相似三角形全章学案

合集下载

最新相似三角形全章导学案(正式)

最新相似三角形全章导学案(正式)

D.所有的正方形都相似
例 3 已知四边形 ABCD 与四边形 A 1B1C1D 1 相似, 且 A 1B1: B1C1: C1D 1: D1 A 1=7: 8: 11: 14,若四边形 ABCD 的周长为 40,求四边形 ABCD 的各边的长.
分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.
四、课堂练习
1.△ ABC 与△ DEF 相似,且相似比是 2 ,则△ DEF 与△ ABC 与的相似比是(
).
3
2 A.
3
3 B.
2
2 C.
5
4 D.
9
27.2.1 相似三角形的判定(一)



一、学习目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展同学们的探究、交 流能力.

欢迎下载
答:北京到上海的实际距离大约是 ___________km . 四、课堂练习 1.观察下列图形,指出哪些是相似图形: 相似图形: _____和 ______; _____和 ______; _____和 ______。
2.下列说法正确的是(

A .小明上幼儿园时的照片和初中毕业时的照片相似
优秀教案
2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)—— 相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三
角形与原三角形相似) .
3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题. 二、新知链接
解:
欢迎下载
2.(选择题)下列所给的条件中,能确定相似的有(

相似三角形全章教案

相似三角形全章教案
多媒体教学——创设情境,以境激趣
探索教学法——调动学生主动参与探索知识、运用知识过程
四、教学用具
多媒体电教及教学软件
五、教学过程设计
1、创设情境,设疑激趣
(多媒体演示)
自然界中美丽的蝴蝶、一片树叶,生活中的蒙娜丽莎像、五角星图以及古希腊的雅典帕德嫩神庙、埃及的金字塔等都给人以最优美、最令人赏心悦目的视觉,为什么它们能令人有如此的感觉呢?
第二十七章 相似
27.2.1图形的相似(一)
一、教学目标
1.会识别相似图形.
2.通过观察、测量让学生了解线段的比、成比例线段的概念.
3.会求线段的比,会判断已知线段是否成比例.
二、教学重难点
教学重点:对线段的比的理解及会判断成比例线段.
教学难点:掌握成比例线段的特点,欣赏生活中的数学美.
三、教学方法
(2)议一议:
①请量一量AC=cm , A′C′=cm ,再计算 你又发现什么?
②AB、BC、AC和A′B′、B′C′、A′C′中,哪四条线段分别成比例?请分别写它们的比例式.
③如果在这两张地图中 ,你猜猜会出现什么情况?
④如果在测量时,AB的长度单位采用厘米而A′B′的长度单位采用分米,那么它们的比有没有变化?
思考与讨论
①AB=__________cm,BC=____________cm;
A′B′=__________cm,B′C′=_____________cm
②分别计算 等于多少?
(小地图是由大地图缩小得来的,我们能感到线段A′B′、B′C′与AB、BC的长度相比都“同样程度”地缩小了.)
③显然两张地图中AB和A′B′、BC和B′C′的长度都是不相等的,那么它们之间有什么关系呢?
通常一种简便的方法是:如下图所示,站在操场上,请你的同学量出你在太阳下的影子长度OC、旗杆的影子长度OA,再量出你的身高CD,根据三角形OCD与三角形OAB相似,就可以计算出旗杆的高度AB了.

