湖州市吴兴区2018学年第二学期八年级数学期末练习卷(含参考答案及评分标准)
2018八年级下学期数学期末考试题(含答案)

八年级下期末试题2018一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2C .a 2>b2 D .-2a >-2b2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x )3下列所培图形中·既是中心对称图形又是轴对称图形的是()A B C D 4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)2 5己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形 6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +4 7.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120°D .150°30°B'C 'CBA8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y =09.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( )A .16crnB .14cmC .12cmD .8cmOCABD10.若分式方程x -3x -1=mx -1有增根,则m 等于( )A .-3B .-2C .3D .211.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .6EDBCA12.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )xy2-1POA .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( ) A .5B .125C .245D .185A DOBCE14.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >215.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( ) A .(22017,-22017) B .(22016,-22016) C .(22017,22017) D .(22016,22016)x y B 2A 2B 1A 1ABO二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________.17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.C D AOBP19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x>4,那么m的取值范围是_______________.20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分) (1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在 ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1; (2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2; (3)直接写出点B 2、C 2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(本小题满分9分)探索发现:11×2=1-12;12×3=12-13;13×4=13-14……根据你发现的规律,回答下列问题: (1)14×5=___________,1n ×(n +1)=___________;(2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程: 1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.28.(本小题满分9分)如图,矩形ABCO 中,点C 在x 轴上,点A 在y 轴上,点B 的坐标是(一6,8).矩形ABCO 沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与OA 、x 轴分别交于点D 、F .(1)直接写出线段BO 的长: (2)求点D 的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.专业资料word格式可复制编辑。
2018八年级下期末数学参考答案(1)

八年级数学试卷参考答案及评分标准(2018.7)三、解答题(本大题有7题, 其中17题10分,18题6分,19题6分,20题6分,21题6分,22题9分,23题9分,共52分) 17.(10分)(1)解:2763x −=27(9)x − ………………………1分7(3)(3)x x =+− ………………………3分(2)方程两边同乘以(x -2)约去分母,得4)2(24−=−−x x …………………………4分 化简整理,得 2x =―8解得 4−=x …………………………5分 检验:把4−=x 代入x -2≠0所以4−=x 是原方程的解 …………………… 6分(3) ⎩⎨⎧<−≤−②142①32x x由①得1x ≥−………………………7分 由②得 2.5x <………………………8分∴不等式租的解集为 1 2.5x −≤<………………………9分 不等式组的解集在数轴上表示为:………………………10分18.(6分)233(1)11x x xx x x −−−+÷++ABDED'D'EDA=3(1)111(1)x x x x x x −+⎡⎤−+⨯⎢⎥+−⎣⎦………………………2分 =13(1)1(1)(1)1(1)x x x x x x x x x +−+−⨯+⨯−+−………………………3分 =13x x x +−=2x x−………………………4分 当x 的值为-1、0、1时分式无意义, 当x =2时原式=0222=−……………………6分 (也可取x =-2代入,值为2) 19.(6分)每个图3分20. (6分)证明:由已知,AF =FC ,∠AFE =∠CFE , …………………1分 在□ABCD 中,AE //FC ,∴∠AEF =∠CFE …………………2分 ∴∠AFE =∠CFE∴∠AFE =∠AEF∴AF =AE …………………4分 ∴AE =FC ∴四边形AFCE 为平行四边形.……………6分 21.(6分)(1)解:由442222-a b a c b c =−得 2222222)()()a b a b a b c −+=−(222222222222)()-()=0)()0a b a b a b c a b a b c −+−−+−=((…………………2分则022=−b a 或2220a b c +−= 若2220a b c +−=,则222=a b c +∴ △ABC 是直角三角形…………………3分 若022=−b a ,则=a b∴△ABC 是等腰三角形…………………4分T SDM EA综上所述,△ABC 是直角三角形或等腰三角形。
【三套打包】湖州市八年级下学期期末数学试题

新八年级下学期期末考试数学试题(答案)一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)化简:(2)--= .2.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 .3.(3分)因式分解:228x -= .4.(3分)将直线23y x =-向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第 象限.5.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若14k =,则该等腰三角形的顶角为 . 6.(3分)如图, 在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧, 交x 轴的负半轴于点C ,则点C 坐标为 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)下列图形中,是中心对称图形的是( )A .B .C .D .8.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( )A .45,48B .44,45C .45,51D .52,539.(4分)下列对二次函数2y x x =-的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的10.(4分)学校为创建“书香校园”,购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.1000090001005x x-=-B.9000100001005x x-=-C.1000090001005x x-=-D.9000100001005x x-=-11.(4分)如图所示,四边形ABCD为O的内接四边形,120BCD∠=︒,则BOD∠的大小是()A.80︒B.120︒C.100︒D.90︒12.(4分)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD,87BAE∠=︒,121DCE∠=︒,则E∠的度数是()A.28︒B.34︒C.46︒D.56︒13.