中考数学易错题精选附详细答案解析

合集下载

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)一、选择题1.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.2.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-的自变量x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|9-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦122723333-=-=-是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.3.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.4.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.若A(﹣3,y 1)、B(0,y 2)、C(2,y 3)为二次函数y =(x+1)2+1的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.6.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A .【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,2020D 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是( )A .B .C .D .【答案】A【解析】【分析】 火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化9.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】试题解析:设BP=x,CQ=y,则AP2=42+x2,PQ2=(6-x)2+y2,AQ2=(4-y)2+62;∵△APQ为直角三角形,∴AP2+PQ2=AQ2,即42+x2+(6-x)2+y2=(4-y)2+62,化简得:y=−14x2+32x整理得:y=−14(x−3)2+94根据函数关系式可看出D中的函数图象与之对应.故选D.【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.10.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.11.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.12.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.13.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:①他们都骑行了20km ;②乙在途中停留了0.5h ;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km ;乙在途中停留了0.5h ;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B .考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.14.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x xy x xx x⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C选项符合题意.故选:C.【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A .B .C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.17.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A 3B3C.2 D3【答案】A 【解析】【分析】本题根据图2判断△EFG 的面积y 最小时和最大时分别对应的x 值,从而确定AB ,EG 的长度,求出等边三角形EFG 的最小面积.【详解】由图2可知,x =2时△EFG 的面积y 最大,此时E 与B 重合,所以AB =2,∴等边三角形ABC∴等边三角形ABC由图2可知,x =1时△EFG 的面积y 最小,此时AE =AG =CG =CF =BG =BE ,显然△EGF 是等边三角形且边长为1,所以△EGF 的面积为4, 故选A .【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.18.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE --=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+- 解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km 故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应。

(易错题精选)初中数学有理数难题汇编附解析

(易错题精选)初中数学有理数难题汇编附解析

(易错题精选)初中数学有理数难题汇编附解析一、选择题1.如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C表示的数.【详解】∵点A,B互为相反数,∴AB的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C在正半轴距原点3个单位长度,∴点C表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键. 2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】 先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果. 【详解】2019-=2019,2019的倒数为12019故选C【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.4.已知a b >,下列结论正确的是( ) A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.7.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.8.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确;C 、3 a 与3a -互为相反数,故C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a <0,故B 不符合题意;C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.13.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.如果a+b>0,ab>0,那么()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0【答案】A【解析】解:因为ab>0,可知ab同号,又因为a+b>0,可知a>0,b>0.故选A.15.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.20.已知235280x y x y +--+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】 解:∵235280x y x y +--+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.。

九年级上册数学易错题目汇总,初三数学易错题集锦及答案解析

九年级上册数学易错题目汇总,初三数学易错题集锦及答案解析

九年级上册数学易错题汇总1. 关于X 的方程¥+21-7〃 = 0有两个相等的实数根,则,〃的值是()A.m = 1 = - 1 = 2 D.〃,=-2【考点】根的判别式.【解答】由题意可知:△=4+4m = 0,in = - 1,故选:B.2. 下列关于X 的方程是一元二次方程的是()A./+1 =0B.x+1 = 1X (x+l ) (x-l ) *七€+1故本选项符合题意;C. ”+Z )x+f = O D.【考点】一元二次方程的定义.【解答】刀、是一元二次方程,不是一元二次方程,故本选项不符合题意;。

、不是一元二次方程,故本选项不符合题意;D 、 不是一元二次方程,故本选项不符合题意;故选:A.3.一个容器盛满纯药液63千克,第一次倒出一部分药液后加满水,第二次 又倒出同样多的药液,再加满水,此时容器内的纯药液剩下28千克,那么每次倒出的药液是()A.20千克 B.21千克 C.22千克 D.175千克【考点】一元二次方程的应用.【解答】设每次倒出药液x升,63-x依题意,得:士寻二1-咎63 63整理,得:一i26r+2205=0,解得:XI二21,.K2二105(不合题意,舍去).故选:B.4.已知关于x的一元二次方程(4 1)r—2x+2=0有两个不相等的实数根,则次的取值范围值是()A.k<旦B.k<2CA〈岂且《兴1DAW岂且上尹L2222[考点】一元二次方程的定义;的判别式.【解答】根据题意得:△二〃-4w=4・8(*1)=12.8左>0,且X-1产0,:上且左乂1./'JT得故选:C.5.—元二次方程寸一6x一1=0配方后可变形为()A.(X-3)2=8B.(x-3)2=10 c.(x+3)J8 D.(x+3)2 =10【考点】解一元二次方程•配方法.【解答】・.・*2-6*-1=0,•*-x2-6x=1,.•-(x-3)2=10,故选:8.6.某商品原售价为60元,4月份下降了20%,从5月份起售价开始增长,6月份售价为75元,设5、6月份每个月的平均增长率为.「则的值为()A.15% B.25% C.20% D.30%【考点】一元二次方程的应用.【解答】设5、6月份每个月的平均增长率为X,由题意,得60(1-20%)(1+x)2=755得X=0.25二25%(舍去负值)牧选:B.7.一元二次方程X2-5.X+1=。

