参数化模型与设计
ADAMS参数化建模及优化设计

选择“name_and_position”,弹
出创建刚体对话框,将部件名字
改为.model_1.uca,其余缺省,
点击“OK”
实体名称的创建
Command Navigator→ geometry → create →
shape,双击cylinder,创建
几何实体,在名字框可以改动 几何实体的名称 (一定要将 几何实体创建到它属于的部 件)。
Variable、Real,则创建设计变量.model_1.DV_1,
如图。
同样根据lca_knuckle、tie_knuckle创建设计 变量DV_2、DV_3。
设计变量的修改 在菜单Build中选择Design
Variable、Modify,在对话框,
Units中选择length,Value
test_plane
743.0, 1442.0, 207.0
测试台与转向节铰链联接点
参数化点的创建
通过主工具箱中点快
捷图标创建
通过“Tool”菜单中
的”Command Navigator”
来创建(本例以第二种方 式创建)
菜单命令。随后出现Command Navigator对话框,
找到其中的point,点击前面“+”号展开,在展开后的
万向节的创建 进入Command Navigator对话框,展开constraint、
joint,双击hook。弹出创建对话框,在下拉菜单中选择
Position By Using Markers,通过Marker来为铰定向。 I Marker Name编辑框中右击选择Marker、Create, 弹出创建Marker对话框,先创建属于地面的I Marker,Z 轴为水平方向.改名为“model_1.tierod.MARKER41”,在
参数化建模的好处

参数化建模的好处
参数化建模的好处包括:
1.重复使用性:参数化建模可以将模型转化为可重复使用的参数化构件。
这是因为,模型中的参数可以根据需要进行修改,而不必重新设计整个模型。
2.灵活性:参数化建模使您能够更快地对设计进行修改。
因为只需更改参数,就可以对整个设计进行修改,而无需逐个更改每个构件。
3.可靠性和一致性:参数化建模可以确保您的设计始终保持一致。
因为只需更新参数,就可以确保所有构件的值都是准确的。
4.减少错误:由于参数化建模可以减少手动修改的数量,因此可以减少错误的数量。
这是因为,手动修改时可能会出现错误,而使用参数化建模则可以减少这种情况的发生。
5.提高效率:由于参数化建模可以减少重新设计的需要,因此可以提高设计效率。
这是因为,重新设计需要耗费时间和精力,而使用参数化建模可以节省这些资源。
【Adams应用教程】第10章ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及ADAMS/View 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。
其中DOE是通过ADAMS/Insight来完成,设计研究和优化分析在ADAMS/View中完成。
通过本章学习,可以初步了解ADAMS参数化建模和优化的功能。
10.1 ADAMS参数化建模简介ADAMS提供了强大的参数化建模功能。
在建立模型时,根据分析需要,确定相关的关键变量,并将这些关键变量设置为可以改变的设计变量。
在分析时,只需要改变这些设计变量值的大小,虚拟样机模型自动得到更新。
如果,需要仿真根据事先确定好的参数进行,可以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真,以便于观察不同参数值下样机性能的变化。
进行参数化建模时,确定好影响样机性能的关键输入值后,ADAMS/View提供了4种参数化的方法:(1)参数化点坐标在建模过程中,点坐标用于几何形体、约束点位置和驱动的位置。
点坐标参数化时,修改点坐标值,与参数化点相关联的对象都得以自动修改。
(2)使用设计变量通过使用设计变量,可以方便的修改模型中的已被设置为设计变量的对象。
例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。