(4分)我市某楼盘准备以每平方10000元的均价对外销售由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方8100元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%14.(4分)生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n 个三角形的面积为()A .n BC .2n D三、解答题(本大题共9个小题,满分70分15.(6分)计算:01132019()3----. 16.(6分)解不等式组()3214213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩①②…,并写出x 的所有整数解. 17.(7分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC ∆的三个顶点坐标分别为(1,4)A ,(1,1)B ,(3,1)C .(1)画出ABC ∆关于x 轴对称的△111A B C ;(2)画出ABC ∆绕点O 逆时针旋转90︒后的△222A B C ;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留)π.18.(7分)某区举行“庆祝改革开放40周年”征文比赛,已知每篇参赛征文成绩记m 分(60100)m 剟,组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表:请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.19.(7分)如图,ABC ∆中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF CD =,连接CF .(1)求证:AEF DEB ∆≅∆;(2)若AB AC =,试判断四边形ADCF 的形状,并证明你的结论.20.(8分)如图,AB 是O 的直径, 直线CD 与O 相切于点C ,且与AB 的延长线交于点E ,点C 是BF 的中点 .(1) 求证:AD CD ⊥;(2) 若30CAD ∠=︒,O 的半径为 3 ,一只蚂蚁从点B 出发, 沿着BE EC CB --爬回至点B ,求蚂蚁爬过的路程( 3.14π≈ 1.73≈, 结果保留一位小数) .21.(8分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为 件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?22.(9分)如图,在Rt ABC ∆中,90ACB ∠=︒,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作//EF DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是25cm ,AC 的长为5cm ,求线段AB 的长度.23.(12分)如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P 是抛物线上的一个动点(不与点A 点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .当2PE ED =时,求P 点坐标;(3)如图2所示,设抛物线与y 轴交于点F ,在抛物线的第一象限内,是否存在一点Q ,使得四边形OFQC 的面积最大?若存在,请求出点Q 的坐标;若不存在,说明理由.云南师大附中呈贡校区2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)化简:(2)--= 2 .【考点】14:相反数【分析】根据相反数的定义解答即可.【解答】解:(2)2--=.故答案为:2.【点评】本题考查了相反数的定义,是基础题.2.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 74.410⨯ .【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:744000000 4.410=⨯,故答案为:74.410⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)因式分解:228x -= 2(2)(2)x x +- .【考点】53:因式分解-提公因式法;54:因式分解-运用公式法【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2282(2)(2)x x x -=+-.【点评】本题考查提公因式法和公式法分解因式,是基础题.4.(3分)将直线23y x =-向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第 四 象限.【考点】9F :一次函数图象与几何变换【分析】根据一次函数图象的平移规律,可得答案.【解答】解:由题意得:平移后的解析式为:23421y x x =-+=+,即21y x =+,直线21y x =+经过一、二、三象限,不经过第四象限,故答案为:四.【点评】本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.5.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若14k =,则该等腰三角形的顶角为 20︒ . 【考点】KH :等腰三角形的性质【分析】先根据等腰三角形的性质得出B C ∠=∠,再根据三角形内角和定理得出9180A ∠=︒,即可求解.【解答】解:如图.ABC ∆中,AB AC =,B C ∴∠=∠,等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若14k =, :1:4A B ∴∠∠=,180A B C ∠+∠+∠=︒,44180A A A ∴∠+∠+∠=︒, 即9180A ∠=︒,20A ∴∠=︒,故答案为:20︒.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理得出9180A ∠=︒是解此题的关键.6.(3分)如图, 在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧, 交x 轴的负半轴于点C ,则点C 坐标为 (1,0)- .【考点】5D :坐标与图形性质;KQ :勾股定理【分析】求出OA 、OB ,根据勾股定理求出AB ,即可得出AC ,求出OC 长即可 .【解答】解:点A ,B 的坐标分别为(4,0),(0,3),4OA ∴=,3OB =,在Rt AOB ∆中, 由勾股定理得:5AB ==, 5AC AB ∴==,541OC ∴=-=,∴点C 的坐标为(1,0)-,故答案为:(1,0)-,【点评】本题考查了勾股定理和坐标与图形性质的应用, 解此题的关键是求出OC 的长, 注意: 在直角三角形中, 两直角边的平方和等于斜边的平方 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.(4分)下列图形中,是中心对称图形的是( )A .B .C .D .【考点】5R :中心对称图形【分析】根据中心对称图形定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行解答即可.【解答】解:A 、是中心对称图形,故此选项正确;B 、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形定义.8.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48B.44,45C.45,51D.52,53【考点】4W新人教版数学八年级下册期末考试试题(含答案)一、选择题(共10小题,30分)1x的取值范围是()A、x<﹣2B、x≤-2C、x>-2D、x≥﹣22的值是()A、在2和3之间B、在3和4之间C、在4和5之间D、在5和6之间3.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A、方差B、平均数C、中位数D、众数4.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A、3种B、4种C、5种D、6种5.下列式子一定成立的是()6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数x与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A、甲B、乙C、丙D、丁7.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A、中位数是12.7%B、众数是15.3%C.平均数是15.98%D、方差是08.菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A、52B、48C、40D、209.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()10.如图,在▱ABCD中,AB=4,BC=6.以点C为圆心,适当长为半径画弧,交BC于点E,交CD于点F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点P,射线CP交BA的延长线于点Q,则AQ的长是()A、1B、112C、2D、212二、填空题(共5小题,15分)11.已知直角三角形的两边的长分别是3和4,则第三边长为.12.