7年级(上)第一次月考数学试题(含答案)+

合集下载

七年级上册数学第一次月考试卷含答案

七年级上册数学第一次月考试卷含答案
(2)a,b互为倒数,c和d互为相反数.求ab﹣ ﹣2c﹣2d的值.
22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).

B.盈利100元和支出100元
C.水位上升2米和水位下降2米
D.黑色与白色
4.下列各数中,既是分数又是正数的是( )
A.1B.﹣3 C.0D.2.25
5.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是( )
A. B.
C. D.
;
6.下列说法正确的是( )
A.0不可以是负数但可以是正数
②小猫逮住老鼠时的“位置”恰好在,求时间t.
25.阅读材料
?
(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;
同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.
3.C
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.
【详解】
A、“向东走和向西走是方向相反,不是相反意义的量,故本选项错误;
]
B、“盈利100元”与“支出100元”是不是表示相反意义的量,故本选项错误;
C、水位上升2米和水位下降2米是表示相反意义的量,故本选项正确;

七年级上学期第一次月考(数学)试题含答案

七年级上学期第一次月考(数学)试题含答案

七年级上学期第一次月考(数学)(考试总分:100 分)一、 单选题 (本题共计10小题,总分30分)1.(3分)1.如果电梯上升5层记为+5.那么电梯下降2层应记为( )A .+2B .﹣2C .+5D .﹣52.(3分)2.2015的相反数是( )A.12015 B .12015C .2015D .﹣20153.(3分)3.如图1是由图形( )绕虚线旋转一周形成4.(3分)4.用平面截一个几何体,如果截面的形状是三角形,那么该几何体不可能是( )A .圆柱B .棱柱C .正方体D .圆锥5.(3分)5.下列图形中,经过折叠不能围成正方体的是( )A .B .C .D .6.(3分)6.在数轴上与-3的距离等于4的点表示的数是( )A .1B .-7C .1或-7D .无数个7.(3分)7.如图所示,小敏计划在暑假参加海外游学,她打算制作一个正方体礼盒送给外国朋友,如图所示是她设计的礼盒的平面展开图,请你判断,正方体礼盒上与“孝”字相对的面上的字是( ) A .义B.仁C.智D.信8.(3分)8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差( ).A .0.8㎏B .0.6㎏C .0.5㎏D .0.4㎏9.(3分)9.已知a 、b 在数轴上对应的点如图所示,下列结论正确的是( )A. a>bB. |a|<|b|C. -a<-bD. a<-b图1A B C D10.(3分)10.下列语句:①不带“﹣”号的数都是正数;②不存在既不是正数,也不是负数的数;③一个有理数不是正数就是负数;④符号相反的两个数互为相反数;⑤若两个有理数的和为正数,则这两个数都是正数.正确的有( ) A .0个 B .1个 C .2个 D .3个二、 填空题 (本题共计5小题,总分15分)11.(3分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),则可以得到一个立体图形球。

七年级上册数学第一册月考试卷(含答案)

七年级上册数学第一册月考试卷(含答案)

一、选择题(本大题共10小题,共30.0分)1.若x与3互为相反数,则等于()A. 0B. 1C. 2D. 32.已知a<0、b>0且|a|>|b|,则a、b、−a、−b的大小关系是()A. b>−a>a>−bB. −b>a>−a>bC. a>−b>−a>bD. −a>b>−b>a3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A. 1.496×107B. 14.96×108C. 0.1496×108D. 1.496×1084.一种巧克力的质量标识为“100±0.25克”,则下列合格的是()A. 99.80克B. 100.30克C. 100.51克D. 100.70克5.下列各对数中,互为相反数的是()A. −(−2)3与|−2|3B. (−2)3与−23C. −22与+(−2)2D. −(−2)与|−2|6.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22017+22018的末位数字是()A. 2B. 4C. 8D. 67.按一定规律排列的单项式:a,−a2,a3,−a4,a5,−a6,……,第n个单项式是()A. a nB. −a nC. (−1)n+1a nD. (−1)n a n8.下列说法正确的是()A. 1和−0.125不互为相反数 B. −m不可能等于08C. 正数和负数互为相反数D. 任何一个数都有相反数9.如图,数轴上有A、B、C、D四个整数点(即各点均表示整数),且3AB=BC=2CD。