当设计变量的参数值发生改变时,与设计变量相关联的对象的属性也得到更新。
(3)参数化运动方式通过参数化运动方式,可以方便的指定模型的运动方式和轨迹。
(4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。
当以上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。
参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动,而且可以达到对模型优化的目的。
参数化机制是ADAMS中重要的机制。
CAD设计中的参数化建模技术

CAD设计中的参数化建模技术随着科技的不断进步和发展,计算机辅助设计(Computer-Aided Design,CAD)已经成为现代工程设计领域的重要工具之一。
在CAD 设计中,参数化建模技术被广泛应用,为设计师提供了更高效、可控的设计过程。
本文将介绍CAD设计中的参数化建模技术及其优势。
一、参数化建模技术的概述参数化建模技术是CAD设计中一种基于参数的设计方法,它通过设定相关的参数和约束条件,实现设计模型的自动调整与修改。
这些参数可以是尺寸、比例、角度等,约束条件可以是相对位置、平行、垂直等。
通过调整这些参数和条件,设计师可以方便地修改模型,实现快速建模与设计变更。
二、参数化建模技术的应用案例1. 汽车设计在汽车设计中,参数化建模技术使得设计师可以通过修改参数,快速获得各种车型的设计。
例如,设计师可以通过修改车身长度、宽度和高度等参数,快速生成不同尺寸的汽车模型。
此外,参数化建模技术还可以应用于汽车设计中的零件设计,例如发动机、悬挂系统等,使设计过程更加高效可控。
2. 建筑设计在建筑设计中,参数化建模技术可以用于生成不同尺寸和形状的建筑物。
设计师可以通过调整建筑物的高度、宽度和深度等参数,快速生成不同规模、风格的建筑模型。
此外,参数化建模技术还可以应用于建筑内部的布局设计,在不改变整体结构的前提下,根据不同需求调整室内空间的分割和装饰。
3. 机械设计在机械设计中,参数化建模技术被广泛用于零件设计和装配设计。
设计师可以通过设定零件的尺寸、形状和材料等参数,快速生成不同功能的零件模型。
同时,参数化建模技术还可以应用于装配设计,通过约束条件和配合尺寸的设定,确保零件之间正常配合和运动。
三、参数化建模技术的优势1. 提高设计灵活性采用参数化建模技术,设计师可以通过修改少量的参数,快速生成多个设计方案。
这种灵活性使得设计过程更加高效,能够迅速满足不同需求和变更。
2. 加快设计速度传统的手工设计过程通常需要大量的计算和绘图工作,耗时且容易出错。
ADAMS参数化建模及优化设计

设计要求:
能产生至少800N的 夹紧力。 手动夹紧,用力不
大于80N。 手动松开时做功最 少。 必须在给定的空间 内工作。 有震动时,仍能保 持可靠夹紧。
模型建立
1、启动ADAMS/View
(1)打开ADAMS/View,欢迎对话框中选择 Create a new model项,输入文件名Latch,选择 OK按钮,如图所示 。
2.7 3.3
2.2 7.6 -1.1 10.5 -5.4 4.5
-875.67 -965.65
-836.23 -920.73 -835.13 -933.55 -866.73 -876.61
取DV_2的取值范围为(-1,1),标准值为0
取DV_4的取值范围为(1,6),标准值为3 取DV_6的取值范围为(6.5,10),标准值为8
框,如图9所示。选择工具
置 , 。
,在参数栏设
依次选取固定支架(ground.block)、滑钩(hook)、 点(-12,1,0),竖直向上拖动鼠标,按下左键。
(9)创建弹簧
在主工具箱施加力工具集选择拉压弹簧阻尼器工 具 。 输入K=800,C=0.5。
选取点(-14,1,0)处滑钩顶点,注意应选取钩上的顶
参数化建模应用实例
以参数化点坐标的方式进行参数化建模
例:
