高三总复习-一元二次不等式的解法

合集下载

高三数学一元二次不等式的解法

高三数学一元二次不等式的解法
3.3 一元二次不等式的解法 课件
问题:
2
(1)如何解一元二次方程 ax bx c 0(a 0) (2)二次函数y ax bx c(a 0) 的图象是
2
什么曲线?
2 ax bx c 0(a 0) 的 (3)一元二次方程
解与二次函数y ax2 bx c(a 0) 的图象
化为以上四种形式中的一种。 下面我们就利用二次函数的图象来解 以上4个不等式。
设f(x)=ax2+bx+c (a>0),且设方程 f(x)=0在△>0时的两个根分别是x1、x2, 且x1<x2。
下面我们一起来完成下表:
△=b2-4ac f(x)>0的解集 f(x)<0的解集 f(x) ≥0的解集
y
x=-b/2a
y=f(x)的图象
x
O
x
O
x
由此我们可以得出解一元二次不等式的一般 步骤:
(1)把所给不等式化为四种标准形式之一; (2)判断所对应二次方程的根的情况;若 有根,则求出其根。 (3)画出所对应的二次函数的图象; (4)根据图象写出不等式的解集。
例1.解下列不等式
1.
x 2x 3 0
有什么联系?
一元二次方程ax bx c 0(a 0) 的解实
2
际上就是二次函数 y ax bx c(a 0)
2
与x轴交点的横坐标。
下面我们来研究如何应用二次函数的图象
来解一元二次不等式。
首先,我们可以把任何一个一元二次 不等式转化为下列四种形式中的一种:
(1)ax bx c 0(a 0)
△>0
△=0
1
△<0
x x x 或x x

高考数学一轮复习 第7章 不等式 第2节 一元二次不等式及其解法课件 文

高考数学一轮复习 第7章 不等式 第2节 一元二次不等式及其解法课件 文
答案:{x|-3≤x≤1}
12/8/2021
第二十二页,共五十二页。
4.已知函数 f(x)=x-2+x22+x,2xx,≥x0<,0,解不等式 f(x)>3.
解:由题意xx≥ 2+02,x>3或x-<x02,+2x>3,解得 x>1. 故原不等式的解集为{x|x>1}.
12/8/2021
第二十三页,共五十二页。
三、易错自纠 4.不等式-x2-3x+4>0 的解集为________.(用区间表示) 解析:由-x2-3x+4>0 可知,(x+4)(x-1)<0,解得-4<x<1. 答案:(-4,1)
12/8/2021
第十四页,共五十二页。
5.设二次不等式 ax2+bx+1>0 的解集为x-1<x<13,则 ab 的值为________. 解析:由不等式 ax2+bx+1>0 的解集为x-1<x<13,知 a<0 且 ax2+bx+1=0 的两 根为 x1=-1,x2=13,由根与系数的关系知- -113+ =131a= ,-ba, 所以 a=-3,b=-2,所以 ab=6. 答案:6
12/8/2021
第五页,共五十二页。
2.三个“二次”间的关系
判别式Δ=b2-4ac
Δ>0
Δ=0
二次函数 y=ax2+bx +c(a>0)的图象
一元二次方程 ax2+bx 有两相异实根 x1,
+c=0 (a>0)的根
x2(x1<x2)
有两相等实根 x1=x2 =-2ba
Δ<0 没有实数根
12/8/2021
第七章 不等式
第二节 一元(yī yuán)二次不等式及 其解法

第05讲 一元二次不等式与其他常见不等式解法(十大题型)2025年高考数学一轮复习讲练测

第05讲 一元二次不等式与其他常见不等式解法(十大题型)2025年高考数学一轮复习讲练测
(3)含有两个或两个以上绝对值的不等式,可用图象法和零点分段法求解.
知识梳理·基础回归
解题方法总结
1、已知关于的不等式 + + > 的解集为(,),解关于的不等式 + + ≤ .








由 + + > 的解集为(,),得:( ) + + ≤ 的解集为(−∞, ] ∪ [ , +∞)
2、会结合二次函数的图象,判断一元二次方程实根的存在性及实根的分布问题.
3、能借助二次函数求解二次不等式,类比会求高次方程和绝对值不等式.
02
03
知识梳理·基础回归
知识点1:一元二次不等式
一元二次不等式 2 + + > 0( ≠ 0),其中Δ = 2 − 4,1 , 2 是方程 2 + + > 0( ≠ 0)
所以不等式 2 − 3 − 18 > 0的解集是(−∞, −3) ∪ (6, +∞).
故答案为:(−∞, −3) ∪ (6, +∞).
题型突破·考法探究
题型二:含参数一元二次不等式的解法
【典例2-1】设函数() = 2 + (1 − ) + − 2( ∈ R)
(1)若不等式() ≥ −2对一切实数x恒成立,求a的取值范围;
1



< < 1}.
题型二:含参数一元二次不等式的解法
题型突破·考法探究
【典例2-1】设函数() = 2 + (1 − ) &#≥ −2对一切实数x恒成立,求a的取值范围;