若A、D两点所表示的数分别是−6和5,则线段AC的中点所表示的数是()A. −3B. −2C. −1D. +110.若有理数a,b,c满足abc=2003,a+b+c=0,则a,b,c中负数的个数是()A. 3B. 2C. 1D. 0二、填空题(本大题共3小题,共9.0分)11.−21和它的相反数之间的整数有______个.212.如图,数轴上A、B两点所表示的数分别为a、b,下列各式中:①(a−1)(b−1)>0;②(a−1)(b+1)>0;③(a+1)(b+1)>0.其中,正确式子的序号是____.13.一个两位数,个位数字是x,十位数字比个位数字大3,则这个两位数是______.三、计算题(本大题共2小题,共12.0分)14.先在数轴上表示下列各数,再把它们按从小到大的顺序用“<”连接起来.|−3|,−|−2|,0,−1.5,−(−4),112.15.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)第一次第二次第三次第四次x−12x x−52(9−x)(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置.(3)这辆出租车一共行驶了多少路程?四、解答题(本大题共7小题,共56.0分)16.已知数轴上三点M、O、N对应的数分别为−1、0、3.点P为数轴上任意一点,且表示的数为x.(1)则MN的长为______个单位长度;(2)如果点P到点M、点N的距离相等,那么x的值是______;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值:若不存在,请说明理由.17.观察下列各式:……(1)猜想________.(2)根据上面的规律,计算18.小欢和小樱都十分喜欢唱歌,她们两个一起参加社区的文艺会演,在会演前,主持人让她们自己确定出场顺序,可她们俩都争着先出场,最后主持人出了一个主意(如图所示):19.如图,将边长为a的小正方形和边长为b的大正方形放在同一水平面上(b>a>0)(1)用a,b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.已知a,b互为相反数,c,d互为倒数,m−3的相反数是−4,求a+b+m的值.cd21.观察下面三行数:−2、4、−8、16、−32、64、……①0、6、−6、18、−30、66、……②5、−1、11、−13、35、−61、……③(1)第①行数的第7个数是__________;(2)设第②行数中有一个数为a,第③行数中对应位置的数为b,则a和b之间等量关系为__________;设第①行数的第n个数为x,取每行的第n个数,这三个数的和是__________;(3)根据(2)中的结论,若取每行的第9个数,计算这三个数的和22.动脑筋、找规律.邱老师给小明出了下面的一道题,如图所示,请根据数字排列的规律,探索下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2020个数是正数还是负数?排在对应于A,B,C,D中的什么位置?【解析】【分析】本题考查的是绝对值,相反数,熟知0的绝对值是0是解答此题的关键.先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=−3,∴|x+3|=|−3+3|=0.故选A.2.【答案】D【解析】解:依题意在数轴上表示出a、b、、得根据它们在数轴上的位置可得:故选D3.【答案】D【解析】【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】【分析】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围,计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即:从99.75到100.25之间,然后逐项判断即可.【解答】解:100−0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是在99.75到100.25之间,只有99.80克在巧克力的质量标识范围,故A正确.故选:A.5.【答案】C【解析】【分析】本题主要考查的是相反数、绝对值、有理数的乘方的运算,先化简各数,然后根据相反数的定义判断即可.【解答】解:A.−(−2)3=−(−8)=8,|−2|3=23=8,不符合题意;B.(−2)3=−8;−23=−8,不符合题意;C.−22=−4;(−2)2=4,符合题意;D.−(−2)=2,|−2|=2,不符合题意.故选C.6.【答案】D【解析】【试题解析】【分析】本题考查了尾数特征的应用,关键是能根据题意得出规律,利用规律解决问题,因为21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,观察发现:2n 的个位数字是2,4,8,6四个一循环,所以根据2017÷4=504…1,2018÷4=504…2,得出22017的个位数字与21的个位数字相同是2,22018的个位数字与22的个位数字相同是4,进一步求解即可. 【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. 2017÷4=504…1, 2018÷4=504…2,∴22017的个位数字与21的个位数字相同是2, 22018的个位数字与22的个位数字相同是4, 2+4=6.故22017+22018的末位数字是6. 故选:D .7.【答案】C【解析】 【分析】本题考查了单项式,数字的变化类,注意字母a 的指数为奇数时,符号为正;系数字母a 的指数为偶数时,符号为负.观察字母a 的系数、次数的规律即可写出第n 个单项式. 【解答】解:a ,−a 2,a 3,−a 4,a 5,−a 6,……,(−1)n+1⋅a n . 故选C .8.【答案】D【解析】−0.125=−18,与18只有符号不同,它们互为相反数,故A 不正确; 因为m 是字母,可能等于0,所以−m 可能等于0,故B 不正确;正数和负数除符号不同外,其他也可能不同,如−2和3,所以正数和负数不一定互为相反数,故C 不正确,故选D .9.【答案】B【解析】解:∵A、D两点所表示的数分别是−6和5,∴AD=11,∵3AB=BC=2CD,∴112AB=11,∴AB=2,∴BC=6,CD=3,∴AC=8,∴C点表示的数是2,∴AC的中点表示的数是−2。

七年级上学期第一次月考数学试题(附答案)

七年级上学期第一次月考数学试题(附答案)

