GAM 和△PDM 中,∠GAM =∠PDM ,AM =DM ,∠AMG =∠DMP , ∴△GAM ≌△PDM (ASA ).∴MG=MP .在△EMP 和△EMG 中,PM =GM ,∠PME =∠GME ,ME =ME ,∴△EMP ≌△EMG (SAS ).∴EG=EP .∴AG+AE=EP .∴PD+AE=EP ,即EP=AE+DP .(3)12BE CF AM -=,值不变,理由如下: 如图1,连接BM 交EF 于点Q ,过点F 作FK ⊥AB 于点K ,交BM 于点O ,∵EM=EB ,∠MEF=∠BEF ,∴EF ⊥MB ,即∠FQO=90°.∵四边形FKBC 是矩形,∴KF=BC ,FC=KB.∵∠FKB=90°,∴∠KBO+∠KOB=90°.∵∠QOF+∠QFO=90°,∠QOF=∠KOB ,∴∠KBO=∠OFQ.∵∠A=∠EKF=90°,∴△ABM ∽△KFE.∴EK KF AM AB =即BE BK BC AM AB-=.∵AB=2AD=2BC ,BK=CF ,∴12BE CF AM -=. ∴BE CF AM-的值不变.考点:1.折叠问题;2.矩形的性质;3.全等三角形的判定和性质;4.勾股定理;5.相似三角形的判定和性质.。
初三数学易错题100道

初三数学易错题100道初三是初中学习的关键阶段,数学作为重要学科,同学们在学习过程中难免会遇到各种易错题。
下面为大家整理了 100 道初三数学易错题,希望能帮助大家查漏补缺,提高数学成绩。
一、函数部分1、已知函数 y =(m 1)x + m² 1 是正比例函数,则 m 的值为()A 1B -1C ±1D 0【易错点】忽略正比例函数的定义,即形如 y = kx(k 为常数,k ≠ 0)的函数。
【答案】B【解析】因为函数 y =(m 1)x + m² 1 是正比例函数,所以 m² 1 = 0 且m 1 ≠ 0,解得 m =-1。
2、对于二次函数 y = x² 2x + 2,当 x ()时,y 随 x 的增大而增大。
A < 1B > 1C <-1D >-1【易错点】对二次函数的对称轴和单调性理解不清。
【答案】B【解析】二次函数 y = x² 2x + 2 的对称轴为 x = 1,且开口向上,所以当 x > 1 时,y 随 x 的增大而增大。
3、函数 y =中,自变量 x 的取值范围是()A x ≠ 0B x >-2C x ≠ -2D x ≠ 2【易错点】忽略分母不能为 0 的条件。
【答案】C【解析】要使函数有意义,分母 x +2 ≠ 0,即x ≠ -2。
二、几何部分1、一个三角形的两边长分别为 3 和 7,第三边长为整数,则第三边的长度可能是()A 4B 5C 6D 9【易错点】未考虑三角形三边关系:两边之和大于第三边,两边之差小于第三边。
【答案】C【解析】设第三边为 x,根据三角形三边关系可得 7 3 < x < 7 +3,即 4 < x < 10,因为 x 为整数,所以 x 可能是 5、6、7、8、9,故选 C。
2、在平行四边形 ABCD 中,∠A :∠B :∠C :∠D 的值可能是()A 1 : 2 : 3 : 4B 1 : 2 : 2 : 1C 2 : 1 : 2 : 1D 2 : 2 :1 : 1【易错点】不清楚平行四边形的对角相等。
2023年中考数学一次函数综合易错题(含答案)

2023年中考数学一次函数综合易错题(含答案)一、单选题1.一次函数31y x =-+的图象经过( ) A .一、二、四象限 B .一、三、四象限 C .一、二、三象限D .二、三、四象限2.如图,直线y kx b =+ (k ≠0)经过点A (-3,6),则不等式6kx b +> 的解集为( ).A .x >-3B .x <-3C .x <6D .x >63.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =+的图象大致是( )A .B .C .D .4.如图,线段AB =5,动点P 以每秒1个单位长度的速度从点A 出发,沿线段AB 运动至点B ,以点A 为圆心,线段AP 长为半径作圆.设点P 的运动时间为t ,点P ,B 之间的距离为y ,⊙A 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .一次函数关系, 二次函数关系D .正比例函数关系,二次函数关系5.笔直的海岸线上依次有A 、B 、C 三个港口,甲船从A 港口出发,沿海岸线匀速驶向C 港口,1小时后乙船从B 港口出发,沿海岸线匀速驶向A 港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B 港口的距高()y km 与甲船行驶时间(h)x 之间的函数关系如图所示,给出下列说法错误的是( )A .A 、B 港口相距400km ; B .B 、C 港口相距200km ;C .