一元二次不等式的解法6种常见考法归类(原卷版)

一元二次不等式的解法6种常见考法归类(原卷版)

2.2.3 一元二次不等式的解法6种常见考法归类1、一元二次不等式的概念一般地,形如ax 2+bx +c >0的不等式称为一元二次不等式,其中a ,b ,c 是常数,而且a ≠0.一元二次不等式中的不等号也可以是“<”“≥”“≤”等.注:一元二次不等式的二次项系数a 有a >0和a <0两种,注意aa <0时,我们通常将不等式两边同乘以-1,化为二次项系数大于0的一元二次不等式,但要注意不等号要改变方向,这样我们只需要研究二次项系数大于0的一元二次不等式.2、一元二次不等式的解法(1)用因式分解法解一元二次不等式一般地,如果x 1<x 2,则不等式(x -x 1)(x -x 2)<0的解集是(x 1,x 2),不等式(x -x 1)(x -x 2)>0的解集是(-∞,x 1)∪(x 2,+∞).①这种方法只有在一元二次不等式左边能够因式分解(一般用十字相乘法)时才能使用,简记为“小于零取中间,大于零取两边”.②因式分解法就是将一元二次不等式转化为两个一元一次不等式组来求解.依据是:ab >0当且仅当⎩⎪⎨⎪⎧a >0,b >0 或⎩⎪⎨⎪⎧a <0,b <0 ;ab <0当且仅当⎩⎪⎨⎪⎧a <0,b >0 或⎩⎪⎨⎪⎧a >0,b <0.(2)用配方法解一元二次不等式一元二次不等式ax 2+bx +c >0(a ≠0)通过配方总是可以变为(x -h )2>k 或(x -h )2<k 的形式,然后根据k 的正负等知识,就可以得到不等式的解集.注:(1)因式分解法只适用于特殊类型的一元二次不等式,一般的一元二次不等式可以通过配方法求得解集.(2)用配方法解一元二次不等式的关键是熟练掌握二次三项式的配方技巧.3、二次函数与一元二次方程、不等式的解的对应关系4、简单分式不等式的解法分式不等式的概念分母中含有未知数的不等式称为分式不等式.注:当分式不等式等价转化为整式不等式时,其分母不为零最容易被忽略,这一点一定要注意.5、求解可化成ax2+bx+c>0(a>0)形式的不等式为例,用框图表示其求解过程:6、一元二次不等式的解法:(1)图像法:一般地,当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:∪确定对应方程ax2+bx+c=0的解;∪画出对应函数y=ax2+bx+c的图像简图;∪由图像得出不等式的解集.对于a<0的一元二次不等式,可以直接采取类似a>0时的解题步骤求解;也可以先把它化成二次项系数为正的一元二次不等式,再求解.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解,当p <q 时,若(x -p)(x -q)>0,则x >q 或x <p ;若(x -p)(x -q)<0,则p <x <q.有口诀如下“大于取两边,小于取中间”.7、含参数一元二次不等式求解步骤(1)讨论二次项系数的符号,即相应二次函数图像的开口方向; (2)讨论判别式的符号,即相应二次函数图像与x 轴交点的个数; (3)当Δ>0时,讨论相应一元二次方程两根的大小;(4)最后按照系数中的参数取值范围,写出一元二次不等式的解集.8、三个“二次”之间的关系一元二次不等式与其对应的函数与方程之间存在着密切的联系,在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.(2)若一元二次不等式的解集为R 或∪,则问题可转化为恒成立问题,此时可以根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的范围.9、简单的分式不等式的解法对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.注:设A 、B 均为含x 的多项式 (1)00>⇔>A AB B (2)00<⇔<AAB B(3)000≥⎧≥⇔⎨≠⎩AB A B B (4)000≤⎧≤⇔⎨≠⎩AB AB B 10、解不等式应用题的四步骤(1)审:认真审题,把握问题中的关键量,找准不等关系. (2)设:引进数学符号,用不等式表示不等关系. (3)求:解不等式. (4)答:回答实际问题.特别提醒:确定答案时应注意变量具有的“实际含义”.考点一 解不含参数的一元二次不等式 考点二 含参数的一元二次不等式的解法 考点三 利用不等式的解集求参数考点四 简单的分式不等式的解法 考点五 一元二次不等式的恒成立有解问题 考点六 一元二次不等式的实际应用考点一 解不含参数的一元二次不等式1.(2023秋·安徽合肥·高二校考学业考试)不等式(1)(2)0x x -+>的解集为( ) A .{2x x <-或1}x >B .{21}x x -<<C .{12}x x <<D .{1x x <或2}x >2.(2023秋·广东佛山·高一佛山市第二中学校考开学考试)解下列一元二次不等式: (1)23710x x -≤; (2)2104x x -+<; (3)2340x x -+>.3.(2023·上海·高一专题练习)解下列不等式: (1)22310x x -+-<; (2)()2160x -->;(3)2260340x x x x ⎧--≤⎨+-<⎩4.(2023秋·高一校考课时练习)解下列不等式: (1)22320x x --> (2)2350x x -+>(3)2620x x --+≥ (4)2414x x -≥-5.(2023春·福建福州·高二福建省福州延安中学校考学业考试)不等式24410x x -+<的解集为 A .1(,]2-∞B .11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .12⎧⎫⎨⎬⎩⎭D .∅6.【多选】(2023秋·江苏淮安·高一校考阶段练习)下列四个不等式中,解集为∅的是( ) A .210x x -++≤ B .22340x x -+<C .2690x x ++≤D .2440(0)x x a a a ⎛⎫-+-+>> ⎪⎝⎭考点二 含参数的一元二次不等式的解法7.(2023·全国·高一假期作业)若01a <<,解不等式()10a x x a ⎛-⎫ ⎪⎝⎭->.8.(2023·江苏·高一假期作业)解关于x 的不等式()()2231220x a x a --+->9.(2023秋·高一校考课时练习)解关于x 的不等式: ()22110ax a x a -+++<.10.(2023秋·北京·高一北京市第五十中学校考阶段练习)解不等式()2110ax a x -++>.11.(2023秋·北京西城·高一北京铁路二中校考期中)设a ∈R ,解关于x 的不等式:()2330ax a x -++≤.12.