第一学期第一次七年级数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.-5的绝对值是( )A. -5B. C. 5 D. ±52.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A. ﹣500元B. ﹣237元C. 237元D. 503.下列各数是无理数的为( )A.B. C. 4.121121112D.4.下列结论错误的是()A. 0既不是正数,也不是负数B. 相反数是本身的数是正数C. 一个有理数不是整数就是分数D. 0的绝对值是05.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)6.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是()A. 25.30千克B. 24.70千克C. 25.51千克D. 24.82千克7.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a-b-c=()A. 1B. 0C. 2D. 2或08.若ab<0,且a﹣b>0,则下列选项中,正确的是()A. a<0,b<0B. a<0,b>0C. a>0,b<0D. a>0,b>09.p,q,r,s在数轴上的位置如图所示,若|p-r|=10,|p-s|=13,|q-s|=9,则|q-r|等于()A. 5B. 6C. 7D. 810.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是()学*科*网...学*科*网...A. mB. nC. pD. q二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在题中的横线上)11.的相反数是______.12.比较大小:﹣__________﹣13.绝对值小于3的所有整数的和是.14.在数轴上与﹣2 的距离等于4 的点表示的数是___________.15.a※b是新规定的这样一种运算法则:a※b=a(a+b),若(﹣2)※3=_________16.某公交车上原坐有22 人,经过4 个站点时上下车情况如下(上车为正,下车为负)(+4,-8),(-5,6),(-3,6),(+1,-7),则车上还有________人.17.如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖数为___________.18.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________三、解答题(本大题共有8小题,共54分,解答时应写出文字说明,推理过程或演算步骤)19.计算:(1)(2)(3)(4)﹣54×2÷(﹣4)×;20.用简便方法计算下列各题(1)(2)99×( −17)21.在数轴上表示下列数,并用“<”号把这些数连接起来.−(−4),−,+(−) ,0,+(+2.5).22.把下列各数填入相应的集合中:,0.212112111…(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…}.23.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+15(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?24.若|a-1 |与|b-2|互为相反数,(1)、a= ;b= ;(2)、求+++……=.(3)、求……+25.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x = .②:|x+12|+|x-8|的最小值为.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t= ,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t= ,P,Q之间的距离为4.第一学期第一次质量测试七年级数学试卷答案一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.-5的绝对值是( )A. -5B. C. 5 D. ±5【答案】C【解析】【分析】根据绝对值的定义解答即可.【详解】负数的绝对值是它的相反数,故﹣5的绝对值是5,选项C正确.【点睛】本题主要考查了绝对值的定义,正数和0的绝对值是它本身,负数的绝对值是它的相反数,掌握这个知识是解答此类题目的关键.2.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A. ﹣500元B. ﹣237元C. 237元D. 50【答案】B【解析】【分析】根据条件“收入为正、支出为负”进行解答.【详解】依题意,规定收入为正,支出为负,那么支出237元应记作﹣237元,选项B正确. 【点睛】本题考查用正负数表示两个具有相反意义的量,属基础题.3.下列各数是无理数的为( )A.B. C. 4.121121112D.【答案】B 【解析】【分析】根据无理数的定义判断即可.【详解】根据无理数的定义可知,只有是无理数,﹣9、4.121121112、都是有理数,故选B.【点睛】本题主要考查了无理数的定义,无理数也称无限不循环小数,掌握这个知识是解答此题的关键.4.下列结论错误的是()A. 0既不是正数,也不是负数B. 相反数是本身的数是正数C. 一个有理数不是整数就是分数D. 0的绝对值是0【答案】B【解析】【分析】根据有理数的相关知识进行判断.【详解】根据有理数的相关知识可知,A、C、D正确;相反数是本身的数除了正数还有0,故B选项错误.【点睛】本题考查了有理数的相关知识,属于基础题,熟练掌握这些知识是解答此类问题的关键.5.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.故选:B.6.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是()A. 25.30千克B. 24.70千克C. 25.51千克D. 24.82千克【答案】D【解析】25+0.20=25.2;25−0.20=24.8∵25.2<25.3,∴A不正确;,24.7<24.8,∴B不正确;∵25.2<25.51,∴C不正确;∵25.2>24.82>24.8,∴D,正确。