标题:最新人教版八年级数学上册第十二章相似三角形 教案

标题:最新人教版八年级数学上册第十二章相似三角形 教案

标题:最新人教版八年级数学上册第十二章相似三角形教案一、教学目标:1. 理解相似三角形的定义,掌握相似三角形的判定方法。

2. 掌握相似三角形的性质,能够解决与相似三角形相关的问题。

3. 进一步提高学生的几何推理和证明能力。

二、教学内容:1. 相似三角形的定义及判定方法。

2. 相似三角形的性质和应用。

三、教学步骤:1. 导入:通过引入一道生活中的问题,激发学生关于相似三角形的思考和探索。

2. 讲解:给出相似三角形的定义,并介绍判定相似三角形的方法。

3. 实例演练:通过一些具体的实例,让学生掌握判定相似三角形的方法。

4. 性质探究:引导学生发现相似三角形的性质,进行讨论和证明。

5. 应用拓展:提供一些应用题,让学生运用相似三角形的知识解决问题。

6. 练巩固:提供一些练题,巩固学生对相似三角形的理解和应用能力。

7. 总结反思:总结相似三角形的知识点,让学生进行反思和思考。

8. 课堂作业:布置相似三角形相关的作业,检查学生的掌握情况。

四、教学资源:1. 人教版八年级数学上册教材。

2. 相关练题、应用题和思考题。

五、教学评价:1. 课堂表现评价:观察学生在课堂上的参与度、思维活跃度和回答问题的准确性。

2. 作业评价:检查学生作业的完成情况和准确度。

3. 测验评价:通过小测验检查学生对相似三角形知识的掌握程度。

六、教学后记:根据学生的表现和反馈情况,及时调整教学策略,对未掌握的知识点进行复习和强化训练。

同时,鼓励学生在课外自主学习,进一步提升对相似三角形的理解和应用能力。

24.3.3相似三角形性质 学案

24.3.3相似三角形性质 学案

24.3.3《相似三角形的性质》教学案一、课时学习目标:1、知道相似三角形中的对应线段的比等于相似比,相似三角形的面积比等于相似比的平方。

2、会利用相似三角形的两个性质解决简单问题。

二、课时复习导学:1、识别两个三角形相似的简便方法有哪些?/////''ABC A B C AB 10cm,AC 6cm,BC 8cm,A B 5cm,A C 3cm,B C 4cm,∆∆======’‘2、在与中,这两个三角形相似吗?说明理由。

如果相似,它们的相似比是多少?三、课堂学习研讨:上述两个三角形会相似,即ABC ∆∽'''C B A ∆,它们对应边的比就是相似比,相似比为:236C A AC ''==两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结果.例如,在下图中,△ABC 和△A ′B ′C ′是两个相似三角形,相似比为k ,其中AD 、A ′D ′分别为BC 、B ′C ′边上的高,那么AD 、 A ′D ′之间有什么关系?(你会证明k B A AB D A AD =''='') 然后由此可以得出结论:下图中(1)、(2)、(3)分别是边长为1、2、3的等边三角形,它们都相似.(2)与(1)的相似比=___________,(2)与(1)的面积比=___________;(3)与(1)的相似比=___________,(3)与(1)的面积比=___________.从上面可以看出当相似比=k 时,面积比=k 2.数学上可以说明,对于一般的相似三角形也具有这种关系.由此可以得出结论: 相似三角形的面积比等于________________________.例5 已知:△ABC ∽△A ′B ′C ′,且相似比为k ,AD 、 A ′D ′分别是△ABC 、△A ′B ′C ′对应边BC 、 B ′C ′上的高,求证:2k S S C B A ABC ='''∆∆.证明:思 考:下图中,△ABC 和△A ′B ′C ′相似,AD 、A ′D ′分别为对应边上的中线,BE 、B ′E ′分别为对应角的角平分线,那么它们之间有什么关系呢?可以得到的结论是_________________________________.想一想: 两个相似三角形的周长比是什么?可以得到的结论是相似三角形周长比等于 .例1 已知:如图,△ABC ∽△A ′B ′C ′,它们的周长分别是60cm 和72cm ,且AB=15cm , B ′C ′=24cm ,求BC 、AB 、A ′B ′、A ′C ′.四、课堂达标练习:1、ABC ∆∽'''C B A ∆,相似比是3:2,则其对应中线的比等于________对应高的比等于________,面积比等于__________。