甲船的速度为100km/h ;D .乙船出发4h 时,两船相距220km .6.如图,直线2y x b =+与直线1y ax =+相交于点(1,1.5)-,则不等式12ax x b +<+的解集是( )A .1x <-B .1x >-C . 1.5x >D . 1.5x <7.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个8.一次函数12y x n =-+图像上有两点()12,A y -,()23,B y ,则1y 、2y 的大小关系为( ) A .12y y >B .12y y =C .12y y <D .无法确定9.在同一平面直角坐标系中,函数y =ax +b 与=by ax(其中a ,b 是常数,ab ≠0)的大致图象是( )A .B .C .D .10.在直角坐标系中,将直线y =﹣x 向下平移2个单位后经过点(a ,2),则a 的值为( ) A .0B .4C .﹣4D .﹣311.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =cx(c ≠0)在同一直角坐标系中的图像可能是( )A .B .C .D .12.已知一次函数21y kx k =-+(k 为常数,且0k ≠),无论k 取何值,该函数的图像总经过一个定点,则这个定点的坐标是( ) A .()0,1B .()2,1C .()1,0D .()1,2二、填空题13.已知函数y =2xm ﹣1是正比例函数,则m =_____.14.一次函数y =2x +3的图象上有两点A (1,y 1)、B (﹣2,y 2),则y 1与y 2的大小关系是y 1_____y 2.15.若|1|(2)m y m x -=-是正比例函数,则m 的值为______.16.如图,已知函数2y x b =+与函数3y kx =-的图像交于点P ,则不等式32kx x b ->+的解集是______.17.函数23x y -=的图象在y 轴的截距是______. 18.某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为______cm . 19.疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种.甲地经过a 天后接种人数达到30万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y (万人)与各自接种时间x (天)之间的关系如图所示,当乙地完成接种任务时,甲地已接种疫苗的人数为______万人.20.如图,在平面直角坐标系中,点A ,B 的坐标分别为()1,3,()2,0,点P 是y 轴上的一个动点,当ABP 的周长最小时,ABP 的面积为 _____.三、解答题21.“冰墩墩”和“雪容融”分别是北京2022年冬季奥运会和冬残奥运会的吉祥物.该吉祥物深受全世界人民的喜爱,某生产厂家经授权每天生产两种吉祥物挂件共600件,且当天全部售出,原料成本、销售单价及工人生产提成如下表所示:设该厂每天制作“冰墩墩”挂件x 件,每天获得的利润为y 元. (1)求出y 与x 之间的函数关系式;(2)若该厂每天投入总成本不超过23800元,应怎样安排“冰墩墩”和“雪容融”制作量,可使该厂一天所获得的利润最大,请求出最大利润和此时两个挂件的制作量.22.已知一次函数y =(3 - k )x - 2k 2 + 18 (1)k 为何值,它是正比例函数?(2)k 满足什么条件时,y 随x 的增大而减小?23.“五一”假期,小明一家将随团到某风景区旅游,集体门票的收费标准是:25人以内(含25人),每人30元;超过25人时,超过部分每人20元. (1)写出应收门票费y (元)与游览人数x (人)之间的关系式;(2)若小明一家所在的旅游团购门票花了1250元,则该旅游团共有多少人.24.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(020x<<)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?25.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?26.如图,直线y=kx+b(k>0)与x轴、y轴分别交于点A,B,且OA=3,OB=4.(1)求直线AB的函数表达式;(2)若C是第一象限内的直线AB上一点,当⊙AOC的面积为6时,求点C的坐标.27.