七年级上册数学第一次月考试卷带答案

七年级上册数学第一次月考试卷带答案

七年级上册数学第一次月考试题一、单选题1.下列说法正确的是( )A .一个数的绝对值等于它本身,这个数一定是正数B .一个数的绝对值等于它的相反数,这个数一定是负数C .绝对值越大,这个数越大D .两个负数,绝对值大的那个数反而小2.计算(−5)+(−7)的值是( )A .-12B .−2C .2D .123.按照有理数加法则,计算()()18020-++的正确过程是A .()18020--B .()18020++C .()18020+-D .()18020-+ 4.计算(﹣3)×(﹣4)的结果等于( )A .12B .﹣12C .-7D .﹣45.如图所示,m 和n 的大小关系是( )A .m =nB .m =1.5nC .m >nD .m <n6.已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-37.2019年3月21日,春分,雪至.哈尔滨市的最低气温是﹣8℃,最高气温是1℃,则这一天哈尔滨市的最高气温与最低气温的差是( )A .﹣9℃B .9℃C .7℃D .﹣7℃ 8.若−12的倒数与m +4互为相反数,则m 的值是( )A .1B .−1C .2D .−29.4.8除以2.3加上1.8乘0.5的积,商是( )A .1.7B .44.88C .3.2D .1.510.某机构对40万人的调查显示,沉迷手机上网的初中生大约占7%,则这部分沉迷于手机上网的初中生人数,可用科学记数法表示为( )A.2.8×105B.28×103C.0.28×105D.2.8×10411.下列各数:﹣12,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有()个.A.1 B.2 C.3 D.412.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为()A.3 B.2 C.1 D.013.﹣7的相反数是()A.﹣7 B.﹣17C.7 D.114.下列四个数中,最大的数是()A.﹣6 B.﹣2 C.﹣4 D.015.下列正确的是()A.若|a|=|b|,则a=bB.若a2=b2,则a=bC.若a3=b3,则a=bD.若|a|=a,则a>016.已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于()A.2 B.﹣2 C.0 D.﹣617.下列计算结果等于4的是()A.|(﹣9)+(+5)| B.|(+9)﹣(﹣5)| C.|﹣9|+|+5| D.|+9|+|﹣5| 18.125+67+75=67+(125+75)应用了()A.加法交换律B.加法结合律C.加法交换律和加法结合律19.下列计算正确的是()A.2﹣3=﹣1 B.(﹣3)2=﹣9 C.﹣32=﹣6 D.﹣3﹣(﹣2)=﹣5二、解答题20.如果把向东走3km记作+3km,那么﹣2km表示的实际意义是()A.向东走2km B.向西走2km C.向南走2km D.向北走2km 21.计算下列各题:(1)6.4﹣(5.71+0.08)(2)3.7×0.6+6.3×0.6(3)8.24+0.35﹣7.37(4)(4+0.4)×0.2522.高新一中新图书馆在“校园书香四溢”活动中迎来了借书高潮,上周借书记录如下表:(超过100册的部分记为正,少于100册的部分记为负)(1)上星期借书最多的一天比借书最少的一天多借出图书多少册?(2)上星期平均每天借出多少册书?23.计算:(1)﹣22×3+(﹣3)3÷9(2)-22 -2324.一粒米,许多同学都认为微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整块馒头或整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重11.07克.现在请你来计算(可用计算器):(1)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(结果精确到千位)(2)假若我们把一年节约的大米卖成钱,按2.5元/千克计算,可卖得人民币多少元?(结果保留2位有效数字)(3)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(精确到个位)(4)经过以上计算,你有何感想和建议?三、填空题25.若a <﹣1,则a 2_____﹣a .26.比﹣1小﹣2的数是_____.27.计算:﹣32×(﹣1)3=_____.28.数学考试成绩以80分为标准,王老师将某4名同学的成绩简记为+10,0,–8,+18,则这4名同学实际成绩最高的是______分.29.如果收入10元记作+10元,那么﹣4元表示_____.30.如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 是线段AB 的中点,则点C 所表示的数是_______.31.某年一月份,哈尔滨市的平均气温约为20﹣℃,绥化市的平均气温约为23﹣℃,则两地的温差为_____℃.32.若a 、b 互为负倒数,则2ab ﹣5的值为_____.参考答案1.D【解析】【分析】根据相反数的定义和绝对值的意义,绝对值和相反数都等于它本身的数为0.【详解】A.一个数的绝对值等于它本身,这个数是正数或0,故选项A不合题意;B.一个数的绝对值等于它的相反数,这个数一定是负数或0,故选项B不合题意;C.负数绝对值越大,这个数越小,故选项C不合题意;D.两个负数,绝对值大的那个数反而小.正确.故选D.【点睛】本题考查了绝对值和相反数,解决本题的关键是熟记相反数的定义和绝对值的意义,熟知绝对值和相反数都等于它本身的数为0.2.A【解析】【分析】根据有理数加法法则计算即可.【详解】(-5)+(-7)=-(5+7)=-12.故选A.【点睛】本题考查有理数的加法,熟练掌握运算法则是解题关键.3.A【解析】【分析】根据有理数的加法法则计算即可求解.【详解】解:(-180)+(+20)= -(180-20).故选A.【点睛】考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则: 异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.4.A【解析】【分析】根据有理数的乘法法则,先确定出结果的符号,再把绝对值相乘即可【详解】(﹣3)×(﹣4)=12;故选A【点睛】此题考查有理数的乘法,正确把握两数相乘,同号得正,异号得负是解题的关键.5.C【解析】【分析】根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,可得:m>n.【详解】解:根据图示,可得:m>0>n,∴m>n.故选:C.【点睛】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.6.C【解析】【分析】先分别求出a 、b 的值,然后代入a+b 计算即可.【详解】 ∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选:C .【点睛】本题考查了绝对值的意义、相反数的意义及求代数式的值,熟练掌握绝对值和相反数的意义是解答本题的关键. 绝对值等于一个正数的数有2个,它们是互为相反数的关系. 7.B【解析】【分析】直接利用有理数的加减运算法则计算得出答案.【详解】由题意可得,这一天哈尔滨市的最高气温与最低气温的差是:1-(-8)=9(℃). 故选B .【点睛】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.8.D【解析】【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【详解】−12的倒数与m+4互为相反数,得m+4=2,解得m=−2,故选:D.本题考查了倒数与相反数定义。

人教版数学七年级上册第一次月考数学试卷及答案解析

人教版数学七年级上册第一次月考数学试卷及答案解析

人教版数学七年级上册第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7B.和﹣0.333C.﹣(﹣6)和6D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1B.1C.﹣2D.25.|﹣|等于()A.2B.﹣2C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y|C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)=.13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2=.15.若|x+2|+|y﹣3|=0,则xy=.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4)×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6﹣2﹣4+12﹣10+16﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7B.和﹣0.333C.﹣(﹣6)和6D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A符号不同,数也不同,故A不是相反数;B数的绝对值不同,故B不是相反数;C符号相同,故C不是相反数;D只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1B.1C.﹣2D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2B.﹣2C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y|C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)=﹣2.【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2.【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2=﹣3.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy=﹣6.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=9900.【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=110.【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4)×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4)×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6﹣2﹣4+12﹣10+16﹣8(1)根据记录的数据可知该厂星期四生产自行车212辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【考点】绝对值;数轴.【分析】本题应从绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,分别解出答案.【解答】解:(1)数轴上表示2和5两点之间的距离是|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4;(2)根据绝对值的定义有:数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|或|﹣2﹣x|=|x+2|;(3)根据绝对值的定义有:|x﹣1|+|x+3|可表示为点x到1与﹣3两点距离之和,根据几何意义分析可知:当x在﹣3与1之间时,|x﹣1|+|x+3|有最小值4.【点评】本题考查学生的阅读理解能力及知识的迁移能力.。