中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。

中考二元一次方程组易错题50题-含答案解析

中考二元一次方程组易错题50题-含答案解析

中考二元一次方程组易错题50题含答案解析一、单选题1.方程组632x y x y +=⎧⎨-=-⎩的解是( ).A .51x y =⎧⎨=⎩B .42x y =-⎧⎨=-⎩C .51x y =-⎧⎨=-⎩D .42x y =⎧⎨=⎩2.在用代入消元法解二元一次方程组32346x y x y +=-⎧⎨-=⎩时,消去未知数x 后,得到的方程为( )A .()32346y y ---=B .()32346y y --+=C .()32346y y -+-=D .()32346y y -++=3.六十载春华秋实,一甲子桃李芬芳.2023年10月,重庆外国语学校即将迎来六十华诞,学校决定面向全校学生征集60周年校庆标识、吉祥物设计方案.初一年级某班准备了若干盒巧克力奖励给本班投稿的同学,若每3位同学奖励一盒巧克力,则少2盒;若每4位同学奖励一盒巧克力,则又多了2盒,设该班投稿的同学有x 人,巧克力有y 盒,依题意得方程组( )A .3242x y x y =+⎧⎨=-⎩B .332442x y x y =+⨯⎧⎨=-⨯⎩C .332442x y x y =-⨯⎧⎨=+⨯⎩D .3242x y x y =-⎧⎨=+⎩4.把一根长为7m 的钢管截断,从中得到两种不同规格的钢管,已知两种规格的钢管长分别为2m 和1m ,为了不造成浪费,不同的截法有( ) A .1种B .2种C .3种D .4种5.若258m x y -+=是关于x 、y 的二元一次方程,则m 的值是( ) A .3B .2C .1D .06.将231x y -=变形,用含x 的代数式表示y ,正确的是( ) A .132yx +=B .132yx -=C .123xy -=D .213x y -=7.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米,设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.207717066x yx y+=⎧⎪⎨+=⎪⎩B.207717066x yx y-=⎧⎪⎨+=⎪⎩C.207717066x yx y-=⎧⎪⎨-=⎪⎩D.7717066772066x yx y⎧+=⎪⎪⎨⎪-=⎪⎩8.国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.89.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.1510.尹老师准备将100元钱全部用于购买A,B两种款式的笔记本作为奖品(两种款式的都要买).已知一个A款笔记本10元,一个B款笔记本15元,尹老师的购买方案共有()A.1种B.2种C.3种D.4种11.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是()A.B.C.D.12.下列等式中,是二元一次方程的是()A.xy=1B.y=3x﹣1C.1xy+=D.x2+x﹣3=013.已知方程组233x yx y n-=⎧⎨+=⎩中的x,y互为相反数,则n的值为()A.2B.﹣2C.0D.414.已知237351x yx y-=-⎧⎨+=-⎩的解21xy=-⎧⎨=⎩,则2(2)3(-1)73(2)5(-1)1x yx y+-=-⎧⎨++=-⎩的解为()A.-42xy=⎧⎨=⎩B.5xy=-⎧⎨=⎩C.5xy=⎧⎨=⎩D.41xy=-⎧⎨=⎩15.已知关于x,y的方程组35225x y ax y a-=⎧⎨-=-⎩,则下列结论中正确的是()①当a=5时,方程组的解是1020xy=⎧⎨=⎩;①当x,y的值互为相反数时,a=20;①当22x y⋅=16时,a=18;①不存在一个实数a使得x=y.A.①①①B.①①①C.①①①D.①①16.二元一次方程组1,3x yx y-=⎧⎨+=⎩的解是()A.2,1xy=⎧⎨=⎩B.1,2xy=-⎧⎨=-⎩C.3,2xy=⎧⎨=⎩D.1,2xy=⎧⎨=⎩17.解方程组278ax bycx y+=⎧⎨-=⎩时,一学生把c看错而得22xy=-⎧⎨=⎩,而正确的解是32xy=⎧⎨=-⎩,那么a、b、c的值是()A.a=4,b=-2,c=5B.a=4,b=5,c=-2C.a=-2,b=4,c=5D.a=5,b=4,c=-218.长方形ABCD可以分割成如图所示的七个正方形.若10AB=,则AD等于()A.252B.353C.14011D.1501119.方程2x+3y=7的正整数解有( ) A .0个B .1个C .2个D .无数个二、填空题20.小亮解方程组2?212x y x y +=⎧⎨-=⎩的解为5?x y =⎧⎨=⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和?,请你帮他找回?=________,●=________. 21.已知26x y -=,用x 的代数式表示y ,则y = _________ . 22.已知方程210x y --=,用含x 的代数式表示y ,得y =_______. 23.已知()57623m mn ab ab a b +÷-=-,求n m =_______.24.已知方程425x y +=,用关于x 的代数式表示y ,则y =__________.25.某水果店销售50千克香蕉,第一、二、三天的售价分别为9元/千克、6元/千克、3元/千克,三天全部售完,销售额共计270元.则第三天比第一天多销售香蕉__________千克.26.若不等式组00x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组521ax y x by +=⎧⎨-=⎩的解为_______.27.方程4320x y +=的所有正整数解为______.28.若有理数a ,b 满足()22640a b a b -+++=,则a +b 的值为______.29.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形(如图甲);小红看见了,说:“我也来试一试,”结果小红七拼八凑,拼成了如图乙那样的正方形,中间还留下了一个洞,恰好是边长为3mm 的小正方形,则每个小长方形的面积为_______2mm .30.已知关于x 、y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,则(a +b )2020的值为___.31.我图古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数.物价几何?”意思是:现在有几个人共同出钱去买物品如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,问有多少人,物品的价格是多少?设有x 人.物品的价格为y 元,可列方程组为________.32.解方程组1226310x y z x y z x y z ++=⎧⎪+-=⎨⎪-+=⎩时,消去字母z ,得到含有未知数x ,y 的二元一次方程组是___.33.点()5,4A -和点()43,2B a b a b +-关于y 轴对称,则a b -的值是______.34.若关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为13x y =-⎧⎨=⎩,则含x ,y 的多项式A 可以是___(写出一个即可).35.将方程52x y +=写成用含x 的代数式表示y ,则y =_______________.36.若关于x 、y 的二元一次方程组213x y m x y +=+⎧⎨-=⎩的解满足2x+3y >0,则m 满足的亲件是_____.37.已知|2x+y+1|+(x+2y ﹣7)2=0,则(x+y )2=________.38.在等式2y ax bx c =++中,当x 1=-时,y 0=;当x 5=时,y 60=;当x 2=时,y 3.=则a b c ++= ______ .39.若关于x 、y 的二元一次方程组33211x my x ny -=-⎧⎨+=⎩的解是13x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()33211a b m a b a b n a b ⎧+--=-⎪⎨++-=⎪⎩的解是______.三、解答题40.计算:(1)解方程组:m n2522m 3n 4⎧-=⎪⎨⎪+=⎩; (2)解不等式:()()11x 73x 132--≥+41.阅读下列解方程组的部分过程,回答下列问题解方程组25323x y x y -=⎧⎨-=⎩①② 现有两位同学的解法如下:解法一;由①,得x =2y+5,① 把①代入①,得3(2y+5)﹣2y =3.…… 解法二:①﹣①,得﹣2x =2.