如图,一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),则关于x的不等式﹣x+1>2x+m>0的解集为.13.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.14.已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF 相交于点G,点H为BF的中点,连接GH,则GH的长为.15.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD,AE=,则AC=.三、解答题(8个小题,共75分)16.(8分)计算下列各式的值:(1(2)(12﹣2|.17.(8分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.18.(9分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了人.19.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,4),且与x 轴相交于点B ,与正比例函数y =2x 的图象相交于点C ,点C 的横坐标为1. (1)求一次函数y =kx +b 的解析式; (2)若点D 在y 轴上,且满足S △COD ═12S △BOC ,请直接写出点D 的坐标.20.(10分)如图,▱ABCD 中,点E 是CD 的中点,连接AE 并延长交BC 延长线于点F (1)求证:CF =AD ; (2)连接BD 、DF ,①当∠ABC =90°时,△BDF 的形状是 ;②若∠ABC =50°,当∠CFD = °时,四边形ABCD 是菱形.21.(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示. (1)求y 关于x 的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?22.(10分)为了落实党的“精准扶贫”政策,A 、B 两城决定向C 、D 两乡运送肥料以支持农村生产.已知A 、B 两城分别有肥料210吨和290吨,从A 城往C 、D 两乡运肥料的费用分别为20元/吨和25元/吨;从B 城往C 、D 两乡运肥料的费用分别为15元/吨和24元/吨.现C 乡需要肥料240吨,D 乡需要肥料260吨. (1)设从A 城运往C 乡肥料x 吨 ①用含x 的代数式完成下表②设总运费为y 元,写出y 与x 的函数关系式,并求出最少总运费;(2)由于更换车型,使A 城运往C 乡的运费每吨减少a (0<a <6)元,这时从A 城运往C 乡肥料多少吨时总运费最少?23.(11分)(1)问题背景:如图1,△ABC 中,AB =AC ,点D 是BC 的中点,∠BAC =120°新八年级下册数学期末考试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.(3x 的取值范围( )A .2x …B .2x …C .2x >D .2x <2.(3分)下列二次根式是最简二次根式的是( )A B C D 3.(3分)点(1,3)A 在一次函数2y x m =+的图象上,则m 等于( ) A .5-B .5C .1-D .14.(3分)下表是校女子排球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是( ) A .中位数是14B .中位数是14.5C .众数是15D .众数是55.(3分)下列计算正确的是( )A +=B .=C =D 13= 6.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为( )A .4B .4或34C .16或34D .47.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是( ) A .甲B .乙C .丙D .丁8.(3分)已知一次函数y kx b =+的图象与x 轴交于点(2,0),且y 随自变量x 的增大而减小,则关于x 的不等式0kx b +…的解集是( ) A .2x …B .2x …C .2x >D .2x <9.(3分)如图,在平面直角坐标系xOy 中,一次函数142y x =-+的图象与x 轴、y 轴分别相交于点A ,B ,点P 的坐标为(1,1)m m +-,且点P 在ABO ∆的内部,则m 的取值范围是( )A .13m <<B .15m <<C .15m 剟D .1m >或3m <10.(3分)如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .2-B .2+C .2D 2+二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.(3= .12.(3分)直线31y x =-+与x 轴的交点坐标为 .13.(3分)函数y kx =与6y x =-的图象如图所示,则k = .14.(3分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为 分. 15.(3分)将菱形ABCD 以点E 为中心,按顺时针方向分别旋转90︒,180︒,270︒后形成如图所示的图形,若120BCD ∠=︒,2AB =,则图中阴影部分的面积为 .16.(3分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB OB =,点E ,F 分别是OA ,OD 的中点,连接EF ,EM BC ⊥于点M ,EM 交BD 于点N ,若45CEF ∠=︒,5FN =,则线段BC 的长为 .三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(8分)计算:(1-;(2)5)-+.18.(8分)如图,在ABCD 中,点E ,F 分别在AB ,CD 上,且AE CF =,求证:四边形AECF 是平行四边形.19.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <…组:1 1.5tD <…组: 1.5t …请根据上述信息解答下列问题: (1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.20.(8分)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 在BC 上,1AB BE ==,ED =,AD =.(1)求BED ∠的度数;(2)直接写出四边形ABCD 的面积为 .21.(8分)如图,直线12y x b =-+与x 轴,y 轴分别交于点A ,点B ,与函数y kx =的图象交于点(1,2)M .(1)直接写出k ,b 的值和不等式102x b kx -+剟的解集; (2)在x 轴上有一点P ,过点P 作x 轴的垂线,分别交函数12y x b =-+和y kx =的图象于点C ,点D .若2CD OB =,求点P 的坐标.22.(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件. (1)甲种服装进价为 元/件,乙种服装进价为 元/件; (2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价(020)<<元,乙种服装价格不变,如果这100件服装都a a可售完,那么该服装店如何进货才能获得最大利润?23.(10分)在矩形ABCD中,6AD=,E是边BC上一点,以点E为直角顶点,AB=,8在AE的右侧作等腰直角AEF∆.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF DF⊥,求BE的长;(3)如图3,若动点E从点B出发,沿边BC向右运动,运动到点C停止,直接写出线段AF 的中点Q的运动路径长.24.(12分)如图,在平面直角坐标系xoy中,直线24=-+交y轴于点A,交x轴于点B.点y x=和直线BC相交于点D.C在y轴的负半轴上,且ABC∆的面积为8,直线y x(1)求直线BC的解析式;(2)在线段OA上找一点F,使得AFD ABO∠=∠,线段DF与AB相交于点E.①求点E的坐标;②点P在y轴上,且45PDF∠=︒,直接写出OP的长为.湖北省武汉市武昌区2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.(3x 的取值范围( )A .2x …B .2x …C .2x >D .2x <【考点】72:二次根式有意义的条件【分析】二次根式有意义,被开方数为非负数,即20x -…,解不等式求x 的取值范围.【解答】解:20x ∴-…,解得2x ….故选:A .【点评】本题考查了二次根式有意义的条件.关键是明确二次根式有意义时,被开方数为非负数.2.(3分)下列二次根式是最简二次根式的是( )A B C D 【考点】74:最简二次根式【分析】根据最简二次根式的概念判断即可.=不是最简二次根式;==不是最简二次根式;故选:C .【点评】本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.3.(3分)点(1,3)A 在一次函数2y x m =+的图象上,则m 等于( )A .5-B .5C .1-D .1【考点】8F :一次函数图象上点的坐标特征【分析】根据待定系数法求得一次函数的解析式,解答即可.【解答】解:一次函数2y x m=+的图象经过点(1,3)A32m∴=+,解得:1m=,故选:D.【点评】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.4.