人教版数学七年级上学期第一次月考数学试卷(含答案)

人教版数学七年级上学期第一次月考数学试卷(含答案)

七年级(上)第一次月考数学试卷一、填空题1.如果盈利700元记为+700元,那么﹣800元表示.2.在数轴上距离原点1.5个单位的点表示的数是.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过,最小不低于.4.用“>”、“<”、“=”号填空:(1)﹣0.02 1;(2)﹣﹣.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是℃.7.化简:﹣|﹣|= ,﹣(﹣2.3)= .8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= .9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2=.10.若|x﹣2|与(y+3)2互为相反数,则x+y= .二、选择题11.当|x|=﹣x时,则x一定是()A.负数 B.正数 C.负数或0 D.012.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+616.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.717.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和018.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ …}非正数集合{ …}负分数集合{ …}有理数集合{ …}.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = .(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .七年级(上)第一次月考数学试卷参考答案与试题解析一、填空题1.如果盈利700元记为+700元,那么﹣800元表示亏损800元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利700元记为+700元,∴﹣800元表示亏损800元.故答案为:亏损800元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在数轴上距离原点1.5个单位的点表示的数是±1.5 .【考点】数轴.【分析】在数轴上距离原点1.5个单位的点表示的数有两个:分别是﹣1.5、1.5.【解答】解:在数轴上距离原点1.5个单位的点表示的数是:±1.5;故答案为:±1.5.【点评】本题考查了数轴的有关知识,比较简单,明确所有的有理数都可以用数轴上的点表示,数轴上与原点的距离为a的点有两个,是互为相反数.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8.04 ,最小不低于7.96 .【考点】正数和负数.【分析】根据正数与负数表示相反意义的量得到8±0.04(m)的含义为最大不超过8+0.04m,最小不超过8﹣0.04m,然后回答问题.【解答】解:零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8+0.04=8.04m,最小不低于8﹣0.04=7.96m,故答案为8.04;7.96.【点评】本题考查了正数和负数:用正数与负数表示相反意义的量,此题基础题,比较简单.4.用“>”、“<”、“=”号填空:(1)﹣0.02 < 1;(2)﹣<﹣.【考点】有理数大小比较.【分析】(1)根据正数大于负数,可得答案;(2)根据两负数比较大小,绝对值大的反而小,可得答案.【解答】解:(1)﹣0.02<1;(2),﹣,故答案为:<,<.【点评】本题考查了有理数比较大小,(1)正数大于负数,(2)先比较绝对值,再比较两负数的大小.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,﹣,…【考点】规律型:数字的变化类.【专题】规律型.【分析】分子是从1开始的连续奇数,分母是相应序数的平方,并且正、负相间,然后写出即可.【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣.【点评】本题是对数字变化规律的考查,确定从分子、分母和正反情况三个方面考虑求解是解题的关键.6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是 6 ℃.【考点】有理数的加减混合运算.【专题】计算题.【分析】根据有理数的加减混合运算的运算方法,用南通市某天上午的温度加上中午又上升的温度,再减去夜间又下降的温度,求出这天夜间的温度是多少即可.【解答】解:8+5﹣7=13﹣7=6(℃)答:这天夜间的温度是6℃.故答案为:6.【点评】此题主要考查了有理数的加减混合运算,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.7.化简:﹣|﹣|= ﹣,﹣(﹣2.3)= 2.3 .【考点】绝对值;相反数.【专题】推理填空题.【分析】根据绝对值的含义和求法,以及相反数的含义和求法,逐一求解即可.【解答】解:﹣|﹣|=﹣,﹣(﹣2.3)=2.3.故答案为:﹣、2.3.【点评】此题主要考查了绝对值的含义和应用,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= 1.5 .【考点】代数式求值.【分析】依据互为相反数的两数之和为0可知a+b=0,互为倒数的两数的乘积为1求解即可.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=1.5×1+0=1.5,故答案为:1.5.【点评】本题主要考查的是求代数式的值,掌握倒数的定义和互为相反数的两数之和为0是解题的关键.9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2= 1 .【考点】实数的运算.【专题】计算题;新定义;实数.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:﹣3☆2=4﹣3=1.故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.若|x﹣2|与(y+3)2互为相反数,则x+y= ﹣1 .【考点】相反数;非负数的性质:绝对值;非负数的性质:偶次方.【专题】常规题型.【分析】根据相反数的定义列式,然后根据非负数的性质列式求出x、y的值,再代入进行计算即可得解.【解答】解:∵|x﹣2|与(y+3)2互为相反数,∴|x﹣2|+(y+3)2=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了相反数的定义,绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、选择题11.当|x|=﹣x时,则x一定是()A.负数 B.正数 C.负数或0 D.0【考点】绝对值.【分析】根据绝对值的意义得到x≤0.【解答】解:∵|x|=﹣x,∴x≤0.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.12.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b【考点】有理数大小比较;数轴.【分析】根据数轴和相反数比较即可.【解答】解:因为从数轴可知:a<0<b,|a|>|b|,所以a<﹣b<b<﹣a,故选B.【点评】本题考查了数轴,相反数的,有理数的大小比较的应用,能根据数轴得出﹣a和﹣b的位置是解此题的关键.13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个【考点】有理数大小比较;绝对值.【分析】根据绝对值的意义,可得答案.【解答】解:绝对值小于3.5的整数﹣3,﹣2,﹣1,0,1,2,3,故选:C.【点评】本题考查了有理数比较大小,到原点的距离小于3.5的整数.14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等【考点】绝对值;有理数.【分析】根据绝对值的性质、整数的定义、正数和负数的定义,对A、B、C、D四个选项进行一一判断,从而求解.【解答】解:A、∵﹣1是整数,但﹣1<0,故A错误;B、∵|a|=|﹣a|,∴互为相反数的两个数的绝对值相等,故B正确;C、∵0也是有理数,故C错误;D、∵|﹣1|=|1|,但﹣1≠1,故D错误;【点评】此题主要考查整数的定义、正数和负数的定义及绝对值的性质,当a>0时,|a|=a;当a ≤0时,|a|=﹣a,是一道基础题.15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+6【考点】绝对值;数轴.