如图,已知抛物线2=++(a≠0)的对称轴为直线x=﹣1,且抛物线y ax bx c经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使MA+MC的值最小,求点M的坐标;(3)设P为抛物线的对称轴x=﹣1上的一个动点,求使⊙BPC为直角三角形的点P 的坐标.28.如图1,直线y=2x+b过点A(﹣1,﹣4)和B(m,8),它与y轴交于点G,点P是线段AB上的一个动点.(1)求出b的值,并直接写出m=,点G的坐标为;(2)点P关于坐标轴对称的点Q落在直线y=﹣12x﹣52上,求点P的坐标;(3)过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.①如图2,将⊙PGE沿直线PG翻折,当点E的对应点E′落在x轴上时,求点P 的坐标;②在点P从A运动到点B的过程中,点E′也随之运动,直接写出点E′的运动路径长为.参考答案1.A2.A3.A4.C5.D6.B7.D8.A9.A10.C11.A12.B13.2 14.> 15.0 16.4x < 17.23- 18.24 19.36 20.2 21.(1)由题意得:()()()5063641728600y x x =--+---()236000600x x =+<<;(2)解:由题意得()()()36628760023800x x +++-≤, ⊙42210003523800x x +-≤, ⊙400x ≤, ⊙20>,⊙y 随x 增大而增大,⊙当400x =时,y 最大,最大为24003600=4400⨯+, 600-400=200件,⊙当每天生产“冰墩墩”400件,“雪容融”200件时,可使该厂一天所获得的利润最大,最大为4400元. 22.(1)⊙函数是正比例函数,⊙点(0,0)在函数图象上,代入图象解析式得:0=-2k 2+18, 解得:k =±3.又⊙y =(3-k )x -2k 2+18是正比例函数, ⊙3-k ≠0, ⊙k ≠3.故k =-3. (2)⊙y 随x 的增大而减小,⊙根据一次函数图象性质知,系数小于0,即3-k <0, 解得:k >3.23.(1)解:(1)由题意得:当025x ≤≤时,票价是每人30元 ⊙30y x =;当25x >时,超过部分每人20元, ⊙()3025252020250y x x =⨯+-⨯=+,⊙综上所述:()()300252025025y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(x 为整数);(2)解:⊙小明一家所在的旅游团购门票花了1250元, ⊙12503041.725÷≈>,⊙旅游团购门票的张数超过25张, ⊙202501250x +=, 解得50x =,⊙该旅游团共有50人. 答:该旅游团共有50人.24.解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+, 将点(1,110)、(3,130)代入一次函数表达式得:1101303k bk b =+⎧⎨=+⎩,解得:10100k b =⎧⎨=⎩,故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=, 整理,得210240x x --=. 解得112x =,22x =-(舍去). 所以5543x -=.答:这种消毒液每桶实际售价43元.25.(1)解:由图可知,设一次函数的解析式为y kx b =+,把点(25,50)和点(35,30)代入,得25503530k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩, ⊙一次函数的解析式为2100y x =-+;(2)解:根据题意,设当天玩具的销售单价是x 元,则(10)(2100)600x x -⨯-+=,解得:140x =,220x =,⊙当天玩具的销售单价是40元或20元;(3)解:根据题意,则(10)(2100)w x x =-⨯-+,整理得:22(30)800w x =--+;⊙20-<,⊙当30x =时,w 有最大值,最大值为800;⊙当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元. 26.(1)⊙OA =3,OB =4,⊙A (3,0),B (0,-4),把A (3,0),B (0,-4)分别代入y =kx +b 得304k b b +=⎧⎨=-⎩, 解得434k b ⎧=⎪⎨⎪=-⎩, ⊙直线AB 的解析式为y =43x -4;(2)设C 443t t ⎛⎫- ⎪⎝⎭,, ⊙⊙AOC 的面积为6, ⊙12×3×443t ⎛⎫- ⎪⎝⎭=6, 解得t =6,⊙点C 的坐标为(6,4).27.