……(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.(2)请你任选一种解法,把完整的解题过程写出来42.某一天,文具经营户花360元从文具批发市场批发了自动铅笔和钢笔共80支,到文具店去卖,自动铅笔和钢笔当天的批发价与零售价如下表所示:问:他卖完这些自动铅笔和钢笔可赚多少钱? 43.计算: (1|2+(13-)﹣1(2)解方程组:11233240x y x y +⎧-=⎪⎨⎪+=⎩. 44.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,求b a -的平方根.45.对于x 、y 我们定义一种新运算“※”:x y ax by =+※,其中a 、b 类为常数,等式的右边是通常的加法和乘法运算.已知:527=※、()3412-=※,求43※的值. 46.在近期“抗疫”期间,某药店销售A 、B 两种型号的口罩,已知销售800只A 型和450只B 型的利润为210元,销售400只A 型和600只B 型的利润为180元. (1)求每只A 型口罩和B 型口罩的销售利润;(2)在销售时,该药店开始时将B 型口罩提价100%,当收回成本后,为了让利给消费者,把B 型口罩的售价调整为进价的15%,求B 型口罩降价的百分率. 47.解方程组(1)25 342 x yx y-=⎧⎨+=⎩(2)2320 235297m nm nn--=⎧⎪-+⎨+=⎪⎩48.某超市每天能出售甲、乙两种肉类集装箱共21箱,且甲集装箱3天的销售量与乙集装箱4天的销售量相同.(1)求甲、乙两种肉类集装箱每天分别能出售多少箱?(2)若甲种肉类集装箱的进价为每箱200元,乙种肉类集装箱的进价为每箱180元,现超市打算购买甲、乙两种肉类集装箱共100箱,且手头资金不到18 080元,则该超市有几种购买方案?(3)若甲种肉类集装箱的售价为每箱260元,乙种肉类集装箱的售价为每箱230元,在(2)的情况下,哪种方案获利最多?49.已知方程组2468416x yx y+=-⎧⎨-=⎩和1113ax bybx ay-=⎧⎨-=⎩的解相同,求()3-a b的值.参考答案:1.D【分析】采用加减消元法解方程组即可.【详解】632x y x y +=⎧⎨-=-⎩①② ①-①得:48y = ①2y =将2y =代入①得:26x += ①4x =①方程组的解为42x y =⎧⎨=⎩故选D .【点睛】本题考查解二元一次方程组,熟练掌握消元法是解题的关键. 2.A【分析】将方程①整理后可得23x y =--,再利用代入消元法代入①中求出解即可.【详解】32346x y x y +=-⎧⎨-=⎩①②,由①得23x y =--①, 把①代入①得:()32346y y ---=.故选:A .【点睛】此题考查了解二元一次方程组,利用了消元的思想,本题运用的是代入消元法. 3.B【分析】设该班投稿的同学有x 人,巧克力有y 盒,若每3位同学奖励一盒巧克力,则人数是巧克力的3倍,故有332x y =+⨯,若每4位同学奖励一盒巧克力,则人数是巧克力的4倍,故有442x y =-⨯,列方程组即可.【详解】解:设该班投稿的同学有x 人,巧克力有y 盒, 依题意得:332442x y x y =+⨯⎧⎨=-⨯⎩故选:B .【点睛】本题考查了二元一次方程组的实际应用;解题的关键是依据等量关系正确列方程. 4.C【分析】设可以截成x 根2m 长的钢管和y 根1m 长的钢管,根据题意列出方程,然后找到方程的整数解即可.【详解】解:设可以截成x 根2m 长的钢管和y 根1m 长的钢管, 依题意,得:2x +y =7, ①y =7﹣2x . ①x ,y 均为正整数,①当x =1时,y =5;当x =2时,y =3;当x =3时,y =1,①共有3种不同的截法,截法1:截成1根2m 长的钢管和5根1m 长的钢管;截法2:截成2根2m 长的钢管和3根1m 长的钢管;截法3:截成3根2m 长的钢管和1根1m 长的钢管, 故选:C .【点睛】本题主要考查二元一次方程,掌握二元一次方程的解是关键. 5.A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1列出关于m 的方程,解之可得答案.【详解】①258m x y -+=是关于x 、y 的二元一次方程, ①251m -=, 解得3m =, 故选:A .【点睛】本题主要考查了二元一次方程的定义,二元一次方程需满足三个条件:①首先是整式方程.①方程中共含有两个未知数.①所有未知项的次数都是一次. 6.D【分析】先移项得312y x -=-,再化简得系数化为1即可. 【详解】解:①231x y -=, ①312y x -=-,①213xy-=,故选:D.【点睛】本题考查了解二元一次方程,熟练掌握等式的基本性质,理由等式的性质对方程进行变形处理是解题的关键.7.D【分析】根据等量关系:相遇时两车走的路程之和为170千米,相遇时,小汽车比客车多行驶20千米,可得出方程组.【详解】设小汽车和客车的平均速度为x千米/小时,y千米/小时由题意得:7717066772066x yx y⎧+=⎪⎪⎨⎪-=⎪⎩,故选D【点睛】本题考查由实际问题抽象二元一次方程组的知识,解题的关键是仔细审题,根据等量关系建立方程.8.A【分析】设设购买毛笔x支,围棋y副,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出购买方案的数量.【详解】解:设购买毛笔x支,围棋y副,根据题意得,15x+20y=360,即3x+4y=72,①y=18-34 x.又①x,y均为正整数,①415xy=⎧⎨=⎩或812xy=⎧⎨=⎩或129xy=⎧⎨=⎩或166xy=⎧⎨=⎩或203xy=⎧⎨=⎩,①班长有5种购买方案.故选:A.【点睛】本题考查了二元一次方程的应用,找准等量关系“共花费360元”,列出二元一次方程是解题的关键.9.B【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x y、的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【详解】设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据题意得:316320x y x y +=⎧⎨+=⎩①②, 方程(①+①)÷2,得:2x+2y=18.故选:B .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.C【分析】设购买x 个A 款笔记本,y 个B 款笔记本,根据总价=单价×数量,列出x ,y 的二元一次方程,结合x ,y 均为正整数,求出正整数解即可.【详解】解:设购买x 个A 款笔记本,y 个B 款笔记本,依题意,得:10x +15y =100, 解得3102x y =- ①x ,y 均为正整数,①y 是2的倍数,72x y =⎧∴⎨=⎩,44x y =⎧⎨=⎩,16x y =⎧⎨=⎩①共有3种购买方案.故选:C .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.11.A【详解】试题分析:此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;①乙先跑2秒,则甲跑4秒就可追上乙.列出方程组即可.根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x ﹣5y=10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y .从而得出方程组.考点:由实际问题抽象出二元一次方程组12.B【分析】根据二元一次方程的定义逐一判断即可.【详解】解:A 中1xy =的项数是2次,故选项不符合题意;B 中31y x =-是二元一次方程,故选项符合题意;C 中10x y+=是分式方程,故选项不符合题意; D 中230x x +-=最高次数为2且只含一个未知数,是一元二次方程,故选项不符合题意;故选:B .【点睛】本题考查了二元一次方程的定义.解题的关键在于熟练掌握二元一次方程的定义:方程两边都是整式;含有两个未知数;并且含有未知数的项的最高次数都是一次的方程叫做二元一次方程.13.B【分析】根据题意由x ,y 互为相反数,得到x+y =0,与方程组第一个方程联立求出x 与y 的值,代入第二个方程求出n 的值即可.【详解】解:由题意得:x+y =0,即y =﹣x ,代入2x ﹣y =3得:2x+x =3,解得:x =1,即y =﹣1,代入得x+3y =n 得:n =1+3×(﹣1)=﹣2,故选:B .【点睛】本题考查二元一次方程组的解以及解二元一次方程组,熟练掌握相关的运算法则是解答本题的关键.14.A【分析】将x+2与y-1看做一个整体,根据已知方程组的解求出x 与y 的值即可.【详解】根据题意得:2=21=1x y +-⎧⎨-⎩ , 解得:=4=2x y -⎧⎨⎩. 故选:A .