【分析】绝对值相等的两个数只有两种情况,相等或互为相反数,因为绝对值相等的两个数在数轴上对应的两个点的距离为6,所以这两个数是互为相反数的,可求得为±3.【解答】解:由题意可得,这两个数是互为相反数的,因为两个数在数轴上对应的两个点的距离为6,从而求得这两个数为±3.答案:B.【点评】考查了绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离),要求熟悉绝对值定义和数轴上数的规律.16.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.7【考点】有理数大小比较.【分析】根据有理数的大小比较法则求出﹣6.1和1之间的整数即可.【解答】解:比﹣5.1大,而比1小的整数有﹣5,﹣4,﹣3,﹣2,﹣1,0,共6个.故选:C.【点评】本题考查了有理数的大小比较法则的应用,能求出所有的整数是解此题的关键,题目比较好,难度不大.17.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选C.【点评】本题考查的是倒数的定义,解答此题时要熟知0没有倒数这一关键知识.18.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|【考点】绝对值;相反数.【分析】分别化简各选项即可判断.【解答】解:A、﹣(﹣1.2)=1.2≠﹣1.2,此选项错误;B、+(﹣1.2)=﹣1.2,﹣(﹣1.2)=1.2,此选项错误;C、﹣(﹣1.2)=1.2,|﹣1.2|=1.2,此选项正确;D、﹣(﹣1.2)=1.2,﹣|﹣1.2|=﹣1.2,此选项错误,故选:C.【点评】本题主要考查相反数和绝对值,掌握相反数的表示方法及绝对值是解题的关键.19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz【考点】非负数的性质:绝对值;代数式求值.【分析】本题可根据非负数的性质解出x、y、z的值,再把x、y、z的值代入(x+1)(y﹣2)(z+3)中求解即可.【解答】解:∵|x﹣1|+|y+2|+|z﹣3|=0,∴x﹣1=0,y+2=0,z﹣3=0,解得x=1,y=﹣2,z=3.∴(x+1)(y﹣2)(z+3)=﹣48.故选B.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②【考点】相反数.【专题】探究型.【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①∵只有符号不同的两个数叫做互为相反数,∴若a、b互为相反数,则a+b=0,故本小题正确;②∵a+b=0,∴a=﹣b,∴a、b互为相反数,故本小题正确;③∵0的相反数是0,∴若a=b=0时,﹣无意义,故本小题错误;④∵=﹣1,∴a=﹣b,∴a、b互为相反数,故本小题正确.故选C.【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0.三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ +5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{ ﹣2.04,﹣…}有理数集合{ +5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…}.【考点】有理数;绝对值.【分析】根据大于零的整数是正整数,小于或等于零的数是非正数,小于零的分数是负分数,有限小数或无限循环小数是有理数,可得答案.【解答】解:正整数集合{+5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{﹣2.04,﹣…}有理数集合{+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…};故答案为:+5,﹣(﹣7);0,﹣2.04,﹣|﹣1|,﹣;﹣2.04,﹣;+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0..【点评】本题考查了有理数,利用有理数的分类是解题关键,注意不能重复,也不能遗漏.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.【考点】有理数大小比较;数轴.【分析】先画出数轴并在数轴上表示出各数,再按照数轴的特点从左到右用小于号把各数连接起来.【解答】解:画出数轴并在数轴上表示出各数:按照数轴的特点用小于号从左到右把各数连接起来为:【点评】本题考查的是有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算括号中的运算,再从左到右依次计算即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式被除数与除数换过,求出倒数,即可确定出原式的值;(7)原式利用减法法则变形,计算即可得到结果.【解答】解:(1)原式=6﹣6.25++﹣﹣=﹣;(2)原式=﹣×﹣×+×=﹣×(+﹣1)=﹣×=﹣;(3)原式=﹣14﹣40+18=﹣36;(4)原式=×(﹣)××=﹣;(5)原式=+2.5+1﹣2+1=﹣0.5;(6)∵(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,∴原式=﹣;(7)原式=﹣4.3﹣3.2+2.2﹣15.7=﹣23.2+2.2=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = ﹣.(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .【考点】规律型:数字的变化类.【专题】推理填空题.【分析】(1)观察题目所给等式,总结隐含的恒等变换,直接写出所求等式.(2)利用等式: =﹣将相邻两个正整数的积的倒数写成它们的倒数的差,然后计算出结果即可.【解答】解:(1)∵﹣=﹣=∴=﹣(2)①+++…+=1﹣+﹣+﹣+…+﹣=1﹣=②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=故答案为:(1)﹣;(2)①;②【点评】本题考查了数字的变化规律问题,解题的关键是能够总结出题目隐含的数字变换规律并加以运用七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.25.|﹣|等于()A.2 B.﹣2 C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)= .13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2= .15.若|x+2|+|y﹣3|=0,则xy= .16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= .17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= .三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选 D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A 符号不同,数也不同,故A不是相反数;B 数的绝对值不同,故B不是相反数;C 符号相同,故C不是相反数;D 只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2 B.﹣2 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)= ﹣2 .【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2 .【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2= ﹣3 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy= ﹣6 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= 9900 .【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= 110 .【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4 )×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车212 辆;(2)产量最多的一天比产量最少的一天多生产自行车26 辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.。