(1)解:抛物线的对称轴为直线x =﹣1,且抛物线经过A (1,0), 故点B 的坐标为(﹣3,0),设抛物线的表达式为y =()()12a x x x x --=()()()21323a x x a x x -+=+-,将点C 坐标代入上式得:3=a (﹣3),解得a =﹣1,⊙抛物线的解析式为:223y x x =--+;把B (﹣3,0),C (0,3)代入y =mx +n 得:303n m n =⎧⎨=-+⎩,解得31n m =⎧⎨=⎩, ⊙直线的解析式为y =x +3;(2)解:设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小.把x =﹣1代入直线y =x +3得y =2,故M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);(3)解:设P (﹣1,t ),B (﹣3,0),C (0,3),则2BC =18,2PB =()2213t -++=24t +,()2231PC t =-+,若点B 为直角顶点时,则222BC PB PC +=,即18+24t +=()231t -+,解得t =﹣2;若点C 为直角顶点时,则BC 2+PC 2=PB 2,即24t +=18+()231t -+,解得t =4,若P 为直角顶点时,则222BC PB PC =+,则24t ++()231t -+=18,解得t ,综上,点P 的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1或(﹣1). 28.解:(1)把点A (﹣1,﹣4)代入直线y =2x +b 得-2+b=-4,解得 b=-2,所以直线解析式为y=2x -2,把点B (m ,8)代入y=2x -2得2m -2=8,解得m=5,令x=0,则y=-2,⊙点G 坐标为(0,-2)故答案为:b=-2,m=5,G ((0,-2));(2)⊙点P 在直线AB 上,⊙设点P 坐标为(p ,2p -2).当点P 与Q 关于y 轴对称时,则点Q 坐标为(-p ,2p -2),代入y =﹣12x ﹣52得 152222p p -=-, 解得 13p =-,此时2p -2=83-,⊙P 1坐标为1833⎛⎫- ⎪⎝⎭,-, 当点P 与Q 关于x 轴对称时,则点Q 坐标为(p ,-2p+2),代入y =﹣12x ﹣52得 152222p p --=-+, 解得 3p =,则2p -2=4,⊙P 2坐标为()3,4,⊙点P 的坐标为1833⎛⎫- ⎪⎝⎭,-或()3,4; (3)①如图2,设直线AB 与x 轴交于点M ,则2x -2=0,⊙x=1,⊙点M 坐标为(1,0),⊙GE⊙x 轴,⊙⊙EGM=⊙E'MG ,⊙⊙PGE 沿直线PG 翻折得到⊙⊙PGE '⊙⊙EGM=⊙E'GM ,⊙⊙E'MG=⊙E'GM ,⊙E'M=E'G ,设GE=GE'= E'M=m ,在Rt⊙GE'O 中,()22221m m =+-,解得 52m =,⊙点P 横坐标为52把x=52代入y=2x -2得y=3,⊙点P 坐标为5,32⎛⎫ ⎪⎝⎭;②由题意得,当点P 位于点A 时,点E 的横坐标为-1,当点P 运动点B 时,点E 横坐标为5,⊙P 从A 运动到点B 的过程中,点E 的运动路径长为6,⊙点E ′与点E 关于直线AB 对称,⊙P 从A 运动到点B 的过程中,点E ′的运动路径长也为6.故答案为为:6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年中考数学易错题(含答案解析)历年中考数学易错题汇编1、数轴上,若A、B为原点两旁的点,则它们表示的两个有理数是()。
A、互为相反数B、绝对值相等C、符号相同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是()。
A、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时速度为m千米/小时,逆流航行时速度为(m-6)千米/小时,则水流速度为()。
A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有()。
A、1个B、3个C、4个D、无数个5、下列说法错误的是()。
A、两点确定一条直线B、线段是直线的一部分C、一条直线是一个平面D、把线段向两边延长即是直线6、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是()。
A、当m≠3时,有一个交点B、m1时,有两个交点C、当m1时,有一个交点D、不论m为何值,均无交点7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)2=R2,则两圆的位置关系是()。