(2023秋·黑龙江鹤岗·高一鹤岗一中校考期中)已知222()(1)2(1)f x ax a x a =-+++,a ∈R ,求关于x 的不等式()0f x ≥的解集.考点三 利用不等式的解集求参数13.(2023秋·福建福州·高一福州三中校考阶段练习)已知不等式20x ax b ++<的解集是{}24x x -<<,则a b +=( )A .-10B .-6C .0D .214.(2023秋·福建泉州·高一校考阶段练习)若关于x 的不等式220x x a -+<的解集是{|2}x b x <<,则a b += ( )A .1-B .152-C .92-D .9-15.【多选】(2023·黑龙江佳木斯·佳木斯一中校考模拟预测)已知关于x 的不等式20ax bx c ++>的解集为()(),23,-∞-⋃+∞,则下列选项中正确的是( )A .a<0B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-⋃+∞16.(2023秋·河南南阳·高一校考阶段练习)关于x 的不等式20ax bx c ++<的解集为()3,1-,则不等式20bx ax c ++<的解集为( )A .()1,2?B .1,2C .1,12⎛⎫- ⎪⎝⎭D .3,12⎛⎫- ⎪⎝⎭17.(2023秋·广西柳州·高一柳铁一中校联考阶段练习)已知关于x 的不等式mx n >的解集是{}<2x x ,则关于x 的不等式()()30mx n x +->的解集是( )A .{|2x x <或3}x >B .{}2<<3x xC .{|2x x <-或3}x >D .{}2<<3x x -18.(2023秋·江苏常州·高一江苏省前黄高级中学校考期中)已知函数()243f x ax x =++.(1)若关于x 的不等式()0f x >的解集是(),1b ,求,a b 的值. (2)若0a >,求关于x 的不等式()1f x ax >--的解集.19.(2023秋·湖南永州·高二统考阶段练习)若不等式20x x c +-≤的解集为[]2,1-,则c = .20.(2023·全国·高三专题练习)若不等式()210x a x a -++≤的解集是[]4,3-的子集,则a 的范围是( )A .[-4,3]B .[-4,2]C .[-1,3]D .[-2,2]21.【多选】(2023春·浙江温州·高二统考学业考试)关于x 的不等式22(12)20ax a x a +--<的解集中恰有3个正整数解,则a 的值可以为( )A .1-B .32C .74D .2考点四 简单的分式不等式的解法22.(2023秋·云南曲靖·高一校考阶段练习)不等式302x x +>+的解集是 .23.(2023秋·陕西渭南·高二统考期末)不等式102xx-≥+的解集为 . 24.(2023秋·河南商丘·高一统考期中)不等式3102x x +≤- 的解集是 . 25.(2023·全国·高三对口高考)已知集合3442x P xx ⎧⎫+=≥⎨⎬-⎩⎭,则P = . 26.(2023秋·陕西西安·高三西北工业大学附属中学校考阶段练习)解不等式: (1)2450x x -++>; (2)2221x ax a -≤-+; (3)132x x+≥-. 考点五 一元二次不等式的恒成立有解问题27.(2023秋·高一单元测试)设()()212=--+-∈y x a x a a R .(1)若不等式()2122--+-≥-x a x a 对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()2120--+-<x a x a .28.(2023春·江苏南京·高二南京市中华中学校考阶段练习)设()()212f x ax a x a =+-+-. (1)若不等式()2f x ≥-对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式()()1R f x a a <-∈.29.(2023秋·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)已知函数()()()2124f x m x mx m m =+-+-∈R .(1)若不等式()0f x <的解集为R ,求m 的取值范围; (2)解关于x 的不等式()f x m ≥.30.(2023秋·四川遂宁·高一射洪中学校考阶段练习)设2(1)2y ax a x a =+-+-. (1)若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;(2)解关于x 的不等式()2(1)10R ax a x a +--<∈.31.(2023·高一课时练习)已知函数()()2322f x x a x a b =+-+++,a ,b ∈R .(1)若关于x 的不等式()0f x >的解集为{4x x <-或}2x >,求实数a ,b 的值; (2)若关于x 的不等式()f x b ≤在[]1,3x ∈上有解,求实数a 的取值范围;(3)若关于x 的不等式()12f x b <+的解集中恰有3个整数,求实数a 的取值范围.考点六 一元二次不等式的实际应用32.(2023秋·高一校考单元测试)某小型雨衣厂生产某种雨衣,售价P (单位:元/件)与月销售量x (单位:件)之间的关系为1602P x =-,生产x 件的成本(单位:元)50030R x =+.若每月获得的利润y (单位:元)不少于1300元,则该厂的月销售量x 的取值范围为( )A .()20,45B .[)20,45C .(]20,45D .[]20,4533.(2023·全国·高一假期作业)某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为1602P x =-,生产x 件所需成本为C (元),其中()50030C x =+元,若要求每天获利不少于1300元,则日销售量x 的取值范围是( ).A .{}2030,N x x x +≤≤∈B .{}2045,N x x x +≤≤∈C .{}1530,N x x x +≤≤∈D .{}1545,N x x x +≤≤∈34.(2023春·河南安阳·高二林州一中校考阶段练习)某地每年消耗木材约20万立方米,每立方米售价480元,为了减少木材消耗,决定按%t 征收木材税,这样,每年的木材消耗量减少52t 万立方米,为了既减少木材消耗又保证税金收入每年不少于180万元,t 的取值范围是( )A .[]1,3B .[]2,4C .[]3,5D .[]4,635.(2023秋·四川绵阳·高一绵阳中学校考阶段练习)某种衬衫进货价为每件30元,若以40元一件出售,则每天能卖出40件;若每件提价1元,则每天卖出件数将减少一件,为使每天出售衬衫的净收入不低于525元,则每件衬衫的售价的取值范围是 .(假设每件衬衫的售价是m )。