(3分)下表是校女子排球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是()A.中位数是14B.中位数是14.5C.众数是15D.众数是5【考点】4W:中位数;5W:众数【分析】根据中位数和众数的定义求解.【解答】解:观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.共12人,中位数是第6,7个人平均年龄,因而中位数是15.故选:C.【点评】本题考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.5.(3分)下列计算正确的是()A+=B.=C=D13 =【考点】79:二次根式的混合运算【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式3=+,所以A选项错误;B、原式=,所以B选项正确;C、原式=,所以C选项错误;D、原式1=,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4【考点】KQ:勾股定理【分析】由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【解答】解:个直角三角形的两边长分别为3和5,x==;∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:4②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选:D.【点评】本题考查的是勾股定理,解答此题时要注意要分类讨论,不要漏解.7.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()A.甲B.乙C.丙D.丁【考点】1W:方差W:算术平均数;7【分析】先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【解答】解:乙、丙同学的平均数比甲、丁同学的平均数大,∴应从乙和丙同学中选,丙同学的方差比乙同学的小,∴丙同学的成绩较好且状态稳定,应选的是丙同学;故选:C.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.(3分)已知一次函数y kx b=+的图象与x轴交于点(2,0),且y随自变量x的增大。
2018八年级下册期末考试数学试卷及答案(精品范文).doc

【最新整理,下载后即可编辑】2017-2018学年度第二学期期末教学统一检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是A .y =x 2B. y =x2 C. y =2x D.y =21 x2. 下列四组线段中,不能作为直角三角形三条边的是 A. 3cm ,4cm ,5cm B. 2cm ,2cm ,cm C. 2cm ,5cm ,6cm D. 5cm ,12cm ,13cm3. 下图中,不是函数图象的是ABC D4. 平行四边形所具有的性质是A. 对角线相等B.邻边互相垂直C. 每条对角线平分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择A .甲B .乙C .丙D .丁 6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为A .1或﹣4B .﹣1或﹣4C .﹣1或4D .1或47. 将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是A .21y x =-B .22y x =+C .22y x =-D . 21y x =+8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图. 师生捐款金额的平均数和众数分别是 A . 20, 20 B . 32.4,30 C . 32.4,20 D . 20, 30xS612OxS612OxS124O9. 若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 A .k ≤5 B .k ≤5,且k ≠1 C .k <5,且k ≠1 D .k <510.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映S 与x 之间的函数关系式的是A BC D二、填空题(本题共24分,每小题3分)11. 请写出一个过点(0,1),且y 随着x 的增大而减小的一次函数解析式 .12. 在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为 米.xS66O13. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____________.14. 在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短. 横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为 .16. 方程28150-+=的两个根分别是一个直角三角形的两x x条边长,则直角三角形的第三条边长是 .17. 已知直线22y x =+与x 轴、y 轴分别交于点A ,B . 若将直线12y x =向上平移n 个单位长度与线段AB 有公共点,则n 的取值范围是 .18. 在一节数学课上,老师布置了一个任务:已知,如图1,在Rt ABC △中,∠B =90°,用尺规作图作矩形ABCD .图1 图2同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:① 分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧分别交于点E ,F ,连接EF 交AC 于点O ; ② 作射线BO ,在BO 上取点D ,使OD OB =; ③ 连接AD ,CD .则四边形ABCD 就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19.用配方法解方程:261-=x x20. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点BE EC=,求线段EC, D落在BC边上的点E处,折痕为GH.若:2:1CH的长.,其中 21. 已知关于x的一元二次方程()()2--++=1120m x m xm≠ .1(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值22. 2017年5月5日,国产大飞机C919首飞圆满成功. C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.赁有限公司赁公司美国通用租赁公司GECAS20 兴业金融租赁公司20泰国都市航空10 德国普仁航空公司7根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.订单(架)7 10 15 20 30 50 客户(家)1 12 2 224.有这样一个问题:探究函数11y=+的图象与性质.x小明根据学习一次函数的经验,对函数11=+的图象与性质yx进行了探究.下面是小明的探究过程,请补充完整:(1)函数11y=+的自变量x的取值范围是;x(2)下表是y与x的几组对应值.求出m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质 .25.已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE . (1)求证:DE ⊥BE ;(2)设CD 与OE 交于点F ,若222OF FD OE +=,3CE = , 4DE =,求线段CF 长.26. 如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形. 请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)BDB27. 如图,在△ABD中,AB=AD, 将△ABD沿BD翻折,使点A 翻折到点C. E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.备用图28.在平面直角坐标系xOy中,已知点(),M a b及两个图形1W和2W,若对于图形1W上任意一点(),P x y,在图形2W上总存在点(),P x y''',使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形2W是图形1W关于点M的关联图形,此时三个点的坐标满足2x ax+'=,2y by+'=.(1)点()P'-是点P关于原点O的关联点,则点P的坐标2,2是;(2)已知,点()C--,()D--以及点()3,0M4,14,1A-,()2,12,1B-,()①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y x=-分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2018学年度第二学期期末统一检测初二数学参考答案及评分标准一、选择题(本题共30分,每小题3分) 题号 12345678910答案C C BD B A C BB B二、填空题(本题共24分,每小题3分)11. y = -x +1等,答案不唯一. 12. 32 13. X <3 14. 3 15. ()()22242x x x =-+- 16. 434122n ≤≤18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分) 19. 