【点睛】此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.【分析】①把a=5代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;③当22x y⋅=16时,得到x+y=4,即y=4﹣x,代入方程组求出a的值,即可做出判断;④假如x=y,得到a无解,本选项正确;.【详解】解:①把a=5代入方程组得:351020x yx y-=⎧⎨-=⎩,解得:2010xy=⎧⎨=⎩,本选项错误;②由x与y互为相反数,得到x+y=0,即y=﹣x,代入方程组得:35225x x ax x a+=⎧⎨+=-⎩,解得:a=20,本选项正确;③当22x y⋅=16时,得到x+y=4,即y=4﹣x代入方程组得:35202285x x ax x a+-=⎧⎨+-=-⎩,解得:a=18,本选项正确;④若x=y,则有225x ax a-=⎧⎨-=-⎩,可得a=a﹣5,矛盾,故不存在一个实数a使得x=y,本选项正确;故选:C.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.A【分析】根据加减消元法,可得方程组的解.【详解】13x yx y-=⎧⎨+=⎩①②,①+①,得2x=4,解得x=2,把x=2代入①,得2-y=1,所以原方程组的解为21x y =⎧⎨=⎩. 故选A .【点睛】本题考查了解二元一次方程组,掌握加减消元法是解题的关键.本题还可以根据二元一次方程组的解的定义,将四个选项中每一组未知数的值代入原方程组进行检验. 17.B【分析】首先根据题意可得,3c -7×(-2)=8,解得,c =-2;再根据题意可得方程组322222a b a b -=⎧⎨-+=⎩,解此二元一次方程组可得a 、b 的值. 【详解】根据题意可得,3c -7×(-2)=8,解得,c =-2;由题意可得,22x y =-⎧⎨=⎩和32x y =⎧⎨=-⎩是方程2ax by +=的解, ①322222a b a b -=⎧⎨-+=⎩,解得4,5a b =⎧⎨=⎩ 故a =4,b =5,c =-2,故选B【点睛】此题主要考查了二元一次方程组的解,掌握解二元一次方程组的方法是解决问题的关键.18.D【分析】根据题意,设DE=x ,EF=y ,然后由边长的数量关系列出方程组,解方程组求出x 、y ,即可得到答案.【详解】解:如图:设DE=x ,EF=y ,根据题意,则32()10y x y x y =⎧⎨++=⎩, 解得:10113011x y ⎧=⎪⎪⎨⎪=⎪⎩, ①103015010111111AD =++=; 故选:D . 【点睛】本题考查了二元一次方程组的应用,解二元一次方程组,解题的关键是熟练掌握题意,正确列出方程组进行解题.19.B【分析】求出x=732y - ,根据x 、y 为正整数得出732y ->0,y >0,求出y 的范围,求出y 的值,求出x 的值,选出符合条件的解即可.【详解】解:①2x+3y=7,①x=732y -, ①x 、y 为正整数,①732y ->0,y >0 解得,0<y <73 , ①y 只能取1,2,当y=1时,x=2,当y=2时,x=12 (舍去),即方程2x+3y=7的正整数解有1个,故选B .【点睛】本题考查了二元一次方程的解,关键是求出其中一个未知数的取值范围. 20. -2 8【分析】把x=5代入方程组第二个方程求出y 的值,将x 与y 的值代入第一个方程左边即可得到结果.【详解】解:把x=5代入2x-y=12中,得:y=-2,当x=5,y=-2时,2x+y=10-2=8,故答案为:-2;8.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.2x -6##-6+2x【分析】利用移项解题即可.【详解】解:①26x y -=,①26y x =-.故答案为:26y x =-【点睛】本题考查解二元一次方程,能够熟练运用移项是解题关键.22.2x -1##-1+2x【分析】将x 看作已知数,移项即可求出y 即可.【详解】解:2x -y -1=0,解得y =2x -1.故答案为:2x -1.【点睛】此题考查解二元一次方程,解题的关键是将x 看作已知数求出y .23.9【分析】先根据单项式除以单项式运算法则化简等式左边,再由各字母指数相等列出关于m 、n 的方程组,然后解方程组求出m 、n ,代入求解即可.【详解】解:①()5476233m m n m m n a b ab a b a b ++-÷-=-=-,①471m m n +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, ①239n m ==,故答案为:9.【点睛】本题考查了单项式除以单项式运算、解二元一次方程组、代数式求值、有理数的乘方,掌握单项式除以单顶式运算法则,正确列出m 、n 的方程组是解答的关键. 24.y =2.5-2x .【分析】要用关于x 的代数式表示y ,就要把方程中含有x 的项和常数项移到等号的右边得到:2y=5-4x ,再把y 的系数变为1.得到:y =2.5-2x .【详解】解:移项得:2y =5-4x ,系数化1得:y =2.5-2x .故答案为y =2.5-2x .【点睛】本题主要考查了解二元一次方程,解本题关键是通过移项和合并同类项,化y的系数为1,把方程变形为等号左边是y,等号右边是含有x的代数式.25.10【分析】设第一天销售x千克香蕉,第三天销售y千克香蕉,则第二题销售(50-x-y)千克香蕉,根据题意列出方程即可求出结论.【详解】解:设第一天销售x千克香蕉,第三天销售y千克香蕉,则第二题销售(50-x-y)千克香蕉根据题意可得:9x+6(50-x-y)+3y=270解得:y-x=10即第三天比第一天多销售香蕉10千克故答案为10.【点睛】此题考查的是二元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.26.43xy=-⎧⎨=-⎩##34yx=-⎧⎨=-⎩【分析】先根据不等式组的解集是2<x<3求出a,b的值,然后解二元一次方程组即可.【详解】解不等式组x bx a-⎧⎨+⎩<>得a x b-<<,因为不等式组的解集是2<x<3,所以-a=2,b=3,则a=-2,b=3.方程组为25 231x yx y-+=⎧⎨-=⎩①②,①+①,解得y=-3,将y=-3代入①,得x=-4.所以方程组得解是43xy=-⎧⎨=-⎩.故答案为:43xy=-⎧⎨=-⎩.【点睛】本题主要考查了不等式组的解集,加减法解二元一次方程组,根据不等式组的解集求出字母的值是解题的关键.27.24x y =⎧⎨=⎩【分析】先用x 将y 表示出来,然后根据x 、y 均为正整数运用列举法即可求解.【详解】解:由4320x y +=可得y =2043x - , ①x 、y 均为正整数, ①2043x ->0,即x <5 当x =2时,y =4,①方程4x +3y =20的正整数解为24x y =⎧⎨=⎩. 故答案为24x y =⎧⎨=⎩. 【点睛】本题主要考查一元二次方程的特殊解,用一个未知数表示成另一个未知数是解答本题题的关键.28.-2 【分析】根据()22640a b a b -+++=,可知260-+=a b ,40a b +=,故可求出a +b .【详解】解:①()22640a b a b -+++=, ①2=640a b a b --⎧⎨+=⎩①②,令①+①可得:336a b +=-, ①2a b +=-,故答案为:−2【点睛】本题对于绝对值和平方的非负性及求二元一次方程组的解的考查,理解两个非负数的和等于零时每一个非负数必为零的特点是解题的关键.29.135【分析】设每个小长方形的长为x mm ,宽为 y mm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个宽-一个长=3,于是得方程组,解出即可.【详解】解:设每个长方形的长为x mm ,宽为y mm ,由题意,得3523x y y x =⎧⎨-=⎩, 解得159x y =⎧⎨=⎩. 9×15=135(mm 2).故答案为:135.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.30.1【分析】先求出方程组521x y x y +=⎧⎨-=⎩的解,把23x y =⎧⎨=⎩代入方程组452280ax by ax by +=-⎧⎨--=⎩,再求出a 、b 的值,最后求出答案即可.【详解】解:解方程组521x y x y +=⎧⎨-=⎩得:23x y =⎧⎨=⎩, 把23x y =⎧⎨=⎩代入方程组452280ax by ax by +=-⎧⎨--=⎩得:815222380a b a b +=-⎧⎨--=⎩, 解得:1a =,2b =-,所以20202020()(12)1a b +=-=,故答案为:1.【点睛】本题考查了解二元一次方程组和二元一次方程组的解,理解二元一次方程组的解的定义是解此题的关键.31.8374x y x y -=⎧⎨+=⎩【分析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程组,本题得以解决.