一元二次不等式6种解法大全

一元二次不等式6种解法大全

一元二次不等式6种解法大全一元二次不等式是指形如ax²+bx+c>0或ax²+bx+c≥0的二次不等式,其中a、b、c为实数,a≠0。

这种不等式的解法有很多种,下面我将介绍其中的六种解法。

解法一:使用因式分解法。

对于形如(ax+b)(cx+d)>0或(ax+b)(cx+d)≥0的一元二次不等式,可以尝试将其因式分解为两个一次因式相乘的形式,然后根据不等式的性质讨论各个因式的取值范围,从而求得不等式的解。

解法二:使用它的图像解法。

将一元二次不等式对应的二次函数的图像画出来,然后根据图像的特点来确定使得函数大于0(或大于等于0)的x的取值范围,即为不等式的解。

解法三:使用开平方法。

对于形如x²+a≥0或x²+a>0的一元二次不等式,可以通过开平方的方法来求解。

首先将不等式移到一边,得到一个完全平方的形式,然后对不等式两边同时开平方,得到关于x的两个二次方程,根据二次方程的性质来求解。

解法四:使用代数求解法。

对于一元二次不等式ax²+bx+c>0或ax²+bx+c≥0,可以将其转化为一个关于x的二次方程ax²+bx+c=0的解的范围问题。

求得这个二次方程的解,然后根据这些解的范围来确定不等式的解。

解法五:使用数轴法。

将一元二次不等式对应的二次函数的图像画在数轴上,然后根据函数的凸性来确定函数取正值的x的取值范围,即为不等式的解。

解法六:使用区间法。

将一元二次不等式移项,化成形如ax²+bx+c<0或ax²+bx+c≤0的不等式,然后求出二次函数的零点,并根据二次函数的凸性来确定函数小于0(或小于等于0)的x的取值范围,即为不等式的解。