解:()2310x -=, ………………2分解得1310x =,2310x = (4)分20.解:∵9BC =,:2:1BE EC =, ∴3EC =. (1)分设CH x =,则9DH x =- . ………………2分 由折叠可知9EH DH x ==-. 在Rt △ECH △中,=90C ∠︒, ∴ 222EC CH EH +=. 即()22239x x +=-. ………………3分解得4x =.∴4CH =. ………………4分21. (1)证明:由题意1m ≠ .()()21421m m ∆=-+-⨯-⎡⎤⎣⎦ (1)分()22693m m m =-+=-∵()23m -≥0恒成立,∴方程()()21120m x m x --++=总有实根;………………2分 (2)解:解方程()()21120m x m x --++=, 得11x =,221x m =-. ∵方程()()21120m x m x --++=的两根均为正整数,且m 是整数, ∴11m -=,或12m -=. ∴2m =,或3m =.………………4分22. 解:………………3分中位数是20,众数是20. (5)分23.(1)证明:∵点E 是AD 的中点,∴AE =DE . ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE . ∴△EAF ≌△EDC .………………1分∴AF =DC . ∵AF =BD ,∴BD =DC ,即D 是BC 的中点.………………2分(2)解:∵AF ∥BD ,AF =BD , ∴四边形AFBD 是平行四边形. ………………3分订单(架) 7 10 15 20 30 45 50客户(家)1 12 10 2 2 2∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC.………………4分在Rt△ABD中,由勾股定理可求得AD=12,∴矩形AFBD的面积为60⋅=. (5)BD AD分24. 解:(1)x≠0;………………1分(2)令113+=,m∴1m=;………………2分2(3)如图………………3分(4)答案不唯一,可参考以下的角度:………………4分①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性25.(1)证明:∵平行四边形,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE. ………………1分∵OB=OE,∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;………………2分(2)解:∵OE=OD,222+=,OF FD OE∴222+=.OF FD OD∴△OFD为直角三角形,且∠OFD=90°.………………3分在Rt△CED中,∠CED=90°,CE=3,4DE=,∴222=+ .CD CE DE∴5CD=. ………………4分又∵1122CD EF CE DE ⋅=⋅,∴125EF =.在Rt △CEF 中,∠CFE=90°,CE=3,125EF =,根据勾股定理可求得95CF =. ………………5分26. 解:(1)∵B (0,3),C (0,﹣1).∴BC =4. ………………1分 (2)设直线AC 的解析式为y=kx+b , 把A (﹣,0)和C (0,﹣1)代入y=kx+b , ∴. 解得:,∴直线AC 的解析式为:y=﹣x ﹣1. ………………2分∵DB=DC ,∴点D 在线段BC 的垂直平分线上. ∴D 的纵坐标为1. 把y=1代入y=﹣x ﹣1,解得x=﹣2,∴D 的坐标为(﹣2,1). ………………3分F D B E (3)………………4分当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+),写出其中任意一个即可. ………………5分27.解:(1)………………1分(2)判断:∠DFC =∠BAE . ………………2分 证明:∵将△ABD 沿BD 翻折,使点A 翻折到点C .∴BC=BA=DA=CD .∴四边形ABCD 为菱形. ∴∠ABD =∠CBD ,AD ∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE. (3)分(3)连CG, AC.由()P-轴对称可知,EA+EG=EC+EG,4,4CG长就是EA+EG的最小值. ………………4分∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.可求得3.∴EA+EG3.………………5分28. 解:(1)∵P(-4,4).………………1分(2)①连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.-----------------------------3分②不妨设N(0,n).∵关联正方形被直线y=-x分成面积相等的两部分,∴中心Q落在直线y=-x上.-------------------------------------4分∵正方形ABC D的中心为E(-3,0),。
浙江省湖州市八年级下学期数学期末考试卷

浙江省湖州市八年级下学期数学期末考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分)式子在实数范围内有意义,则x的取值范围是()A . x>1B . x≥1C . x<1D . x≤12. (3分) (2018·濮阳模拟) 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A . 95B . 90C . 85D . 803. (3分)(2018·武昌模拟) 已知xy<0,则化简后为()A .B . -C .D . -4. (3分)不论k取任何实数,抛物线y=a(a+k)2+k(a≠0)的顶点都()A . 在直线y=-x上B . 在直线y=x上C . 在x轴上D . 在y轴上5. (3分)(2019·海南模拟) 如图,△ABC与△DEF关于y轴对称,已知A ,B ,E(2,1),则点D的坐标为()A .B .C .D .6. (3分)(2017·广元) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= ;③DF=DC;④CF=2AF,正确的是()A . ①②③B . ②③④C . ①③④D . ①②④7. (3分) (2017八上·灯塔期中) 下列各式表示正确的是()A .B .C . =-3D .8. (3分) (2017九下·杭州开学考) 如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A . msin35°B . mcos35°C .D .9. (3分) (2019八下·淮安月考) 下列说法错误的是()A . 成中心对称的两个图形必能重合B . 两组对角分别相等的四边形是平行四边形C . 一组对边平行,一组对角相等的四边形是平行四边形D . 对角线相等的四边形是平行四边形10. (3分) A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题(每小题4分,共32分) (共7题;共28分)11. (4分)(2018·锦州) 如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为________.12. (4分)(2018·沧州模拟) 计算: =________.13. (4分)你能化简(x﹣1)(x99+x98+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手,然后归纳出一些方法,分别化简下列各式并填空:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1…根据上述规律,可得(x﹣1)(x99+x98+…+x+1)=________请你利用上面的结论,完成下面问题:计算:299+298+297+…+2+1,并判断末位数字是________14. (4分)在实数范围内分解因式:x3-3x=________.15. (4分)已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解________.16. (4分) (2019八上·泰兴期中) 直角三角形两直角边为5、12,斜边上的中线长为________17. (4分)(2013·贵港) 若一组数据1,7,8,a,4的平均数是5、中位数是m、极差是n,则m+n=________.三、解答题一(共38分) (共5题;共38分)18. (8分) (2016八下·市北期中) 计算:.19. (8分)如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,F是BE,CD的交点.请写出图中两对全等的三角形,并选出其中一对加以证明.20. (6分) (2017七下·桥东期中) 对下列各题进行因式分解:(1);(2);(3)21. (8分) (2019九上·博白期中) △ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为 1 个单位长度.①画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1的坐标;②将△ABC 绕点 C 顺时针旋转90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A所经过的路径长22. (8分)如图,在▱ABCD中,E、F分别为AB、BC的中点,连接EC、AF,AF与EC交于点M,AF的延长线与DC的延长线交于点N.