【详解】解:由题意可得8374x y x y -=⎧⎨+=⎩故答案为:8374x y x y-=⎧⎨+=⎩. 【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.32.2318 416x yx y+=⎧⎨+=⎩【分析】①+①得出2x+3y=18,①+①得出4x+y=16,再得出答案即可.【详解】解:1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩①②③,①+①得出2x+3y=18①,①+①得出4x+y=16①,由①和①组成方程组2318 416x yx y+=⎧⎨+=⎩,故答案为:2318 416x yx y+=⎧⎨+=⎩.【点睛】本题考查了解三元一次方程组,能选择适当的方法消元是解此题的关键.33.3【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【详解】解:①点A和点B关于y轴对称,①可得方程组543042a ba b-++=⎧⎨=-⎩,解得:21 ab=⎧⎨=-⎩,①a-b=3,故答案为:3.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a,b是解题关键.34.3x y+【分析】根据13xy=-⎧⎨=⎩,添加系数,使得结果为0即可.【详解】解:①关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为13xy=-⎧⎨=⎩,而-1×3+3=0,①多项式A可以是3x y+,故答案为:3x y+.【点睛】本题考查了二元一次方程组的解,本题是开放题,注意方程组的解的定义.35.25x-【详解】分析:把y移到等号的左边,其它的项移到等号的右边.详解:5x+y=2,移项得,y=2-5x.故答案为2-5x.点睛:本题考查了移项,移项时要注意移动的项必须改变符号.36.m>﹣1 5【分析】求解方程组,用含m的代数式分别表示出x、y.把x、y的值代入2x+3y,根据2x+3y>0,确定m的取值范围.【详解】213x y mx y+=+⎧⎨-=⎩①②①+①,得2x=2m+4①﹣①,得2y=2m﹣2即3y=3m﹣3①2x+3y=2m+4+3m﹣3=5m+1①2x+3y>0,①5m+1>0①m>﹣15故答案是:m>﹣1 5 .【点睛】考查了二元一次方程组的解法、一元一次不等式的解法.用含m的代数式表示x、y是解决本题的关键.37.4【详解】①|2x+y+1|+(x+2y﹣7)2=0,①210270x yx y++=⎧⎨+-=⎩,①3x+3y=6,即x+y=2,①(x+y)2=22=4.点睛:(1)一个代数式的绝对值和平方都是非负数;(2)两个非负数的和为0,则这两个非负数都为0.38.-4【详解】分析:将已知三对值代入等式得到关于a,b,c的方程组,求出方程组的解得到a,b,c的值即可.详解:①﹣①得:24a+6b=60,4a+b=10①,①﹣①得:3a+3b=3,a+b=1①,由①和①组成方程组,解方程组得:,把a、b的值代入①得:c=﹣5,所以a+b+c=﹣4.故答案为﹣4.点睛:本题考查了三元一次方程组的解法,把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,消元的方法有:加减消元法与代入消元法.39.21 ab=⎧⎨=-⎩【分析】根据已知得出关于a,b的方程组进而得出答案.【详解】解:①关于x、y的二元一次方程组33211x myx ny-=-⎧⎨+=⎩,的解是13xy=⎧⎨=⎩,①方程组()()()()33211a b m a ba b n a b⎧+--=-⎪⎨++-=⎪⎩中13a ba b+=⎧⎨-=⎩,解得:21 ab=⎧⎨=-⎩.故答案为:21 ab=⎧⎨=-⎩.【点睛】本题主要考查二元一次方程组的解法,关键是根据整体思想及方程组的解法进行求解.40.(1)m5n2=⎧⎨=-⎩;(2)x1≤【分析】(1)整理后用加减消元法即可求解.(2)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集【详解】解:(1)原方程组整理得2520234m nm n-=⎧⎨+=⎩①②,①-①,得8n= -16,解得n= -2,将n= -2代入①,得2m-5×(-2)=20,解得m=5,①原方程组的解为52mn=⎧⎨=-⎩;(2)去分母得,-2(x-7)≥3(3x+1),去括号得,-2x+14≥9x+3,移项得,-2x-9x≥3-14,合并同类项得,-11x≥-11,化系数为1得,x≤1,故此不等式的解集为:x≤1.故答案为(1)52mn=⎧⎨=-⎩;(2)x≤1.【点睛】本题考查解二元一次方程组,解一元一次不等式,熟知解方程组的方法和解不等式的原则是解题的关键.在解答(2)时要注意,当不等式的两边同时除以一个负数时不等号的方向要改变.41.(1)代入消元法;加减消元法;基本思路都是消元;(2)13 xy=-⎧⎨=-⎩.【分析】(1)分析两种解法的具体方法,找出两种方法的共同点即可;(2)将两种方法补充完整即可.【详解】解:(1)解法一使用的具体方法是代入消元法,解法二使用的具体方法是加减消元法,以上两种方法的共同点是基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题);故答案为代入消元法,加减消元法,基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题);(2)方法一:由①得:x=2y+5①,把①代入①得:3(2y+5)﹣2y=3,整理得:4y=﹣12,解得:y=﹣3,把y=﹣3代入①,得x=﹣1,则方程组的解为13xy=-⎧⎨=-⎩;方法二:①﹣①,得﹣2x=2,解得:x=﹣1,把x=﹣1代入①,得﹣1﹣2y=5,解得:y=﹣3,则方程组的解为13xy=-⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.42.168元【详解】试题分析:(1)先列出两个等量关系:自动铅笔数量+钢笔数量=80,购自动铅笔钱数+购买钢笔B型灯钱数=360,解方程组求出自动铅笔和钢笔的单价,所以利用获利=自动铅笔利润+钢笔利润求出即可.试题解析:设自动铅笔买了x支,钢笔买了y支.则有解得这次赚得钱:7.2×50+5.6×30-360=168元答:他卖完这些笔可赚168元.考点:二元一次方程组的应用.43.(1)4-(2)88x y =⎧⎨=⎩【分析】(1)根据二次根式的性质、负指数的意义和二次根式的运算法则计算即可; (2)按照解二元一次方程组的方法解方程组即可.【详解】解:(1|2+(13-)﹣1=523--=4-(2)解方程组:11233240x y x y +⎧-=⎪⎨⎪+=⎩,化简得,3283240x y x y -=⎧⎨+=⎩①② ①+①得,648x =,解得,8x =,把8x =代入①得,2428y -=,解得,8y =,所以,原方程组的解为88x y =⎧⎨=⎩. 【点睛】本题考查了二次根式运算和解二元一次方程组,解题关键是熟练运用二次根式运算法则和熟练掌握二元一次方程组的解法.44.1±【分析】将x 和y 的值代入原方程,得到关于a 和b 的方程组,求出a 和b 的值即可.【详解】解:把21x y =⎧⎨=⎩代入二元一次方程组71ax by ax by +=⎧⎨-=⎩, 得:2721a b a b +=⎧⎨-=⎩,解得:23a b =⎧⎨=⎩. ①1b a -=,①b a -的平方根为1±.【点睛】本题考查了二元一次方程组的解以及平方根,解题的关键是求出a 和b 的值. 45.3.5【分析】根据已知条件得出方程组,求出a 、b 的值,根据题意得出3434232=⨯-⨯※,再求出答案即可.【详解】解:①527=※、()3412-=※,①5273412a b a b +=⎧⎨-=⎩①②, 2⨯+①②,得1326a =,解得:2a =,把2a =代入①,得1027b +=, 解得:32b =-, 所以343423 3.52=⨯-⨯=※. 【点睛】本题考查了解二元一次方程组和有理数的混合运算,能把二元一次方程组转化成一元一次方程是解此题的关键.46.(1)每只A 型口罩的销售利润为0.15元,每只B 型口罩的销售利润为0.2元(2)B 型口罩降价的百分率为92.5%【分析】(1)假设每只A 型口罩的销售利润为x 元,每只B 型口罩的销售利润为y 元,根据条件列二元一次方程组,求解即可;(2)设B 型口罩降价的百分率为m ,依题意列一元一次方程,求解即可.(1)解:设每只A 型口罩的销售利润为x 元,每只B 型口罩的销售利润为y 元,依题意,得:800450210400600180x y x y +=⎧⎨+=⎩, 解得:0.150.2x y =⎧⎨=⎩. ①每只A 型口罩的销售利润为0.15元,每只B 型口罩的销售利润为0.2元.。