以上是关于一元二次不等式的六种解法,每种解法都有其独特的思路和方法。

在实际的解题过程中,可以根据具体的题目情况选择合适的解法来求解,以提高解题效率和准确性。

高考数学 一元二次不等式的解法 专题

高考数学  一元二次不等式的解法  专题

第一章 集合与简易逻辑——第4课时:一元二次不等式的解法高考数学 一元二次不等式的解法 专题一.课题:一元二次不等式的解法二.教学目标:掌握一元二次不等式的解法,能应用一元二次不等式、对应方程、函数三者之间的关系解决综合问题,会解简单的分式不等式及高次不等式.三.教学重点:利用二次函数图象研究对应不等式解集的方法.四.教学过程:(一)主要知识:1.一元二次不等式、对应方程、函数之间的关系;2.分式不等式要注意大于等于或小于等于的情况中,分母要不为零;3.高次不等式要注重对重因式的处理.(二)主要方法:1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间;2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理;3.高次不等式主要利用“序轴标根法”解.(三)例题分析:例1.解下列不等式:(1)260x x --<;(2)23100x x -++<;(3)(1)(2)0(2)(1)x x x x x +-≥+-. 解:(1)23x -<<;(2) 5 2x or x ><-;(3)原不等式可化为(1)(2)(2)(1)02 1 0 1 2(2)(1)0x x x x x x or x or x x x +-+-≥⎧⇒-<≤-≤<≥⎨+-≠⎩.例2.已知2{|320}A x x x =-+≤,2{|(1)0}B x x a x a =-++≤,(1)若A B ⊂≠,求a 的取值范围;(2)若B A ⊆,求a 的取值范围.解:{|12}A x x =≤≤,当1a >时,{|1}B x x a =≤≤;当1a =时,{1}B =;当1a <时,{|1}B x a x =≤≤.(1)若A B ⊂≠,则122a a a >⎧⇒>⎨>⎩; (2)若B A ⊆,当1a =时,满足题意;当1a >时,2a ≤,此时12a <≤;当1a <时,不合题意.所以,a 的取值范围为[1,2).例3.已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围;(2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.解:(1)24(2)16004a a ∆=--<⇒<<;(2)(2)3(3)0a f --<-⎧⎨->⎩或3(2)10a -≤--≤⎧⎨∆<⎩或(2)1(1)0a f -->⎧⎨>⎩,第一章 集合与简易逻辑——第4课时:一元二次不等式的解法解得a φ∈或14a ≤<或112a -<<,∴a 的取值范围为1(,4)2-. 例4.已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为 .解法一:∵(2)(4)0x x --<即2680x x -+->的解集为11{| }24x x or x ><, ∴不妨假设1,6,8a b c =-==-,则20cx bx a ++<即为28610x x -+-<,解得11{|}42x x <<. 解法二:由题意:00364188a cb b ac c a a c ⎧⎧<<⎪⎪⎪⎪⎪⎪-=⇒-=⎨⎨⎪⎪⎪⎪==⎪⎪⎩⎩,∴20cx bx a ++<可化为20b a x x c c ++>即231048x x -+>,解得11{| }24x x or x ><.例5.(《高考A 计划》考点4“智能训练第16题”)已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立? 解:假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ① 又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立, ∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ② 由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-, 由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立, ∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R , ∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩, ∴14a =,∴14c =, ∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立.第一章 集合与简易逻辑——第4课时:一元二次不等式的解法 (四)巩固练习:1.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的取值范围是(2,2]-.2.若关于x 的方程2210x ax a ++-=有一正根和一负根,则a ∈(1,1)-.3.关于x 的方程2(3)3m x m x -+=的解为不大于2的实数,则m 的取值范围为3(,](0,1)(1,)2-∞-+∞U U . 4.不等式2(1)(2)0(4)x x x x +-≥+的解集为(,4)(0,2] 1or x -∞-=-U .五.课后作业:《高考A 计划》考点4,智能训练3,4,5,9,13,14,15.。

高中数学高三第六章不等式一元二次不等式及其解法(教案)

高中数学高三第六章不等式一元二次不等式及其解法(教案)

高三一轮复习 6.2 一元二次不等式及其解法【教学目标】1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

【重点难点】1。

教学重点:会解一元二次不等式并了解一元二次不等式与相应的二次函数、一元二次方程的联系;2。

教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】环节二:意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.解析[由题可得f(x)<0对于x∈[m,m+1]恒成立,即错误!解得-错误!〈m〈0.答案错误!知识梳理:知识点1 三个“二次”的关系ΔacΔ〉0Δ=0Δ数+a〉象次有两相异实根有两相等实根没有ax2+bx+c=0(a>0)的根x1,x2(x1<x2)x1=x2=-错误!ax2+bx+c〉0 (a>0)的解集{x|x〈x1或x〉x2}{x|x≠x1}Rax2+bx+c<0 (a〉0)的解集{x|x1〈x<x2}∅∅知识点2 用程序框图表示ax2+bx+c>0(a>0)的求解过程1.必会结论;(1)(x-a)(x-b)〉0或(x-a)(x-b)〈0型不等式解法教师引导学生及时总结,以帮助学生形成完整的认知结构。