(1)求证:AB=CN(2)若AB=2n,BE=2MF,试用含n的式子表示线段AN的长四、解答题二(共50分) (共5题;共48分)23. (8分)(2017·揭阳模拟) 据图回答问题:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A . 平行四边形B . 菱形C . 矩形D . 正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.24. (10分)一次函数y=kx+b经过点(-1,1)和点(2,7).(1)求这个一次函数的解析表达式.(2)将所得函数图象平移,使它经过点(2,-1),求平移后直线的解析式.25. (10分) (2019八下·忻城期中) 如图,在矩形ABCD中,对角线AC与BD交于点O,DE∥AC交BA的延长线于点E.(1)求证:BD=DE;(2)若∠ACB=30°,BD=8,求四边形BCDE的面积.26. (10.0分) (2018九上·渝中期末) 距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 9 0 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 80 9070 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=________,b=________,c=________;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.27. (10.0分)(2017·孝感) 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2) 2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?参考答案一、选择题(每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题4分,共32分) (共7题;共28分) 11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题一(共38分) (共5题;共38分)18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、四、解答题二(共50分) (共5题;共48分) 23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、。
浙江省湖州市八年级下学期期末数学试卷

浙江省湖州市八年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共16题;共17分)1. (1分) (2019九上·松北期末) 计算的结果是________.2. (1分)甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选________同学.甲乙丙丁平均数70858570标准差 6.5 6.57.67.63. (1分)(2016·张家界模拟) 在函数y= 中,自变量x的取值范围是________.4. (1分)(2020·南岸模拟) 已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是________.5. (2分) (2019八下·遂宁期中) 在平面直角坐标系中,将直线向________平移________个单位可以得到直线 .6. (1分) (2018八下·集贤期末) 若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为________cm.7. (1分)(2012·无锡) 如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于________ cm.8. (1分)如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是________.9. (1分)写出一个图象位于二、四象限的正比例函数的表达式,y=________10. (1分) (2015八下·沛县期中) 已知,在▱ABCD中,∠A= ∠B,则∠A=________.11. (1分)如图,正方形ABCD,点E是DC上一点,点F是AD上一点,且AF>DF,EF=EC,FG⊥EF交AB于点G,连接CF、CG,若△CFG的面积为15,BC=6,则AF的长度是________.12. (1分)(2019·青岛) 射击比赛中,某队员 10 次射击成绩如图所示,则该队员的平均成绩是________环.13. (1分) (2019八下·许昌期中) 如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为________cm.14. (1分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=3,则PC等于________.15. (1分) (2017八下·普陀期中) 顺次连接等腰梯形各边中点所成的四边形是________16. (1分)(2017·东河模拟) 如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于________.二、选择题 (共10题;共20分)17. (2分) (2016八上·揭阳期末) k、m、n为三个整数,若 =k , =15 , =6,则下列有关于k、m、n的大小关系,哪个正确?()A . k<m=nB . m=n<kC . m<n<kD . m<k<n18. (2分)下列长度的三条线段能组成钝角三角形的是()A . 3,4,4B . 3,4,5C . 3,4,6D . 3,4,719. (2分)(2017·通辽) 空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A . 折线图B . 条形图C . 直方图D . 扇形图20. (2分) (2019八下·滦南期末) 一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A . 2个B . 3个C . 4个D . 5个21. (2分)(2019·宁津模拟) 如图,在 ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A . ①②③④B . ①④C . ②③④D . ①②③22. (2分) (2019八下·巴南月考) 一次函数与的图象如下图,则下列结论(1);(2);(3)当时,(4)的解为中,正确的个数是()A . 1B . 2C . 3D . 423. (2分)(2019·海曙模拟) 如图,点C的坐标为(3,4),CA⊥y轴于点A,D是线段AO上一点,且OD=3AD,点B从原点O出发,沿x轴正方向运动,CB与直线y= x交于点E,则△CDE的面积()A . 逐渐变大B . 先变大后变小C . 逐渐变小D . 始终不变24. (2分)有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A . 11.6B . 2.32C . 23.2D . 11.525. (2分)不能判定四边形ABCD是平行四边形的题设是().A . AB=CD,AD=BCB . AB∥DC,AB=CDC . AB=CD,AD∥BCD . AB∥DC,AD∥BC26. (2分) (2017八上·丛台期末) 如图,△ABC沿AB向下翻折得到△ABD,若∠ABC=30°,∠ADB=100°,则∠BAC的度数是()A . 100°B . 30°C . 50°D . 80°三、解答题 (共7题;共77分)27. (5分)计算:(﹣2015)0+|1﹣|﹣2cos45°++(﹣)-228. (15分)已知一次函数y=mx+3-m,当m为何值时,(1) y随x值的增大而减小;(2)一次函数的图象与直线y=-2x平行;(3)一次函数的图象与x轴交于点(2,0).求m的值。
浙江省湖州市吴兴区2018-2019学年八年级下学期数学期末考试试卷及参考答案

(1) 求证:四边形ABCE是平行四边形; (2) 连接AC,BE交于点P,求AP的长及AP边上的高BH; (3) 在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为 边向右上方作正方形APMN: ①求M点的坐标。
②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分)
四个顶点不可能在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
10. 新定义:若关于x的一元二次方程:a1(x-m)2+n=0与a2(x-m)2+n=0,称为“同族二次方程”如2(x-3)2+4=0与3(x-3)2+4= 0是“同族二次方程”现有关于x的一元二次方程2(x-1)2+1=0与(a+2)x2+(b-4)x+8=0是“同族二次方程”,那么代数式ax2+bx+201 8能取的最小值是( )
。
20. (1) 在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)
语文
数学
英语
科学
甲
95
95
80
150
乙
105
90
90
139
丙
100
100
85
139
若欲从中表扬2人,请你从平均数的角度分析哪两人将被表扬?
(2) 为了体现学科差异,参与测试的语文、数学、英语科学实际成绩须以2:3:2:3的比例计入折合平均数.请你 从折合平均数的角度分析哪两人将被表扬?