中考数学重难点易错题汇总含答案解析

中考数学重难点易错题汇总含答案解析

精品基础教育教学资料,仅供参考,需要可下载使用!最新初三九年级中考数学易错题集锦汇总学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分 一、选择题1.如图,能判定 AB ∥CD 的条件是( )A .∠1=∠2B .∠1+∠2= 180°C .∠3=∠4D .∠3+∠1=180°2.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 3.用科学记数方法表示0000907.0,得( )A .41007.9-⨯B .51007.9-⨯C .6107.90-⨯D .7107.90-⨯ 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =-C .5232a a a =+D .1)1(--=--a a5.方程x 3=22-x 的解的情况是( ) A .2=x B .6=xC .6-=xD .无解 6.已知235x x ++的值为 3,则代数式2391x x +-的值为( )A .-9B .-7C .0D .37.下列事件中,届于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个教比 5大D .打开数学书就翻到第10页8.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .10.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为()A.1.5万元 B.5万元 C.10万元 D.3.47万元12.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定13.下列图形中,由已知图形通过平移变换得到的是()14.在同一平面内垂直于同一条直线的两条直线必然()A.互相平行B.互相垂直C.互相重合D.关系不能确定15.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC 的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定16.下列命题不正确的是()A.在同一三角形中,等边对等角B.在同一三角形中,等角对等边C.在等腰三角形中与顶角相邻的外角等于底角的2倍D.等腰三角形是等边三角形17.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定18.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D . 顶角的平分线、底边上的高及底边上的中线三线互相重合19.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A . 15°B .30°C . 50°D . 65°20.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )21.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图22.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本23.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时 24.若分式3242x x +-有意义,则字母x 的取值范围是( ) A .12x = B .23x =- C .12x ≠ 23x ≠-25.把图中的角表示成下列形式:①∠AP0;②∠P;③∠0PC;④∠0;⑤∠CP0;⑥∠AOP.其中正确的有()A.6个B.5个C.4个D.3个26.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个27.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.3028.现有两个有理数 a、b,它们的绝对值相等,则这两个有理数()A.相等 B.相等或互为相反数 C.都是零 D.互为相反数29.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为()A.0.3 元B.l6.2 元C.16.8 元D.18 元30.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是()A.11 天B.10 天C.9 天D.8 天31.小红妈妈的 2 万元存款到期了,按规定她可以得到 2 的利息,但同时必须向国家缴 纳 20% 的利息所得税,则小红妈妈缴税的金额是( )A .80 元B .60 元C .40 元D .20 元32.求0.0529的正确按键顺序为( )A .B .C .D .33.下列方程中,是一元一次方程的为( )A .x+y=1B .2210x x -+=C .21x =D .x=034.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( )A . 1个B . 2个C .3个D .4个35.一个五次多项式,它的任何一项的次数( )A .都小于5B .都等于5C .都不大于5D .都不小于536.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是( ) A .5 B .5- C .2 D .137.下列说法中正确的是 ( )A .直线大于射线B .连结两点的线段叫做两点的距离C .若AB=BC ,则B 是线段AC 的中点D .两点之间线段最短38. 在△ABC 中,∠A =30°,∠B =50°,则∠C 的外角=( )A .60°B .80°C .100°D .120°39.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个40.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对41.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线42.12-的绝对值是( ) A .2- B .12- C .2 D .1243.下列说法中正确的是( )A .从三角形一个顶点向它对边所在直线画垂线,此垂线就是三角形的高B .三角形的角平分线是一条射线C.直角三角形只有一条高D.钝角三角形的三条高所在的直线的交点在此三角形的外部44.如图所示,是轴对称图形的个数有()A.4个B.3个C.2个D.1个45.将如图所示的图形按照顺时针方向旋转90°后所得的图形是()46.如图,已知 6.75r=,则图中阴影部分的面积为(结果保留π)()R=, 3.25A.35π⋅B.12.25πC.27πD.35π47.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个48.下列各式中不是不等式的为()A.25x=D.610x+≤C.58-<B.92y+> 49.关于单项式322-的系数、次数,下列说法中,正确的是()2x y zA.系数为-2,次数为 8B.系数为-8,次数为 5C.系数为-23,次数为 4D .系数为-2,次数为 750.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 5451.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A .1个B .2个C .3个D .4个52.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( )A .AB=A ′B ′ B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度53.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对54.在△ABC 中,AB=AC ,∠A=36°.以点A 为位似中心,把△ABC 放大2倍后得△A ′B ′C ′,则∠B 等于( )A .36°B .54°C .72°D .144°55.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是( )A .ΔPAB ∽ΔPCA B .ΔPAB ∽ΔPDAC .ΔABC ∽ΔDBAD .ΔABC ∽ΔDCA56.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( )A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠57.若正比例函数2y x =-与反比例函数k y x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x=- 58.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A .6cmB .10cmC .32cmD .52cm59.等腰三角形的腰长为32,底边长为6,那么底角等于( )A . 30°B . 45°C . 60°D .120°60.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面61.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定62.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m,那么飞机到目标B 的距离AB为()A.2400m B.1200m C.4003 m D.12003 m 63.已知二次函数22(21)1y x a x a=+++-的最小值为 0,则a的值为()A.34B.34-C.54D.54-64.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是()A.0 B.124C.78D.1865.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于()A.310B.70lC.37D.1766.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.2567.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是()A.0.75 B. 0.5 C. 0.25 D. 0.12568.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是()A.14B.13C.16D.2569.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