相似三角形的判定(1)学案

相似三角形的判定(1)学案

相似三角形的判定(一)一、学习目标:知识:通过对事物的图形的观察、思考与分析,认识理解相似的图形。

能力:经历动手操作的活动过程,增强学生的观察、动手能力。

二、教材分析:重点:相似图形的概念与成比例线段的概念 难点:成比例线段概念 三、教学过程:(一)复习巩固1、相似三角形有什么性质?2、如何判断两个三角形相似?(二)合作探究:平行线分线段成比例定理:1.如上图,直线345l l l ∥∥,直线12,l l 分别交345,,l l l 于 点A 、B 、C 、D 、E 、F 。

(1)分别测量线段AB 、BC 、DE 、EF 的长度;计算AB BC ,DEEF 的值,你有什么发现? (3)任意平移5l ,再测量BC 、EF 的长度,计算AB BC ,DEEF的值,上述规律还成立吗?(4)根据AB BC =DE EF 可以变形为=AC BC ,=ACAB, = 。

(依据)(5)由上述探究,你能发现什么规律?2.平行线分线段成比例定理: 。

几何语言表示为: 。

3.推论:(1)任意移动2l ,再测量DE 、EF的长度,并计算DE EF 的值,它与AB BC相等吗? (2)将l 2移动成右图的两种情况,上面的结论还成立吗?为什么?(三)教学例题1、例题:如右图在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E ,△ADE 有什么关系? (1)分析:要证△ADE 与△ABC 相似,就是证明为: ;边的关系为: 。

(2)证明过程:2、 归纳结论: 于三角形一边的直线和其它两边相交,所构成的三角形与原三角形 。

这个结论可以作为三角形相似的判定。

用几何语言表示: 。

3、推论:如果平行线与其他两边延长线相交,即DE ∥BC 结论还成立吗?为什么?(四)、课堂展示:1、如图,E 为平行四边形ABCD 的边BC 延长线上一点,连接AE ,交边CD 于点F 。

在不添加辅助线的情况下,请写出图中所有的相似三角形。

《相似三角形》学案 位似

《相似三角形》学案 位似

《相似三角形》学案7课题:位似 初备人:彭伟坚 审核人:初三数学备课组班别: 学号: 姓名:【教学目标】知识与技能:了解位似图形的意义,能根据位似图形的特征,将图形进行放大和缩小; 过程与方法:理解位似图形的性质、选择适当的方式进行图形的放大和缩小;情感态度与价值观:从具体操作活动中,培养学生动手操作能力,空间想象能力。

【教学重点】能根据位似图形的特征,将一个图形进行放大和缩小【教学难点】理解位似图形的性质、选择适当的方式进行图形的放大和缩小【中考考点】将一个图形位似图形进行放大和缩小【课时安排】 1课时【教学方法】讲练结合法【教学过程】一、 位似图形的概念:看书本第59页得到: 叫做位似图形;这个点叫做位似中心;二、讲授新课例1.等边△ABC 与等边△A ′B ′C ′是位似图形,请找出位似中心,并求出位似比。

从中,我们可以看到,位似中心是点O ,△ ABO ∽△A ′B ′O,则OA OA ′ =OB OB ′ =AB A ′B ′. △小结:位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.例2.位似图形的画法如图,△ABC 三个顶点坐标分别位A (2,3),B(4,6),C(8,2),以点O 为位似中心,相似比为21,将△ABC 缩小,△A ′B ′C ′,则它的顶点A ′、B ′、C ′的坐标各是多少?.堂上练习:A 组1、四边形ABCD 缩小到原来的1/2,====ODOD OC OC OB OB OA OA ''''2、如图,以O 为位似中心,将△ABC 放大为原来的两倍,===OCOC OB OB OA OA '''.3、如下左图,在直角坐标系中,△ABC 的各个顶点的坐标为A (-1,1),B (2,3),C (0,3).以坐标原点O 为位似中心,位似比为2,作△ABC 的位似图形△A ′B ′C ′,则它的顶点A ′、B ′、C ′的坐标各是多少?堂上练习:B 组如上右图,已知△ABC 和点O.以O 为位似中心,求作△ABC 的位似图形,并把△ABC 的边长缩小到原来的32.【课堂小结】位似图形的性质,根据位似图形的特征将一个图形进行放大和缩小。