8. 下列命题中,真命题是( )
A . 对角线相等的四边形是矩形 B . 对角线互相垂直的四边形是菱形 C . 对角线互相平分的四边形是平行四边形 D . 对角线互相
浙江省湖州市八年级下学期数学期末考试试卷

浙江省湖州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果代数式有意义,则x的取值范围是().A . x≠3B . x<3C . x>3D . x≥32. (2分)(2019·亳州模拟) 式子意义时,x的取值范围为()A . x≥1且x≠0B . x≥1且x≠-1C . x≥1D . x≥1且x≠-1且x≠03. (2分)数学老师在录入班级50名同学的数学成绩时,有一名同学的成绩录入错了,则该组数据一定会发生改变的是()A . 中位数B . 众数C . 平均数D . 中位数、众数、平均数都一定发生改变4. (2分)(2020·鼓楼模拟) 某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:衬衫尺码3940414243平均每天销售件数1012201212该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是()A . 平均数B . 方差C . 中位数D . 众数5. (2分)对于y=k2x(k≠0)的图象下列说法不正确的是()A . 是一条直线B . 过点(,k)C . 经过一、三象限或二、四象限D . y随x增大而增大6. (2分) (2019八上·沈阳开学考) 如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A . 北偏东75°的方向上B . 北偏东65°的方向上C . 北偏东55°的方向上D . 无法确定7. (2分)(2020·台州模拟) 如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A . 3B . 3C . 4D . 28. (2分)如图,在菱形ABCD中,点E是BC边的中点,动点M在CD边上运动,以EM为折痕将△CEM折叠得到△PEM,联接PA,若AB=4,∠BAD=60°,则PA的最小值是()A .B . 2C . 2 ﹣2D . 49. (2分) (2018八上·黑龙江期中) 下列命题中的假命题是()A . 等腰直角三角形是直角三角形B . 等边三角形是等腰三角形C . 等腰三角形是锐角三角形D . 等边三角形是锐角三角形10. (2分)一个正比例函数的图象经过点(2,-3),它的表达式为()A . y=-2xB . y=2xC . y=−xD .二、填空题 (共6题;共6分)11. (1分)(2020·启东模拟) 计算:﹣=________.12. (1分) (2017八下·黔东南期末) 直线y=kx+b过点(2,0)和点(0,﹣3),则关于x的方程kx+b=0的解是________.13. (1分) (2020八上·东台期末) 如图,函数和的图象相交于点A(m,6),则关于的不等式的解集为________.14. (1分) (2019九下·建湖期中) 已知组数据4,x,6,y,9,12的平均数为7,众数为6,则这组数据的方差为________.15. (1分)如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC的长为________cm.16. (1分) (2015八下·武冈期中) 如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为s,则第n个矩形的面积为________.三、解答题 (共9题;共92分)17. (10分) (2020八下·高港期中) 计算(1);(2).18. (15分)(2017·莒县模拟) 已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB= ,求DE的长.19. (5分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.20. (12分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差该班级男生根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.21. (10分)(2016·百色) 正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E 是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.22. (13分) (2016八上·镇江期末) 已知直线l1:y1=x+m与直线l2:y2=nx+3相交于点A(1,2).(1)求m、n的值;(2)设l1交x轴于点B,l2交x轴于点C,若点D与点A,B,C能构成平行四边形,请直接写出D点坐标;(3)请在所给坐标系中画出直线l1和l2 ,并根据图象回答问题:当x满足________时,y1>2;当x满足________时,0<y2≤3;当x满足________时,y1<y2 .23. (10分)(2016·大庆) 由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.24. (7分) (2019九下·河南月考) 如图,是半径为4的的内接三角形,连接,点分别是的中点.(1)试判断四边形的形状,并说明理由;(2)填空:①若,当时,四边形的面积是________;②若,当的度数为________时,四边形是正方形.25. (10分)(2017·朝阳模拟) 新定义:我们把只有一组对角是直角的四边形叫做准矩形.(1)图①、图②均为3×3的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.线段AB、BC的端点均在格点上,在图①、图②中各画一个准矩形ABCD,要求:准矩形ABCD的顶点D在格点上,且两个准矩形不全等.(2)如图③,正方形ABCD的边长为4,准矩形ABMN的顶点M、N分别在正方形ABCD的边上.若准矩形ABMN 的一条对角线长为5,直接写出此时该准矩形的面积参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、答案:略7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、答案:略16-1、答案:略三、解答题 (共9题;共92分)17-1、答案:略17-2、答案:略18-1、18-2、18-3、答案:略19-1、答案:略20-1、20-2、答案:略20-3、答案:略21-1、答案:略21-2、答案:略22-1、22-2、22-3、23-1、答案:略23-2、答案:略24-1、答案:略24-2、答案:略25-1、25-2、答案:略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学练习卷第Ⅰ卷(选择题)一、选择题(本题有10 小题,每小题3 分,共30 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.若二次根式有意义,则x的取值范围是(▲)A.x≥0 B.x>0 C.x≤5 D.x<52.下面四个手机应用图标中,属于中心对称图形的是(▲)A.B.C.D.3.下列方程是一元二次方程的是(▲)A.x+2y=1 B.x(x+3)=x2﹣1C.x2+=8 D.x2=14. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的(▲)A.最高分B.中位数C.方差D.平均数5.某市的商品房原价为12000元/m2,经过连续两次降价后,现价为9200元/m2,设平均每次降价的百分率为x,则根据题意可列方程为(▲)A.12000(1﹣2x)=9200 B.9200(1+2x)=12000C.12000(1﹣x)2=9200 D.9200(1+x)2=120006.