七年级数学(上册)第一次月考试卷(含答案)

七年级数学(上册)第一次月考试卷(含答案)

···10···2a -2-1·b 七年级数学(上册)第一次月考试卷(含答案)一、选择题:(30分)1、2015的相反数是( )A. -2015B. 2015C. 20151-D. 20151 2、已知5=m ,2=n ,m n n m -=-,则m+n 的值是( )A. -7;B. -3;C. -7或-3D. 7或-7或3或-33、数ab 在数轴上的位置如图,下列各式正确的是( )A. a+b >0B. a b >0C. ∣a ∣+b <0D. a -b >04、某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A. -10℃B. 10℃C. 14℃D. -14℃5、)21(2-⨯的结果是( ) A. -4 B. -1 C. 41- D. 23 6、在2.5,-2.5,0,3这四个数中,最小的数是( )A. 2.5B. -2.5C. 0D. 37、计算:(-2)2-(-2)3的结果是( ) A. -4 B. 12 C. 2 D. 48、某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )A. 33B. 35C. 37D. 399、数轴上表示整数的点称为整点,一数轴规定单位长度为1cm ,若在这条数轴上任意画出一条10cm 长的线段AB ,则线段AB 盖住的整点有( )A. 8个或9个B. 9个或10个C. 10个或11个D. 11个或12个10、计算:(-3)3+52-(-2)2的值是( )A. 2B. 5C. -3D. -6二、填空题(24分)11、在第三届中国国际矿物宝石博览会中,我市成交额达32亿元,3200000000用科学记数法表示为 。

12、计算:-2-1= 。

13、某药品说明书上标明药品的保存温度是(20±2) ℃,则该药品在 ℃范围内保存才合适。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)第一次月考数学试题
(时间:90分钟 满分:100分)
一、填空题:(每小题2分,共28分)
1.-5的倒数为 , -5的相反数为 。

2.用正、负数表示:小商店每天亏损20元,一周的利润是 元。

3.化简:-(-5)= ,-|-5|= 。

4.珠穆朗玛峰海拔高度:8848米,吐鲁番盆地海拔高度:-155米,那么珠峰比吐鲁番盆地高 __________ 米。

5.若 | a |=5 ,则a = 。

6.若 a 2
=25 ,则a = 。

7.若 a <0,b >0 ,那么 ab 0 。

( 用 “>、< ”号填空) 8.比较大小:-5 2,-
54 -6
5。

9.某零件的直经尺寸在图纸上是 10 0.05 (mm ),表示这种零件的标准尺寸是 ______
(mm ),合格产品的零件尺寸范围是 (mm )。

10.若 a 、b 互为相反数,c 、d 互为倒数,则(a +b )20 -(c d )20
= 。

11.用四舍五入法把 0.36495 精确到0.01 后得到的近似数为 _____________ ,有 ____________个有效数字。

12.1 米=1000 000 000 纳米=109
纳米,那么 3.2 米 = ____________ 纳米(用科学记数法表示)。

13.若 | a|<2 ,且a 是整数,那么a = 。

14.观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=16=4 2
,1+3+5+7
+9=25=5 2
,…… 猜想:(1) 1+3+5+7…+99 = ;
(2) 1+3+5+7+…+(2n-1)= _____________ . (结果用含n 的式子表示,其中n =1,2,3,……)。

二、选择题:(每小题2分,共20分)
1.若向东记为正,向西记为负,那么向东走3米,再向西走-3米,结果是( )
A.回到原地
B.向西走3米
C.向东走6米
D.向东走6米 。