相似三角形全章教案

相似三角形全章教案

23.2两个三角形相似的判定(1)教学目标:1.经历“有两个角对应相等的两个三角形相似”的探索过程. 2.能运用“有两个角对应相等”的条件判定两个三角形相似. 重点和难点:1.本节教学的重点是相似三角形的判定方法:有两个角对应相等的两个三角形相似. 2.有两个角相等的三角形是相似三角形的探索过程比较复杂,是本节教学的难点. 知识要点: 1、有两个角对应相等的两个三角形相似. 如图,∵∠A =∠A ′,∠B =∠B ′∴△ABC ∽△A ′B ′C ′2、基本图形(1)如图甲,若DE ∥BC,则△ADE ∽△ABC.(2)如图乙,若AC ∥DB,则△AOC ∽△BOD.3、常见图形(1)如图1,若∠AED =∠B,则△ADE ∽△ACB ; (2)如图2,若∠ACD =∠B,则△ACD ∽△ABC ;(3)如图3,若∠BAC =90°,AD ⊥BC,则△ABC ∽△DBA ∽△DAC. 重要方法:1、有一个锐角相等的两个直角三角形相似;2、识别三角形相似的常用思路:(1)当条件中有平行线时,找两对对应角相等;(2)当条件中有一对相等的角(对顶角或公共角)时,可考虑再找一对相等的角; (3)两个等腰三角形,可以找顶角相等或找一对底角相等.A BC A ′B ′C ′AB C DE 图甲A B CD E 图乙A B C DE 图1A BC D图2A B C图3教学过程一.创设情境,导入新课1、如图,在方格图中△ABC ,DE ∥BC ,问:△ADE ∽△ABC 吗?说明理由.2、如图2,A 、B 、C 、D 、E 、F 、G 都在小方格的的顶点上,问:DE ∥BC ∥FG 吗? △ADE ∽△ABC ∽△AFG ?二.合作学习,探索新知 1、合作学习:如图4-14,在△ABC 中,点D ,E 分别在AB ,AC 上,且DE ∥BC.则△ADE 与△ABC 相似吗? 议一议:这两个三角形的三个内角是否相等?量一量:这两个三角形的边长,它们是否对应成比例?追问:若点D 、E 分别在AB 、AC 的反向延长线上,△ADE 与△ABC 是否还相似呢?定理:平行于三角形一边的直线和其他两边(或它们的反向延长线)相交,所构成的三角形与原三角形相似.定理的几何语言表述: ∵DE ∥BC∴△ADE ∽△ABC2、结合预备定理探求三角形相似的判定定理一 判定定理一:有两个角对应相等的两个三角形相似.简称:两角对应相等,两三角形相似.(由学生根据命题的题设和结论,写出已知求证)已知:在△ABC 和△A ′B ′C ′中, ∠A =∠A ′,∠B =∠B ′ 求证:△ABC ∽△A ′B ′C ′ 分析:要证两个三角形相似,目前只有两个途径。

相似全章教案

相似全章教案

CB(第10节)相似三角形的应用教学目标:1.在学生认识相似三角形性质和识别的基础上,通过在实际问题中应用对所学知识进行不断巩固和提高。

2.通过教学培养学生的合作、交流、探索的优良品质和运用数学建摸以及化归的意识。

教学重点和难点:对所学知识的灵活应用和体会数学建摸在初中数学中的应用。

教学过程:1.知识回顾:相似三角形的性质:相似三角形的对应边成比例,对应角相等;相似三角形的对应高、对应角平分线、对应中线的比等于相似比; 相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方;2.知识应用:例 1.( 书49页例3) 据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部里一根木杆,借助太阳光线过程两个相似三角形,来测量金字塔的高度。