由常见问题的解决和总结,使学。

新高考数学一轮复习考点知识专题讲解与练习 5 一元二次不等式的解法

新高考数学一轮复习考点知识专题讲解与练习 5 一元二次不等式的解法

新高考数学一轮复习考点知识专题讲解与练习考点知识总结5 一元二次不等式的解法 高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中、低等难度考纲研读1.会从实际问题的情境中抽象出一元二次不等式模型2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系3.会解一元二次不等式一、基础小题1.不等式-3<4x -4x 2≤0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x ≤0或1≤x <32 B .{x |x ≤0或x ≥1} C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <32 D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-12或x ≥32 答案 A解析 不等式可化为⎩⎨⎧4x (x -1)≥0,4x 2-4x -3<0,解得⎩⎪⎨⎪⎧x ≤0或x ≥1,-12<x <32,所以-12<x ≤0或1≤x <32.故选A.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a 等于( )A .-81B .81C .-64D .64答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0,其解集为{x |1<x <3},所以1,3是方程x 2-ax -b =0的根,所以⎩⎨⎧1+3=a ,1×3=-b ,解得⎩⎨⎧a =4,b =-3,所以b a =(-3)4=81. 3.不等式5x -102x -3≤0的解集为( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32≤x ≤2 B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≥2或x <32 C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤2 D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 答案 C解析 不等式5x -102x -3≤0等价于(5x -10)(2x -3)≤0,且2x -3≠0,解得32<x ≤2.故选C.4.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是( )A .[2,+∞)B .(-∞,-6]C .[-6,2]D .(-∞,-6]∪[2,+∞)答案 D解析 由关于x 的不等式x 2-ax -a ≤-3的解集不是空集,得对应方程x 2-ax -a +3=0有实数根,即Δ=a 2+4(a -3)≥0,解得a ≥2或a ≤-6,所以实数a 的取值范围是(-∞,-6]∪[2,+∞).故选D.5.若函数f (x )=kx 2-6kx +k +8的定义域为R ,则实数k 的取值范围是( )A .{k |0<k ≤1}B .{k |k <0或k >1}C .{k |0≤k ≤1}D .{k |k >1}答案 C解析 当k =0时,8>0恒成立;当k ≠0时,只需⎩⎨⎧k >0,Δ≤0,即⎩⎨⎧k >0,36k 2-4k (k +8)≤0,则0<k ≤1.综上,0≤k ≤1.6.已知点A (-3,-1)与点B (4,-6)在直线3x -2y -a =0的两侧,则实数a 的取值范围是( )A .(-∞,-24)∪(7,+∞)B .(-7,24)C .(-24,7)D .(-∞,-7)∪(24,+∞)答案 B解析 由题意可得(-9+2-a )(12+12-a )<0,所以-7<a <24.故选B.7.关于x 的不等式x 2-(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为( )A .(5,6]B .(5,6)C .(2,3]D .(2,3)答案 A解析 关于x 的不等式x 2-(m +2)x +2m <0可化为(x -m )(x -2)<0,∵该不等式的解集中恰有3个正整数,∴不等式的解集为{x |2<x <m },且5<m ≤6,即实数m 的取值范围是(5,6].故选A.8.对任意实数x ,不等式3x 2+2x +2x 2+x +1>k 恒成立,则正整数k 的值为( )A .1B .2C .3D .4答案 A解析 ∵x 2+x +1恒为正数,∴原不等式等价于3x 2+2x +2>kx 2+kx +k 对x ∈R 恒成立,即(k -3)x 2+(k -2)x +k -2<0恒成立,∵当k =3时,x +1<0不恒成立,∴⎩⎨⎧k -3<0,Δ<0,Δ=(k -2)2-4(k -3)(k -2)=(k -2)(k -2-4k +12)=(k -2)(10-3k ).由Δ<0,得k <2或k >103.又k <3,∴k <2,∵k 为正整数,∴k =1.9.(多选)设[x ]表示不小于实数x 的最小整数,则关于x 的不等式[x ]2+[x ]-12≤0的解可以为( )A .10B .3C .-4.5D .-5答案 BC解析 不等式[x ]2+[x ]-12≤0可化为([x ]+4)([x ]-3)≤0,解得-4≤[x ]≤3.又[x ]表示不小于实数x 的最小整数,且[10]=4,[3]=3,[-4.5]=-4,[-5]=-5,所以不等式[x ]2+[x ]-12≤0的解可以为3,-4.5.故选BC.10.(多选)关于下列四个不等式的说法,正确的有( )A .不等式2x 2-x -1>0的解集是(-∞,1)∪(2,+∞)B .不等式-6x 2-x +2≤0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-23或x ≥12 C .若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是3D .关于x 的不等式x 2+px -2<0的解集是(q ,1),则p +q 的值为-1答案 BCD解析 对于A ,由2x 2-x -1>0得(2x +1)·(x -1)>0,解得x >1或x <-12,∴不等式的解集为⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞),故错误;对于B ,∵-6x 2-x +2≤0,∴6x 2+x -2≥0,∴(2x -1)(3x +2)≥0,∴x ≥12或x ≤-23,故正确;对于C ,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根,∴-7×(-1)=21a ,故a =3,故正确;对于D ,依题意得q ,1是方程x 2+px -2=0的两根,∴q +1=-p ,即p +q =-1,故正确.