2.一个数的倒数等于它本身的数是( )
A. 1
B. -1
C. ±1
D. ±1 和 0 3.下列各式计算正确的是( )
A. -3 2 =- 6;
B. (-3)2 =-9;
C. -3 2 = -9;
D. -(-3)2
= 9 4.在下列数:-(-
21),-42,-|-9|,7
22,(-1)2004
, 0 中,正数有a 个,负数有b 个,正整数有c 个,负整数有d 个,则 a +b +c +d 的值为( )
A .8 B.9 C.10 D.11 5.根据统计,北京支持申奥的市民约1299万人,保留两个有效数字约为( )万人
A. 1.3×103
B. 1300
C. 1.30×103
D. 0.130×103
6.下列说法中: 不正确...的是( ) A. 只有符号不同的两个数互为相反数;
B. 在数轴上,互为相反数的两数到原点的距离相等
C. 互为相反数的两数的和为零
D. 零没有相反数 7.若 a 是有理数, 则 4a 与 3a 的大小关系是( )
A .4a > 3a B.4a = 3a C.4a < 3a D.不能确定 8.下列各对数中互为相反数的是( )
A. 3 2 与-2 3 ;
B.-2 3 与(-2 )3;
C.-3 2 与(-3)2;
D. -2×3 2与(2 ×3)2
9.如果 | a|=a ,则 ( )
A. a 是正数;
B. a 是负数;
C. a 是零;
D. a 是正数或零 10.若 ab > 0 ,且 a + b < 0 ,那么( )
A.a >0,b >0;
B.a >0,b <0;
C. a <0 ,b <0;
D. a <0,b >0 三、解答题:(每小题 4 分,共 16 分)
1.在数轴上表示下列各数,并按从小到大的顺序用“ < ”把这些数连结起来。

3.5 ,-3.5 ,0 , 2 ,-2 ,-3
1
, 0.5
2.(1)将下列各数填入相应的圈内: 2
2
1
,5 , 0 ,1.5 ,+2 ,-3 。

正数集合 整数集合
(2 )说出这两个圈的重叠部分表示的是什么数的集合: 。

3.某公司去年 1~3月平均每月亏损 1.5 万元,4~6 月平均每月赢利 2 万元,7~10 月平均每月赢利 1.7 万元,11~12 月平均每月亏损 2.3 万元,问:这个公司去年总的盈、亏情况如何?
4.已知 :a =-2,b =-
4
3,c = -1.5,求 :a 2
-( 8b -2c )÷b 的值 。

四、计算题:(每小题 4 分,共 16 分 ) (1)(1-61+43)×(-48); (2) -1 2 -(-10)÷2
1×2 +(-4)3
; (3)|-97|÷|32-51| -3
1×(-4)2
(4)-1
-[ 2 -(1-3
1×0.5)] ×[3 2-(-2)2
]
五、(5分)如图是一个正方体纸盒的两个表面展开图,请把-8 ,5 ,8 ,-2 ,-5 ,
2 分别填入六个正方形中,使得折成正方体后,相对面上的两数互为相反数。

六、(5分)每四年一届的世届杯足球赛,共有32 支球队分成 8 个小组进行小组赛,每小组的前两名进入16 强。

比赛的规则是:(1)胜一场得 3 分,平一场得 1 分,负一场得 0 分;(2)根据积分的多少确定名次,若积分相同,则比净胜球的多少确定。

假如下表是某一小组的比赛结果,请填写下表,确定出四个队的小组名次。

七、(5分)出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6 (1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出车时的出发地有多远?
(2)若汽车耗油量为0.41升/千米,这天下午小李共耗油多少升?
八、(5分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原
)根据记录可知前三天共生产辆;
(2)产量最多的一天比产量最少的一天多生产辆;
(3)该厂实行计件工资制,每辆车 60 元,超额完成任务每辆奖 15 元,少生产一辆扣 15 元,那么该厂工人这一周的工资总额是多少?
九、选做题:(不计入总分,但有时间都应该做):股民小胡上星期五以每股13.10元的价格买进某种股票1000股,该股票的涨跌情况如下表(单位:元)
(1)星期五收盘时,每股是元;
(2)本周内最高价是每股元,最低价是每股元;
(3)已知小胡买进股票时付了3‟得手续费,卖出时需付成交额3‟的手续费和2‟的交易税,如果小胡在星期五收盘前将全部股票卖出,他的收益情况如何?
一、 1.-
1
5
,5; 2.-140; 3.5,-5; 4.9003; 5. 5±; 6. 5±; 7.<; 8.<,>; 9.10,9.95~10.5; 10.-1; 11.0.36,2; 12. 9
3.210⨯; 13.0,1,-1; 1
4.2500,n 2
. 二、CCCAA,DDCDC. 三、 1.-3.5<-2<-1
3
<0<0.5<2<3.5 2. (1)
(2)正整数。

3.3.7万元 4.0 四、
(1)-76; (2)-25; (3)113-; (4)416
-。

五、
8
2
-5-2
5
-88
2
-5-25-8
七、
(1)39千米;(2)26.65升。

八、(1)599;(2)26;(3)84135元。

九、(1)13.05; (2)12.75; (3)亏154.55元。

相关文档
最新文档