A、内切B、外切C、内切或外切D、相交9、有理数中,绝对值最小的数是()。
A、-1B、1C、0D、无穷小10、1的倒数的相反数是()。
A、-1B、-2C、2D、1/211、若|x|=x,则-x一定是()。
A、正数B、非负数C、负数D、非正数12、两个有理数的和除以这两个有理数的积,其商为1,则这两个有理数为()。
A、互为相反数B、互为倒数C、互为相反数且不为0D、有一个为113、长方形的周长为x,宽为2,则这个长方形的面积为()。
A、2xB、2(x-2)C、x-4D、x-214、“比x的相反数大3的数”可表示为()。
A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列说法正确的是()。
A、a2比a大B、a2比a小C、a2与a相等D、a2与a的大小不能确定16、数轴上,A点表示-1,现在A开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是()。
A、-1B、-7C、1D、817、将线段AB延长到C,使得BC=AB,然后将线段BA 延长到D,使得AD=AB。
根据勾股定理可知,三角形ABC和三角形ABD为等腰直角三角形。
因此,AC=BC+AB=2AB,BD=AD-AB=2AB。
所以CD=AC+BD=4AB=16cm。
选项A。
18、1-2=-1,因此答案为B。
19、将方程化简为x^3-3x^2+2x=0,得到x(x-1)(x-2)=0.因此,x=0,1,2.选项B。
20、将方程化简为3y^2+5y-10=0.选项B。
21、将方程化简为x^2-2|x|+1=0.因为|x|≥0,所以当x=0时,方程成立。
当x≠0时,方程可以化简为(x-1)^2=1,因此有两个相等的实数根。
选项A。
22、当x=0时,y=8.因此答案为B。
23、当x>a时,x<-a,因此无解。
当x<-a时,x<a,因此解为全体实数。
因此选项B。
24、当x≤3时,y=2/x≥2/3.因此选项A。
25、0.4的算术平方根为0.632.因此答案为B。
26、选项A符合题意。
一开始速度较慢,途中车子发生故障停下修理,修好后加快速度,因此速度先后变化。
选项B、C、D都不符合题意。
27、新数组的平均数为kx,方差为k^2s^2.因此选项A。
28、将方程化简为x-1=2x+a,解得x=-a-1.因此,a≠-1.选项B、C、D都不符合题意。
29、选项C为中心对称图形,同时也是关于y轴对称的,因此是轴对称图形。
选项A、B、D都只是中心对称图形或轴对称图形。
30、选项C为平行四边形,既是中心对称图形,又是关于对角线互相垂直的两条对称轴对称的,因此也是轴对称图形。
选项A、B、D只是中心对称图形或轴对称图形。
31、一个三角形的三个内角不相等,则它的最小角不大于()A、30°B、45°C、55°D、60°32、A、300°B、450°C、550°D、600°33、已知三角形内的一个点到它的三边距离相等,那么这个点是()A、三角形的外心B、三角形的重心C、三角形的内心D、三角形的垂心34、如图,设AB=1,S△OAB=π/3 cm²,则弧AB长为()A、π/3 cmB、2/3 cmC、π/6 cmD、1/2 cm35、下列三角形中是直角三角形的个数有()A、1个B、2个C、3个D、4个36、①三边长分别为3:1:2的三角形②三边长之比为1:2:3的三角形③三个内角的度数之比为3:4:5的三角形④一边上的中线等于该边一半的三角形37、如图,△ABC与△XXX都是正三角形,且ABCD C、AE>DD D、无法确定38、在圆O中,弧AB=2CD,那么弦AB和弦CD的关系是()A、AB=2CD B、AB>2CD C、AB<2CD D、AB与CD不可能相等39、在等边三角形ABC外有一点D,满足AD=AC,则∠BDC的度数为()A、30° B、60° C、150° D、30°或150°40、△XXX的三边a、b、c满足a≤b≤c,△XXX的周长为18,则()A、a≤6 B、b6 D、a、b、c中有一个等于641、如图,在△ABC中,∠XXX∠,AC=1,BC=2,则下列说法正确的是()A、∠B=30° B、斜边上的中线长为1 C、斜边上的高线长为2 D、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B的直线BE(BE 交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得到等腰三角形EBA,那么下列结论中正确的是()删除该段落,因为没有给出结论。
4、已知$a-b=1$。
$b+c=2$。