故选BCD.11.若a <0,则关于x 的不等式组⎩⎨⎧ax -a 2<0,x 2-ax -2a 2<0的解集为________.答案 (a ,-a )解析 因为a <0,所以由ax -a 2=a (x -a )<0,得x >a ,由x 2-ax -2a 2=(x -2a )(x +a )<0,得2a <x <-a .所以原不等式组的解集为(a ,-a ).12.已知三个不等式:①x 2-4x +3<0,②x 2-6x +8<0,③2x 2-9x +m <0.则同时满足①②的x 的取值范围为________.要使同时满足①②的所有x 的值满足③,则实数m 的取值范围为________.答案 (2,3) (-∞,9]解析 由①得1<x <3,由②得2<x <4,故同时满足①②的x 的取值范围为2<x <3.要使同时满足①②的所有x 的值满足③,即不等式2x 2-9x +m <0在x ∈(2,3)上恒成立,即m <-2x 2+9x 在x ∈(2,3)上恒成立,又-2x 2+9x 在x ∈(2,3)上大于9,所以实数m 的取值范围为m ≤9.二、高考小题13.(2022·天津高考)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,23 解析 3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为⎝ ⎛⎭⎪⎫-1,23. 14.(2015·广东高考)不等式-x 2-3x +4>0的解集为________(用区间表示).答案 (-4,1)解析 不等式-x 2-3x +4>0等价于x 2+3x -4<0,解得-4<x <1.15.(经典江苏高考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 由题可得f (x )<0对于x ∈[m ,m +1]恒成立,等价于⎩⎨⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0,解得-22<m <0.三、模拟小题16.(2022·山东枣庄八中月考)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,-2)C .(-6,+∞)D .(-∞,-6)答案 B解析 令f (x )=x 2-4x -2-a ,则函数的图象为开口向上且以直线x =2为对称轴的抛物线,故在区间(1,4)上,f (x )<f (4)=-2-a ,若不等式x 2-4x -2-a >0在区间(1,4)内有解,则-2-a >0,解得a <-2,即实数a 的取值范围是(-∞,-2).故选B.17.(2022·北京房山区月考)已知函数f (x )=⎩⎨⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .{x |-1≤x ≤1}B .{x |-2≤x ≤2}C .{x |-2≤x ≤1}D .{x |-1≤x ≤2}答案 A解析 ∵函数f (x )=⎩⎨⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2,即⎩⎨⎧x ≤0,x +2≥x 2①或⎩⎨⎧x >0,-x +2≥x2②.解①可得-1≤x ≤0,解②可得0<x ≤1.综上可得,不等式f (x )≥x 2的解集为[-1,1].故选A.18.(2022·湖南湘潭高三模拟)在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则a 的取值范围是( )A .(-3,5)B .(-2,4)C .[-3,5]D .[-2,4]答案 D解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0,当a >1时,不等式的解集为1<x <a ,要使得解集中至多包含2个整数,则a ≤4,即1<a ≤4;当a =1时,不等式的解集为∅,满足题意;当a <1时,不等式的解集为a <x <1,要使得解集中至多包含2个整数,则a ≥-2,即-2≤a <1.综上,实数a 的取值范围是[-2,4].故选D.19.(2022·山西运城模拟)某电商新售A 产品,售价每件50元,年销售量为11.8万件.为支持新品发售,第一年免征营业税,第二年需征收销售额x %的营业税(即每销售100元征税x 元).第二年,电商决定将A 产品的售价提高50·x %1-x %元,预计年销售量减少x 万件.要使第二年A 产品上交的营业税不少于10万元,则x 的最大值是( )A .2B .5C .8D .10答案 D解析 由题意,第二年A 产品年销售量为(11.8-x )万件,A 产品的售价为⎝ ⎛⎭⎪⎫50+50·x %1-x %元,所以第二年A 产品年销售额为⎝ ⎛⎭⎪⎫50+50·x %1-x %(11.8-x )万元,则第二年A 产品上交的营业税为⎝ ⎛⎭⎪⎫50+50·x %1-x %(11.8-x )x %万元.由题意可得⎝ ⎛⎭⎪⎫50+50·x %1-x %(11.8-x )x %≥10,化简得x 2-12x +20≤0,即(x -2)(x -10)≤0,所以2≤x ≤10,所以x 的最大值是10.故选D.20.(多选)(2022·湖北宜昌模拟)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),则下列说法正确的是( )A .若不等式的解集为{x |x <-3或x >-2},则k =-25B .若不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,x ≠1k ,则k =66 C .若不等式的解集为R ,则k <-66D .若不等式的解集为∅,则k ≥66答案 ACD解析 因为不等式的解集为{x |x <-3或x >-2},所以k <0,且-3与-2是方程kx 2-2x +6k =0的两根,所以(-3)+(-2)=2k ,解得k =-25,故A 正确;因为不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,x ≠1k ,所以⎩⎨⎧k <0,Δ=4-24k 2=0,解得k =-66,故B 错误;由题意,得⎩⎨⎧k <0,Δ=4-24k 2<0,解得k <-66,故C 正确;由题意,得⎩⎨⎧k >0,Δ=4-24k 2≤0,解得k ≥66,故D 正确.