如图,求金字塔的高度OB. 解:想一想:怎样利用相似三角形的有关知识测量旗杆的高度?方法1:利用阳光下的影子.测量数据:身高AC 、影长BC 、旗杆影长 找相似:△ABC ∽△DEF.方法2:利用标杆.测量数据:身高AD 、标杆BE 、旗杆与标杆之间距离BC 、人与标杆间距离AB.( 找相似:△DGE ∽△DHF找比例:EFBCDF AC =找比例:FH EGDH DG =方法3:利用镜子的反射.测量数据:身高DE 、人与镜子间的距离AE 、旗杆与镜子间距离AC. 找相似:△ADE ∽△ABC.练习1:(练习册52—2)例2:(书50—例4)小结:借助建筑物垂直地面,太阳光线互相平行,光的折射等条件确定相似三角形,再利用对应边的比,列方程求解。

.AC AE BC DE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.1 图形的相似(第1课时)总 1 课时一、教学目标:通过对事物的图形的观察、思考与分析,认识理解相似的图形。

二、重点难点:认识图形的相似、形成图形相似的概念。

三、学情分析:在现实世界中广泛存在着图形相似的现象,探究相似图形一些重要性质的过程,使学生更好的认识、描述形状相同的物体,体会相似图形在刻画现实世界中重要作用;在解决实际问题中,发展学生数学应用意识和合作交流能力。

四、自主探究问题一:1、相似图形的定义?2、请举例说明我们生活中相似图形的实例。

问题二:1、两个相似图形之间有什么关系?2、思考(1)放大镜下的图形和原来的图形相似吗?(2)人站在平面镜前看到的镜像及哈哈镜里看到的镜像,它们相似吗?为什么?问题三:全等形与相似图形之间有什么关系?五、尝试应用1、下图中的哪组图形是相似图形()2、观察图27-1-6中图形(a)—(g),其中哪些是与图形(1)、(2)、(3)相似的。

3、如图,在4×4的正方形网格上,有一△ABC 。

现要求再画一△A’B’C’,使这两个三角形相似(非全等)。

六、补偿提高1、(教材P37练习第2题变式题)观察下列各个图形,找出其中相似的图形。

2、如图所示,左侧上海名牌大众汽车的标志图案,与右侧A 、B 、C 、D 四个图形中相似的是( )3、下列是相似图形的有( ) A. 两个三角形 B. 两个正方形 C. 两个直角三角形 D. 两个矩形4、如图,作出与方格纸中的图形相似的图形,使点A 与A ′对应,且所画的图形是原图形的2倍。

七、小结与作业八、教学后记:九、学生出勤:CBA十、安全提示:27.1 图形的相似(第2课时)总 2 课时一、教学目标:理解并掌握相似多边形的性质以及运用相似多边形的性质解决实际问题。

二、重点:相似多边形的对应边成比例,对应角相等的性质。

难点:应用相似多边形的性质解决实际问题。

三、学情分析:我们已学过相似图形的概念和全等三角形的性质,在此基础上研究相似图形的性质并不是很困难,教学过程中要注意类比全等图形的性质,从特殊到一般,引导学生观察、猜想、归纳、验证推理,从而让学生掌握相似图形的性质。