则$2a+2c+1=5$。
5、当$x>3$时,$|3-x|=x-3$。
6、从3点到3点30分,分针转了$180$度,时针转了$15$度。
7、某种商品的标价为120元,若以标价的90%出售,仍相对进价获利20%,则该商品的进价为$80$元。
8、为使某项工程提前20天完成,需将原来的工作效率提高25%,则原计划完成的天数为100天。
9、因式分解:$-4x^2+y^2=-(2x+y)(2x-y)$,$x^2-x-6=(x-3)(x+2)$。
10、计算:$a^6\div a^2=a^4$,$(-2)^{-4}=\dfrac{1}{16}$,$-2^2=-4$。
11、如果某商品降价$x\%$后的售价为$a$元,那么该商品的原价为$\dfrac{100a}{100-x}$元。
12、已知$A$、$B$、$C$是数轴上的三个点,点$B$表示1,点$C$表示-3,$AB=2$,则$AC$的长度是$4$或$-4$。
13、甲乙两人合作一项工作$a$时完成,已知这项工作甲独做需要$b$时完成,则乙独做完成这项工作所需时间为$\dfrac{ab}{b-a}$。
14、已知$(-3)^2=a^2$,则$a=3$。
15、$P$点表示有理数2,那么在数轴上到$P$点的距离等于3个单位长度的点所表示的数是$-1$或$5$。
16、$a$、$b$为实数,且满足$ab+a+b-1=0$,$a^2b+ab^2+6=0$,则$a^2-b^2=2$。
17、已知一次函数$y=(m^2-4)x+1-m$的图象在$y$轴上的截距与一次函数$y=(m^2-2)x+m^2-3$的图象在$y$轴上的截距互为相反数,则$m=-2$。
18、关于$x$的方程$(m^2-1)x^2+2(m+1)x+1=0$有两个实数根,则$m\in(-\infty,-1)\cup(1,+\infty)$。
19、关于$x$的方程$(m-2)x^2-2x+1=0$有解,那么$m\neq 0$且$m\neq 2$。
20、已知方程$x^2+(4-2m)x+m^2-5=0$的两根之积是两根之和的2倍,则$m=2$或$m=6$。
21、函数$y=x^2+(m+2)x+m+5$与$x$轴的正半轴有两个交点,则$m\in(-\infty,-3)\cup(-1,+\infty)$。
22、若抛物线$y=x^2+\dfrac{2}{k-1}x-1$与$x$轴有交点,则$k\in(-\infty,-1)\cup(1,+\infty)$。
23、关于$x$的方程$x^2+(t-2)x+5-t=0$的两个根都大于2,则$t\in(5,+\infty)$。
24、函数$y=(2m-5)x^2+2(m-3)x+1$的两个零点分别为$x_1$和$x_2$,且满足$x_1-x_2=1$和$x_1+x_2=-\dfrac{1}{m}$,则$m=-\dfrac{1}{5}$。
25、已知方程组$\begin{cases}m^2-3m-1=x\\x+y+a+2=y\\x-y+1=z\end{cases}$的两个解为$(x_1,y_1,z_1)$和$(x_2,y_2,z_2)$,且满足$x_1+x_2=2$,$y_1+y_2=0$,$z_1+z_2=3$,则$(x,y,z)=(1,-1,2)$。
1.删除此段,因为没有任何内容或意义。
2.若$x$和$a$是两个不等的正数,则$a$的取值范围为$(0,x)$。
3.在半径为5cm的圆$O$中,弦$AB$与弦$CD$平行,且$AB=6$cm,$CD=8$cm,则弦$AB$和弦$CD$的距离为$\frac{1}{2}\sqrt{5^2-(\frac{AB+CD}{2})^2}=\frac{1}{2}\sqrt{5^2-(7)^2}=\frac{1}{2}\sqrt{6}$cm。
4.已知$AB$是圆$O$的直径,点$C$在圆$O$上,过点$C$引直径$AB$的垂线,垂足是$D$,点$D$分这条直径成2:3的两部分,若圆$O$的半径为5cm,则$BC$的长为$\sqrt{5^2-\left(\frac{2}{5}\times AB\right)^2}=\sqrt{5^2-\left(\frac{2}{5}\times 2\times 5\right)^2}=3$cm。
5.两圆相交于$A$、$B$,半径分别为2cm和2cm,公共弦长为2cm,则$\angle O_1AO_2=60^\circ$。
6.在圆$O$的平面上取一点$P$作圆$O$的割线,交圆$O$于$A$、$B$,已知$PA=2$,$PB=3$,$PO=4$,则圆$O$的半径为$\sqrt{PO^2-\left(\frac{PA+PB}{2}\right)^2}=\sqrt{4^2-\left(\frac{2+3}{2}\right)^2}=\sqrt{15}$。