North American Aviation, Inc. 的Earl V. Holman 发明的一个挂锁模型,它能够将运输集装箱的两 部分夹紧在一起。该挂锁共有十二个,在Apollo 登月计划中,它们被用来夹紧登月仓和指挥服务 仓。
(角度测量
在
菜单下选择 ,显示产生角度测量对 话框,选择advanced。 在Measure Name栏,将测量名称改为overcenter_angle。 在Fist Marker栏,按鼠标右键选择Marker,再选择Pick。 选择在Point_6处的任意一个标记(Marker)。 在Middle Marker栏,按鼠标右键选择Marker,再选择 Pick。选择在Point_7处的任意一个标记(Marker)。 在Last Marker栏,按鼠标右键选择Marker,再选择Pick。 选择在Point_3处的任意一个标记(Marker)。设置完 成如图所示。选择OK按钮,显示角度测量窗口。
参数化模型与设计

参数化模型与设计首先,参数化模型与设计可以提高产品的灵活性和可扩展性。
通过将系统的各种参数进行建模和设计,可以使产品安装、调整和升级更加方便和灵活。
同时,通过合理设计参数化接口,可以在保持产品整体稳定性的前提下,方便用户进行个性化定制和功能扩展。
其次,参数化模型与设计可以提高产品的可维护性和可复用性。
通过对系统各种参数或属性进行合理的建模和设计,可以将系统功能模块化、参数化,使得系统的不同部分可以独立进行维护和修改。
同时,参数化模型与设计还可以实现功能的复用,减少重复开发的工作量。
再次,参数化模型与设计可以提高产品的性能和效果。
通过对系统各种参数进行建模和优化设计,可以对系统进行优化,提高系统的性能和效果。
例如,在设计控制系统时,可以将控制参数进行建模和优化设计,以达到更好的控制效果和性能。
此外,参数化模型与设计还可以提高产品的可测试性和可靠性。
通过将系统的各种参数进行合理建模和设计,可以方便对系统进行测试和验证。
同时,参数化模型与设计可以使得系统的设计更加可靠,通过对参数进行严格约束和控制,降低系统的失效和故障概率。
在实际应用中,参数化模型与设计可以广泛应用于各个行业和领域。
例如,在产品设计领域,参数化模型与设计可以用于形状设计、拓扑优化、结构优化等方面,以实现更好的产品性能和外观效果。
在控制系统设计领域,参数化模型与设计可以用于控制器参数的优化设计,以实现更好的控制效果和稳定性。
在工艺流程设计和优化领域,参数化模型与设计可以用于工艺参数的建模和优化设计,以实现更高的生产效率和质量。
总之,参数化模型与设计是一种重要的设计方法和技术,可以提高产品的灵活性、可扩展性、可维护性、可复用性、性能和效果。
通过合理建模和设计系统中的参数,可以实现更好的功能和性能。
在实际应用中,参数化模型与设计可以应用于各个领域和行业,发挥重要的作用。
ADAMS参数化建模及优化设计

ADAMS参数化建模及优化设计ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一种常用的参数化建模和优化设计软件,广泛应用于机械系统的动力学模拟和优化。
本文将针对ADAMS的参数化建模和优化设计进行详细探讨。
参数化建模是指将机械系统的设计参数进行编程和建模,实现系统的变量化描述。
ADAMS软件提供了强大的参数化建模功能,可以对系统的几何形状、材料属性、运动约束等进行参数化描述。
通过参数化建模,工程师可以灵活地调整系统的参数,快速验证不同设计方案的性能差异,为优化设计提供重要的支持。
在ADAMS中,参数化建模可以通过两种方式实现:一种是基于CAD几何模型进行建模,另一种是基于ADAMS内置的建模工具进行建模。
对于基于CAD几何模型的建模,工程师可以直接导入CAD文件,然后通过ADAMS 提供的工具对几何模型进行进一步处理,添加运动约束和物理特性等。
而基于ADAMS内置的建模工具进行建模,工程师可以通过简单的拖拽和参数调整就能够快速构建机械系统模型。
参数化建模之后,就可以进行系统的优化设计了。
ADAMS软件提供了多种优化方法和算法,如遗传算法、粒子群算法、单目标优化、多目标优化等。
工程师可以根据具体需求选择适合的优化方法,通过设定优化目标和约束条件,对系统进行优化设计。