四、自主探究问题一:相似正多边形的性质1、证明上环节1得到的结论。

2、证明上环节2得到的结论。

3、由以上两个问题你能得到什么结论?4、已知a=2㎝,b=3㎝,c=6㎝,d=9㎝,求ab,cd,通过计算你发现了什么? 5、什么叫比例线段?问题二:一般多边形相似的性质1、完成教材37页探究2、根据以上探究,你能得到什么结论?问题三:相似多边形的判定:怎样判定两多边形相似?问题四:相似比1、什么是相似比?2、相似比为1时,两图形有何关系?五、尝试应用1、下面三个矩形的长、宽如图所示,则相似的两个矩形是( ).A.(1)和(2) B.(1)和(3) C.(2)和(3) D.没有2、已知1,2,2三个数,请你再添上一个数,写出一个比例等式__________. 3如图,四边形ABCD 和EFGH 相似,求角α、β的大小和EH 的长度x 。

4在比例尺为1:1000000的中国地图上,量得甲、乙两地的距离为50cm,求两地的实际距离.六、补偿提高1、在两个相似的五边形中,一个各边长分别为1,2,3,4,5,另一个最大边为8,则后一个五边形的周长是 ( ) A 、27 B 、24 C 、21 D 、182、下列图形中,能确定相似的有( )A.两个半径不等的圆B.所有等边三角形C.所有等腰三角形D.所有正方形E.所有等腰梯形F.所有正六边形3、张明同学想利用树影测校园内的树高。

他在某一时刻测得树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树影长时,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约 米。

4、在比例尺为1:40000的工程示意图上,20XX 年9月1日正式通车的南京地铁一号线的长度约为54.3㎝,它的实际长度约为( )A 、0.2172kmB 、2.172kmC 、21.72kmD 、217.2km5、四条线段,,,a b c d 成比例,其中cm d cm c cm b 6,2,3===,求线段a 的长。

七、小结与作业八、教学后记:九、学生出勤:六、安全提示:27.2.1相似三角形的判定(第1课时)总 3课时一、教学目标1. 通过一些具体情境,深化对相似三角形的认识和理解; 2. 掌握并理解平行线分线段成比例定理;3. 掌握平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似和相似三角形的判定方法,并能运用这个定理进行相似三角形的判定.二、重点:运用相似三角形的基本定理和判定方法进行证明.难点: 对“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”这一定理的两种情形的理解与掌握.三、学情分析相似三角形的判定既是本章的重点,也是整个初中几何的重点。

同时,在我们的生活中相似图形的应用也比较广泛。

由于有了相似图形、相似多边形和全等三角形的基础,学生应不难理解。

四、自主探究问题一:相似三角形的概念及表示1、 什么叫相似三角形?2、怎样表示两三角形相似?3、什么是三角形的相似比?4、如果相似比k=1,两三角形有怎样的关系?问题二:平行线分线段成比例定理1、已知如图,直线345l l l ∥∥,直线12,l l 分别交345,,l l l 于点A 、B 、C 、D 、E 、F.l 5l 4l 3l 2l 1FEDCBAEDCBA(1)分别测量线段AB 、BC 、DE 、EF 的长度; (2)计算AB BC ,DE EF的值,你有什么发现? (3)任意移动2l ,再测量DE 、EF 的长度,并计算DEEF的值,你又有什么发现? (4)任意平移5l ,再测量AB 、BC 、DE 、EF 的长度,计算AB BC ,DEEF的值,上述规律还成立吗? (5)验证BC EF AC DF =,AB DEAC DF=成立吗? (6)由上述探究,你能发现什么规律?2、(1)若1中的12,l l 相交于3l 上点A ,如图,你会得到什么结论?(2)若1中12,l l 相交于4l 的上点A ,如图,你会得到什么结论?(3)把(1)中的4l 看成平行于△ABC 的边BC 的直线,把(2)中的3l 看成平行于△ABC 的边BC 的直线,你会得到什么结论? 问题三:相似三角形的预备定理1、在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D,E,△ADE与△ABC有什么关系?2、由上题,请你归纳结论.3、【引申】上述结论中,如果平行线与其他两边延长线相交结论仍成立,你能画出正确的图形吗?二、尝试应用1.如图1,已知AB CD EF ∥∥,那么下列结论正确的是( )l 5l 4l 3l 2l 1EDCBA AB DC EFl 5l 4l 3l 2l 1EDCBAEC B DA F BAFCDE A .AD BC DF CE = B .BC DF CE AD = C .CD BC EF BE = D .CD ADEF AF =2、如图2,在平行四边形ABCD 中,E 是AD 上一点,连结CE 并延长交BA 的延长线于点F ,则下列结论中错误的是 ( ) A .∠AEF=∠DEC B .FA :CD=AE :BC C .FA :AB=FE :EC D .AB=DC3、如图,上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是 米.4、如图,已知DE ∥BC ,AB=2,AC =3,AD=1.5,BC=4,求AE 、DE 的长。