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角(▲)A.小于60°B.等于60°C.大于60°D.大于或等于60°7.已知a是方程x2﹣2x﹣3=0的一个根,则代数式2a2﹣4a﹣1的值为(▲)A.3 B.﹣4 C.3或﹣4 D.58.如图,E是矩形ABCD的边DC上一点,AB=AE=4,BC=2,则∠BEC等于(▲)A.60°B.70°C.75°D.80°9.如图,若反比例函数y=(x<0)的图象经过点(,4),点A为图象上任意一点,点B在x轴负半轴上,连接AO,AB,当AB=OA时,△AOB的面积为(▲)A.1 B.2 C.4 D.无法确定10.如图,平行四边形网格是由20个完全相同小平行四边形组成,定义:由网格中的四个格点为顶点的平行四边形叫做格点平行四边形,图中以A,B为顶点,与四边形ABCD 面积相同的格点平行四边形(不包括 ABCD)有(▲)个A.8个B.12个C.13个D.14个第Ⅱ卷(非选择题)二、填空题(本题有6小题,每小题4分,共24分)11.一个多边形的每个外角都等于72°,则这个多边形的边数为▲.12.双曲线,当x>0时,y随x的增大而减小,则m=▲.13.如图,在平行四边形ABCD中,AE平分∠BAD交DC于点E,AD=4cm,AB=7cm,则EC的长为▲cm.14.设、是方程的两个实数根,则的值为______.的坐标为▲.(用含(2)BD= ▲.(用含m的代数式表示)三、解答题(共8小题,满分66分)17.(本题6分)计算:.18.(本题6分)解方程:19.(本题6分)已知:如图,在 ABCD 中,E 、F 为对角线BD 上的两点,且DF =BE ,分别连接AE 、EC 、CF 、AF .求证:四边形AECF 是平行四边形. 20.(本题8分)在某校组织的“美丽湖州知识”能力竞赛中,每班参加比赛的人数相同,成绩分为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班在B 级以上 包括B 级 的人数为______; (2)请你将表格补充完成:(3)请你通过计算,判断哪个班级的比赛成绩更稳定?21.(本题8分)阅读材料:新定义运算min {a ,b }:当a ≥b 时,min {a ,b }=b ;当a <b 时,min {a ,b }=a .例如:min {-3,2}= -3请你阅读以上材料,完成下列各题.(1)m in{ , }= ▲ .(2)已知y = 和y =k 2x +b 在同一平面直角坐标系中的图象如图所示,当min {,k 2x +b }=时,结合图象,直接写出x 的取值范围.(3)当min ={ -3x -1,-2x +3}=x 2+x +3时,求x 的值.22.(本题10分)湖州影视城位于风光旖旎、景色迷人的太湖国家旅游度假区,是新一代影视拍摄基地和影视旅游的好去处,吸引了不少游客慕名前来游览。
星期天,小明和几个同学,一行6人也去影视城游玩。
二班竞赛成绩统计图一班竞赛成绩统计图(1)假如,票价为40元一张,团体票(8人以上,包括8人)打七折,那么小明和他同学买团体票是否合算?(2)影视城经过调查发现,一天中游客人数y与票价x关系如下表,若影视城要想达到一天9000元的营业额,且要让游客经济实惠,影视城应该将票价定为多少?23.(本题10分)已知:如图,在正方形ABCD中,E是对角线AC上一点,且与A、C不重合,连BE、DE.(1)求证:△CDE≌△CBE;(2)在线段BC上取F,使EF=EB,求证:①DE⊥EF;②CD+CF=CE;(3)若在BC的延长线上取F,使EF=EB,试探究CD、CF、CE之间的数量关系.24.(本题12分)如图1,在平面直角坐标系xoy中,已知△ABC,∠ACB=90°,顶点A在第一象限,B,C在x轴的正半轴上(B在C的右侧),BC=4 , AC=4 , △ADB与△ACB关于AB所在的直线对称.(1)当OC=3时,求点D的坐标;(2)如图2,将△ACB绕顶点C逆时针旋转30°,得到△ECF,连接EA、BF并延长,交于点P.①求证:△EFP是等腰直角三角形;②若点P和D在同一反比例函数的图像上,求OC的长度.八年级数学期末练习卷参考答案及评分标准一、选择题(3×10=30)二、填空题(4×6=24)11. 5 12. -213. 3 14.15. 16. (2分) , (2分)三、解答题(共66分)17.解:原式=43+3------------------------------------------4分=53----------------------------------------------2分18.解:(1),--------------------------------6分19.证明:连接AC交BD于O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,-----------------------2分∵DF=BE,∴DE=BF,-----------------------2分∴OF=OE,∴四边形AECF是平行四边形.-----------------------2分20.解:(1)4 -------------2分(2)-------------3分(3)一班(分2)二班(分2)---------2分所以二班成绩更稳定-------------1分21.解:(1)-------------------------------------------2分(2)<或-------------------------------------------2分(3)①当时即时,解得----------------------2分②当时即时,解得舍去,(舍去)----------2分22.解:(1)解:买6张:40×6=240(元)团体票:50×8×0.7=224(元)∵ 224<240 ∴买团体票合算--------------4分(2)解:根据表格数据求出y关于x的函数关系式:-----2分根据题意得:--------------2分解得: (舍去) -------------2分答:应该将票价定为30元。
23.解:(1)证明;在正方形ABCD中,BC=CD, ∠ACB=∠ACD=45°∵ CE=CE,∴△CDE≌△CBE--------------2分(2)①证明:∵△CDE≌△CBE∴∠EBC=∠EDC又∵EF=EB∴∠EBC=∠EFB∴∠EFB=∠EDC∵∠EFB+∠EFC=180°∴∠EDC+∠EFC=180°又∵四边形EFCD内角和为360°∴∠DCE+∠DEF=180°又∵正方形ABCD 中,∠DCB=90°∴∠DEF=90° 即DE ⊥EF---------------------------3分②延长CD 到M ,使得DM=CF , 可证明 △ECF ≌△EMD (SAS ) 再去证明△ECM 是等腰直角三角形, 可得 CD+DM= CE所以CD+CF=MC= CE ---------------------------3分 (3)方法同(2)②在线段CD 上截取M ,使得DM=CF , 可证明 △ECF ≌△EMD (SAS ) 再去证明△ECM 是等腰直角三角形, 可得 CD DM= CE所以CD CF=MC= CE ---------------------------2分24.解:(1)D ( )-------------------------------------4分 (2)根据旋转可得△CEA 和△BCF 都是顶角为30°,底角为75°的等腰三角形 可以计算出∠PEF=∠PFE=45°,所以△EFP 是等腰直角三角形;------4分 (3)由(2)计算可得M 是EF 的中点,F连PM,由(2)中△PEF为等腰直角三角形,可得PM⊥EF,且PM=MF,过M点可构造“K”字型全等Array△PQM≌△MNF,得PQ=NC=2,NF=QM=2,设OC=m,则P(m+2, 2+4),而同(1)算法得点D(m+6,2),由P,D同在反比例函数上,得(m+2)(2+4)=2(m+6)解得 m=2所以OC=2------------------4分。