中考数学易错题精选与解析

中考数学易错题精选与解析

中考数学易错题精选与解析一、易错题精选与解析数学是中考考试中的一门重要科目,也是许多学生认为较难的科目之一。

在备战中考时,掌握一些易错题的解题方法和技巧对于提高数学成绩至关重要。

本文将给出一些中考数学易错题的精选,并提供相应的解析和解题技巧,希望对中考数学备考有所帮助。

1. 【题目】已知△ABC中,∠B=90°,AC=12 cm,BC=5 cm。

求AB的长。

【解析】根据勾股定理,直角三角形斜边的平方等于两直角边的平方和。

在该题中,AC为斜边,BC和AB分别为两直角边。

所以,根据勾股定理,可得:AB² = AC² - BC² = 12² - 5² = 144 - 25 = 119。

因此,AB的长为√119 cm。

2. 【题目】已知折线ABCD中,AB=BC=CD,∠BAD = 135°,则∠DCB的度数是多少?【解析】我们可以先画出题目中给出的折线ABCD。

根据题意,AB=BC=CD,由此可以推断出△ABC是一个等边三角形。

因为∠BAD = 135°,而∠BAC是一个等边三角形的内角,所以∠BAC = 180° - 135°= 45°。

由等边三角形的性质可知,∠BCA = 60°。

因此,∠DCB =∠BCA - ∠BAC = 60° - 45° = 15°。

3. 【题目】在正方形ABCD中,E是AD边上一点,且AD的中点为F。

如果∠AEB = 30°,则∠EFC的度数是多少?【解析】首先,我们可以根据正方形的性质知道,∠DAC = 45°。

由于AD的中点为F,所以∠DFA = 45°/2 = 22.5°。

又因为∠AEB = 30°,所以∠AED = 45° - 30° = 15°。

中考数学易错题答案

中考数学易错题答案

1 x x x 2 2x 1 x x 2 x ( )= ( ) 1 x 1 x 1 x 1 x
=
1 1 x x2 x 1 x x 1 = . 2 ( )= x 1 x x 1 1 x x 1
专题二
方程(组)与不等式(组)
中 考
C.mx-y=my-y
2 2

件. 答案:4
2 易错点 4:二次函数 y a ( x h) k 的顶点坐标的表示.
易错点 5:二次函数实际应用时,y 取得最值时,自变量 x 不在其范围内. 【好题闯关】 好题 1. 函数 y= 2 x +

【易错分析】 易错点 1:函数自变量的取值范围考虑不周全. 易错点 2:一次函数图象性质与 k、b 之间的关系掌握不到位. 易错点 3:在反比例函数图象上求三角形面积,面积不变成惯性.
中考数学错题集 考点一 数与式
【易错分析】 易错点 1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆. 易错点 2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运 算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 易错点 3:平方根与算术平方根的区别,立方根的意义. 易错点 4:求分式值为零时学生易忽略分母不能为零. 易错点 5:分式运算时要注意运算法则和符号的变化. 【好题闯关】 好题 1.下列各数中,是无理数的是 A.
1 中自变量 x 的取值范围是( x3
中 考
解析:解分式方程时易忘记检验,导致结论出错. 答案:两边同时乘以(4-x2)并整理得 8=2(2+x) , 解之得 x=2 经检验 x=2 是增根,原方程无解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学易错题精选附详细答案解析一、选择题1. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B .30°C .45°D .60°2. 由四舍五入法得到的近似数6.8×103,下列说法中正确的是()A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字3. 在等腰三角形ABC 中,AB=AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A .7B .7或11C .11D .7或10 4. 如图,88⨯方格纸的两条对称轴EF MN ,相交于点O ,对图a①先以直线MN 为对称轴作轴对称图形,再向上平移4格; ②先以点O 为中心旋转180,再向右平移1格;③先以直线EF 为对称轴作轴对称图形,再向右平移4格, 其中能将图a 变换成图b 的是()A .①② B.①③ C .②③ D .③5. 如图,在平行四边形ABCD中,点M为CD的中点,AM与BD相交于点N,那么=∆ABCD DMN s s 平行四边形:()A 、112B 、19C 、18D 、166. 如图,在矩形ABCD 中,BC=8,AB=6,经过 点B 和点D 的两个动圆均与AC 相切,且与AB 、 BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的 最小值是( ▲ )A .6B .8C .9.6D .107. 如图已知梯形ABCD 中,BC ⊥AB ,∠DAB=60°,点P 从点B 出发,沿BC 、CD 边到D 停止运动,设点P 运动的路程为x,⊿ABP 的面积为y ,y 关于x 的函数图象如右图,则梯形ABCD 的面积是( )(杭州07中考题改编)A. 20B.38C.3126+D.3612+(第8题图)B第1题第6题C BAP8. 如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连结PG ,PC 。