故选ACD.21.(多选)(2022·江苏省淮安市清江浦区校级期末)若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1<x 2,则下列说法中正确的是( )A .当m =0时,x 1=2,x 2=3B .m >-14C .当m >0时,2<x 1<x 2<3D .当m >0时,x 1<2<3<x 2答案 ABD解析 当m =0时,方程为(x -2)(x -3)=0,解得x 1=2,x 2=3,所以A 正确;方程整理可得x 2-5x +6-m =0,有不同的两实数根的条件为Δ=25-4(6-m )>0,可得m >-14,所以B 正确;当m >0时,即(x -2)(x -3)>0,函数f (x )=(x -2)(x -3)-m 的图象与x 轴交于点(x 1,0),(x 2,0),可得x 1<2<3<x 2,所以C 不正确,D 正确.故选ABD.22.(2022·广西柳州模拟)若不等式a 2+8b 2≥λb (a +b )对任意的实数a ,b 均成立,则实数λ的取值范围为________.答案 [-8,4]解析 由已知可得a 2-λab +(8-λ)b 2≥0,若b =0,则a 2≥0恒成立;若b ≠0,对不等式两边同除以b 2可得⎝ ⎛⎭⎪⎫a b 2-λ·a b +8-λ≥0恒成立,故Δ=λ2-4(8-λ)≤0,解得-8≤λ≤4,故实数λ的取值范围为[-8,4].一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·河南信阳高三模拟)已知关于x 的不等式(ax -1)(x -1)<0.(1)当a =2时,解上述不等式;(2)当a <1时,解上述关于x 的不等式.解 (1)当a =2时,代入可得(2x -1)(x -1)<0,解不等式可得12<x <1,所以不等式的解集为⎝ ⎛⎭⎪⎫12,1. (2)关于x 的不等式(ax -1)(x -1)<0.若a <1,当a =0时,代入不等式可得-x +1<0,解得x >1;当0<a <1时,化简不等式可得a ⎝ ⎛⎭⎪⎫x -1a (x -1)<0,由1a >1,可得1<x <1a ; 当a <0时,化简不等式可得a ⎝ ⎛⎭⎪⎫x -1a (x -1)<0,解不等式可得x >1或x <1a . 综上可知,当a =0时,不等式的解集为{x |x >1};当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <1a ;当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <1a . 2.(2022·湖北襄阳模拟)已知f (x )=ax 2+x -a ,a ∈R .(1)若不等式f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的x ∈[-1,1]恒成立,求实数a 的取值范围;(2)若a <0,解不等式f (x )>1.解 (1)原不等式等价于x 2-2ax +2a +1>0对任意的x ∈[-1,1]恒成立, 设g (x )=x 2-2ax +2a +1=(x -a )2-a 2+2a +1,x ∈[-1,1],①当a <-1时,g (x )min =g (-1)=1+2a +2a +1>0,无解;②当-1≤a ≤1时,g (x )min =g (a )=-a 2+2a +1>0,得1-2<a ≤1;③当a >1时,g (x )min =g (1)=1-2a +2a +1>0恒成立.综上,实数a 的取值范围为(1-2,+∞).(2)f (x )>1,即ax 2+x -a -1>0,即(x -1)(ax +a +1)>0,因为a <0,所以(x -1)⎝⎛⎭⎪⎫x +a +1a <0, 因为1-⎝⎛⎭⎪⎫-a +1a =2a +1a , 所以当-12<a <0时,1<-a +1a ,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <-a +1a ; 当a =-12时,不等式可化为(x -1)2<0,不等式无解;当a <-12时,1>-a +1a ,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-a +1a <x <1. 3.(2022·陕西咸阳高三阶段检测)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解 (1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m=a (x -m )(x -n )+x -m=(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a ,所以x -m <0,1-an +ax >0.所以f (x )-m <0,即f (x )<m .4.(2022·上海松江区高三检测)已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)求f (x )的解析式;(2)若不等式组⎩⎨⎧f (x )>0,f (x +k )<0的正整数解只有一个,求实数k 的取值范围; (3)若对于任意x ∈[-1,1],不等式tf (x )≤2恒成立,求实数t 的取值范围. 解 (1)因为不等式f (x )<0的解集是(0,5),所以0,5是一元二次方程2x 2+bx +c =0的两个实数根,可得⎩⎪⎨⎪⎧0+5=-b 2,0×5=c 2,解得⎩⎨⎧b =-10,c =0, 所以f (x )=2x 2-10x .(2)不等式组⎩⎨⎧f (x )>0,f (x +k )<0, 即⎩⎨⎧2x 2-10x >0,2(x 2+2kx +k 2)-10(x +k )<0, 解得⎩⎨⎧x <0或x >5,-k <x <5-k ,因为不等式组的正整数解只有一个,可得该正整数解就是6,可得6<5-k ≤7,解得-2≤k <-1, 所以实数k 的取值范围是[-2,-1).(3)tf (x )≤2,即t (2x 2-10x )≤2,即tx 2-5tx -1≤0, 当t =0时显然成立;当t >0时,有⎩⎨⎧t ·1-5t ·(-1)-1≤0,t ·1-5t ·1-1≤0, 即⎩⎨⎧t +5t -1≤0,t -5t -1≤0,解得-14≤t ≤16,所以0<t ≤16;当t <0时,函数y =tx 2-5tx -1在[-1,1]上单调递增,所以只要其最大值满足条件即可,所以有t -5t -1≤0,解得t ≥-14,即-14≤t <0.综上,实数t 的取值范围是⎣⎢⎡⎦⎥⎤-14,16.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档