在进行优化设计时,需要定义目标函数和约束条件。
目标函数是指系统的优化目标,可以是最小化系统一些性能指标,如最小化系统的质量、最小化系统的振动等。
约束条件是指系统设计必须满足的条件,如材料的强度、系统的尺寸约束等。
通过设置合适的目标函数和约束条件,ADAMS 可以自动寻找最优的设计方案。
在进行参数化建模和优化设计时1.系统的参数化建模应该尽可能准确地反映实际情况,避免过度简化或者误差过大。
2.在进行优化设计时,应该明确优化的目标和约束条件,以及优化的范围和限制。
3.在优化设计过程中,可能需要进行多次的仿真和优化迭代,直到找到最优的设计方案。
机械设计中的参数化模型与优化设计

机械设计中的参数化模型与优化设计在机械设计领域中,参数化模型与优化设计是两个重要的概念。
参数化模型是指设计过程中使用参数来定义几何形状和尺寸的模型,而优化设计则是通过优化算法寻找最佳设计方案。
本文将介绍参数化模型和优化设计的原理与应用,并探讨二者在机械设计中的重要性和挑战。
一、参数化模型的原理与应用参数化模型是一种使用参数来描述和确定几何形状和尺寸的设计模型。
相比于传统的手工绘图和CAD软件设计,参数化模型可以通过调整参数值来快速生成不同几何形状的模型,提高设计效率。
参数化模型也能够方便地进行变量分析和灵敏度分析,有助于优化设计过程。
参数化模型的应用范围广泛,包括机械零件设计、结构设计、流体力学分析等。
在机械零件设计中,参数化模型可以用于生成不同尺寸的螺纹孔、键槽等特征,并快速进行装配性分析。
在结构设计中,参数化模型可以用于生成各种形状的结构单元,如梁、板、壳等,并进行强度、刚度等性能分析。
在流体力学分析中,参数化模型可以用于生成涡轮叶片、管道等复杂几何形状,并进行流场分析和传热分析。
二、优化设计的原理与应用优化设计是一种通过数学模型和优化算法,寻找最佳设计方案的方法。
优化设计的目标通常是最小化或最大化某个性能指标,如重量、成本、刚度、强度等。
通过调整设计参数的数值,优化设计能够寻找到最佳的参数组合,以达到设计目标。
优化设计的原理基于数学和工程的知识,主要包括建立数学模型、确定优化目标函数、选择合适的优化算法和评估优化结果等步骤。
常用的优化算法有遗传算法、蚁群算法、模拟退火算法等。
在机械设计中,优化设计可以应用于零件尺寸优化、结构优化、材料选择等方面,以提高设计的性能和效率。
三、参数化模型与优化设计的关系参数化模型和优化设计是密切相关的。
参数化模型提供了优化设计的基础,通过调整参数值来生成不同设计方案。
优化设计则通过优化算法对参数化模型进行搜索和评估,寻找最佳设计方案。
参数化模型与优化设计之间的关系可以通过一个实例来说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点或标记坐标系方位完全相同。施行后方位关系成为:
(ORI_RELATIVE_TO ({0, 0, 0}, .MODEL_1.PART_1.MAR_2)) 原方位 施行后 选项:Collapse
沿轴定向 Along Axis
• •
使标记、约束、力的坐标系的一轴矢与两标记的联接矢量同向。 对杆件上标记Mar_4设定如下条件时:
设计研究 Design study: 研究单个设计变量对样机
性能影响的大小。
试验设计 Design of Experiment (DOE):用较少的
试验次数,确定各设计变量的合理范围。
优化 Optimization:最终确定最优的设计变量值。
参数化方法
• • •
设计点的参数化 设计变量的参数化 移动工具
•
•
创建设计变量
• • • • • • • •
变量名; 单位 类型: Real, Integer, String, Object 标准值及值范围:绝对最大 、最小值, ± 差值; ± % 最小值、最大值
允许优化时不考虑值的范围
列出允许值 还可自己定点数及其数值: 按 Generate 允许设计研究不考虑此列表
参数化建模与设计
•
将设计参数设置为变量,在分析过程中改变 样机模型的参数值,就能自动更新模型,就 可进行一系列的仿真分析。 参数化分析类型:
设计研究 Design Study: 试验设计 Design of Experiment: 优化 Optimization:
•
参数化分析工具
• • •
参数化:使用f(θ)工具
•
f(θ)工具将一对象的方位与一坐标系联系起来,与之保 持一定关系。
的方位关系如下:
• 选项:Same As, Along Axis, In Plane; Maintain, Collapse • 选Same As和维持(Maintain),当设标记Mar_1与标记Mar
(ORI_RELATIVE_TO ({90d, 90d, 0}, .MODEL_1.PART_1.MAR_2)) 执行之前 执行之后 维持 Maintain
(ORI_ALONG_AXIS (.MODEL_1.PART_1.MAR_4, .MODEL_1.PART_1.MAR_1, “z”))
当拖动标记Mar_1时,约束杆件的标记Mar_4的Z轴(因而杆件) 始终保持与Mar_ 4Mar_1的联接矢量同向。 用选项Same As 或In Plane 可使3轴或两轴互相平行。
设计变量 Design Variables
•
创建设计变量: BuildDesign VariableNew 在任意对话框的数值输入区(限于标量)弹出右键菜 单,选 ParameterizeCreate Design Variable 修改设计变量: BuildDesign VariableModify 删除设计变量: EditDelete弹出Database Navigator 选设计变量OK ToolsTable Editor选Variables 选要删的设计变量右键菜单Delete
Parameterize Model & Design
参数化建模与设计
参数化模型
•
虚拟样机在建立后,为优化设计需多次修改、仿 真、调试,改变样机是很繁琐的事。
•
•
建立参数化模型就使这些工作变得简单、快捷。
参看 :
ADAMS 11.0 \ pdfdocs \ view\ view_ref \ view_ref.pdf
创建设计变量允许值
•
表达式
ห้องสมุดไป่ตู้
表达式 Expression
•
表达式是所有参数化的基础。
•
例:设Part_2质量是Part_1质量的2倍,用表达
式: (2 * .model_1.part_1.mass) , 使Part_2质 量自动随之变化。2也可用变量代替。
•
表达式要用括弧括起来,表达式中可用常数、标 准数学运算符、函数,也可引用模型中其它对象
•
用Table Editor参数化点的坐标:
点坐标的参数化
•
选择要参数化的点坐标,如-400.0,在输入框中鼠标 右键菜单Parameterize
创建或引用已有的设计变量
• 变量名 • 变量类型 • 标准值 • 值的范围 • 下限 • 上限
•
允许优化时不考虑范围
参数化变量
• •
允许值列表
允许设计研究时不考 虑上述列表
参数化:使用f(x)工具--Collapse
• 选收缩(Collapse)使对象的标记与参考点、标记重合。 • 实行后位置关系成为:
(LOC_RELATIVE_TO ( {0,0,0}, .model_1.part_1.POINT_1))
执行前 执行后 收缩 Collapse
参数化:使用f(θ)工具--Collapse
参数化:使用f(x)工具
•
f(x)工具将一对象的位置与一点、标记坐标系联系起来 ,与之保持一定关系。
(LOC_RELATIVE_TO ( {0,10,0}, .model_1.part_1.POINT_1)) 执行之前 执行之后 维持 Maintain
• 选维持(Maintain),当标记Mar_1与点Point_1关系如下:
的数据。
参数化: 用点 Point
• •
点参数化可方便地改变机构的形态。 用点构建机构时,ADAMS自动将构件标记的位置与 该点联系起来(LOC_RELATIVE 和 ORI_ALONG_AXIS),当点位置发生变动,构件随 之变化。
(LOC_RELATIVE_TO({0, 0, 0}, model_1.ground.POINT_1))