若∠ABC=∠BEF =60°,则PG/PC=( )A.2B. 3C.22D.33(第9题) (第8题)9. 如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A 、B 、C 。

经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC=15°。

则C ,D 之间的距离=___________km .A 、2B 、33C 、332 D 、310. 方程2310x x +-=的根可视为函数3y x =+的图象与函数1y x =的图象交点的横坐标,那么用此方法可推断出方程3210x x +-=的实根0x 所在的范围是()A .010x -<<B .001x <<C .012x <<D .023x <<11. 平行四边形的一边长为5cm ,则它的两条对角线长可以是( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm12. 已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤113. 已知方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥1且m ≠1C 、m ≥1D 、-1<m ≤1 14. 函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交点 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点15. 解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 16.和第8题二、填空1. 数轴上离开-2的点距离为3的数是 _______.2. 已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .3. 在⊙0中,半径R=5,AB 、CD 是两条平行弦,且AB=8,CD=6,则弦AC=___.4. 二次函数y=x 2-2x-3的图象关于原点O (0,0)对称的图象的解析式是____.5. 已知在直角ABC 中,∠C=900,AC=8㎝,BC=6㎝,则⊿ABC 的外接圆半径长为____㎝,⊿ABC 的内切圆半径长为____㎝,⊿ABC 的外心与内心之间的距离为____㎝。

6. 如图,在第一象限内作射线OC ,与x 轴的夹角为30°,在射线OC 上取一点A ,过点A作AH ⊥x 轴于点H .在抛物线y=x 2(x >0)上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 .7. 如图,在半圆O 中,直径AE=10,四边形ABCD 是平行四边形,且顶点A 、B 、C 在半圆上,点D 在直径AE 上,连接CE ,若AD=8,则CE 长为 .8. 如图,已知OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB =40°,则∠OBD = 度. 9. 如图,在Rt △ABC 中,∠ACB =90°,半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P 。

已知tan ∠BPD=1/2,CE=2,则⊿ABC 的周长是10. 如图,边长为2的正方形ABCD 中,点E 是对角线BD 上的一点,且BE=BC ,点P 在EC 上,PM⊥BD 于M ,PN⊥BC 于N ,则PM+PN=11. 如图,在平面直角坐标系上有个点P(1,0),点P 第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(―1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P 第100次跳动至点P100的坐标是 。

P M EA B CD12.如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1。

若使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的5/9,则AA1= AD。

(第12题)(第13题)13.如图,P为边长为2的正三角形中任意一点,连接PA、PB、PC,过P点分别做三边的垂线,垂足分别为D、E、F,则PD+PE+PF=__________;阴影部分的面积为__________.中考数学易错题解析一、选择题【1.解析】 B如图所示,连接AC ,∠BAC=∠BECAB=BC=CD , ∴ ∠DAB=∠ADC= 60°, ∴∠ABC=120° ∠CAB=∠ACB=30°【2.解析】 C 【3.解析】 Bc=7,或11【4.解析】 D 【5.解析】 A 。

(方法1,估计法,猜)△MDN ∽△ANB,故S △MDN :S △ANB =1/4,S △ANB <S 四边形ABCD /2的面积,故C 、D 错,又S △ANB > S 四边形ABCD /4,所以S △ANB 估计应该为平行四边形的1/3,于是S △MDN =1/4S 四边形ABCD /3, 即S △MDN :S △ANB =1/12(方法2,特例计算)假设ABCD 为正方形且边长为2a ,如图5-2所示建立坐标系(正方形也是平行四边形,所以这个假设并不违背题意) A(0,2a)、B (2a ,2a )、C (2a ,0) AN 方程:y=-2(x-a )=-2x+2a OB 方程:y=x于是N (2/3a ,2/3a )∴S △MDN = 1/2×a ×2a/3 = a 2/3S ABCD = 4 a 2∴S △MDN :S △ANB =1/12图5-2(方法3,严格计算)如图5-2建立坐标系,设AB=2a ,∠ADC=β E (a/2,0),AE=atg β/2,AD= a/2/cos β ∴A(a/2, atg β/2),B(5a/2, atg β/2) ∴OB 方程:y = x tg β/5 AM 方程:y= - tg β(x-a ) 于是N (5a/6,atg β/6)∴S △MDN = 1/2×a ×atg β/6 =a 2tg β/12S ABCD = 2a ×atg β/2= a 2tg β ∴S △MDN :S △ANB =1/12AD AB C D 2aca a 2a+a=12c+a=152a+a=12c+a=15或【6.解析】 C 。

如图所示,圆Q 和圆Q 1都经过D 且与x 轴相切,分别切于H 、H 1点,其中DH 为圆Q 的直径, DH 1为圆Q 1的弦∵∠EDF=∠E 1DF 1 = 90°∴ EF 、E 1F 1分别为圆Q 、圆Q 1的直径 可见:EF=DH , DH< DH 1,DH 1<E 1F 1 ∴DH< E 1F 1故过D 点且与AC 相切的园中,圆Q 是直径d 最小d 最小 = DH = 8×cos ∠DAC=24/5=4.8∴EF 最小= 4.8同理,GH 最小= 4.8∴ GH+EF 的最小值为9.6 【7.解析】 D 。

设AB=a ,BC=h当P 点运行到C 点以前时,S △ABP = 0.5ax当P 点在C 、D 之间时,S △ABP = 0.5ah=常数 由右图可以知道,h=6,CD=2 而∠CAB=60°,故AE=h/√3=2√3梯形面积=矩形EBCD 面积+△AED 面积=6×2+0.5×2√3×6=12+6√3 【8.解析】 B 。

设AB=2a ,BE=2b,如图建立坐标系 ∵∠CBA=∠FEB = 60° ∴ D(0,√3a),C(2a ,√3a) F(3a+b ,√3b) ,G(3a-b ,√3b)又P 为DF 中点 ∴P((3a+b )/2,√3(a+b)/2)∴ PC 2 = [(3a+b)/2-2a]2 +[√3(a+b)/2-√3a]2= (a-b)2/4 + 3(a-b)2/4 =(a-b)2PG 2 = [(3a+b)/2-(3a-b)]2 +[√3(a+b)/2-√3b]2 = 9(a-b)2/4 + 3(a-b)2/4 =3(a-b)2 ∴ PG /PC = √3 【9.解析】 C 。

相关文档
最新文档