三、补偿提高1、如图,已知BC 交AD 于点E , AB ∥ EF ∥CD ,那么图中相似的三角形共有 ( )A. 1对B. 2对C. 3对D. 4对 2、如图,已知DE ∥BC ,AB=2,AC =3,CD=4.5,BC=4,求AE 的长。

3、如图,E 为平行四边形ABCD 的边BC 延长线上一点,连接AE ,交边CD 于点F 。

在不添加辅助线的情况下,请写出图中所有的相似三角形。

4、如图,梯形ABCD 中,AB ∥DC ,AC 交BD 于点F ,延长AD 、BC 交于点E ,DE=2,AD=3。

求DF ∶BF 的值。

EABCDBFCAEDBAD C EFEABCD七、小结与作业八、教学后记:九、学生出勤:六、安全提示:27.2.1相似三角形的判定(第2课时)总 4课时一、教学目标:进一步深化对相似三角形的判定方法的理解,并能够运用相似三角形的判定方法解决相似三角形的有关问题.二、重点:掌握三边比相等两三角形相似的判定定理,并会用此定理判定两三角形相似.难点:探究三角形相似的条件,并用该定理解决问题.三、学情分析本节内容是研究相似三角形的判定定理1,研究过程中类比三角形全等的判定方法。

首先让学生通过画图初步感受到三边的比相等的两三角形相似,然后通过理论严格论证该命题的正确性。

四、自主探究问题一:试验1、任意画一个三角形,再画一个三角形,使它的各边长是原来的k(k=2或0.5)倍;2、比较这两三角形的对应角是否相等(方法:1、可用度量法;2、可剪下一三角形,用重叠法);3、这两三角形有什么关系?4、根据上面讨论,你能得到什么结论?问题二:证明1、结合命题,画出图形,写出已知和求证2、写出证明过程。

五、尝试应用EDCBA7cm5cm4cmCBAEDCBA1、根据下列条件,判断△ABC 和△A’B’C’是否相似,并说明理由。

(1)AB=10cm ,BC=12cm ,AC=15cm ; A’B’=150cm,B’C’=180cm,A’C’=225cm;(2)AB=4cm ,BC=6cm ,AC=8cm ; A’B’=12cm,B’C’=18cm,A’C’=21cm。

2、如图,判断两个三角形是否相似。

3、如图,已知AB BC ACAD DE AE==,试说明:∠BAD=∠CAE.4、要制作两个形状相同的三角形框架,其中一个三边长分别是4、5、6,另一个一边长为2,它的另外两边长应当是多少?六、补偿提高1、(2010浙江衢州)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上.判断△ABC 和△DEF 是否相似,并说明理由;2、如图, ∠DEB =∠ACB=Rt ∠,DE=2,AB=5,BC=3,BD=2.5。

求证:AB 平分∠DBC.ACBFEDP 1P 2 P 3P 4P 53.5cm2.5cm2cmFED七、小结与作业八、教学后记:十、安全提示:27.2.1相似三角形的判定(第3课时)总5--6课时一、教学目标:初步掌握“两组对应边的比相等,并且相应的夹角相等的两个三角形相似”的判定方法。

相关文档
最新文档