储层敏感性

合集下载

储层敏感性研究

储层敏感性研究

二、外来流体与岩石的相互作用
1. 粘土矿物的水化膨胀 外来流体使地层内一些粘土矿物发生水化、 膨胀,堵塞孔喉。 2. 地层内部微粒迁移
外来流体流动速度及压力波动使地层内部微粒发生 迁移,堵塞孔喉,使渗透率降低,或疏通孔喉,使 渗透率升高。速敏性
3. 酸化过程中的化学沉淀 酸化增产措施中,若配方不合适,或措施不当,酸 化后可发生再沉淀,堵塞孔喉,使渗透率降低。
膨胀后的水敏矿物:蒙脱石、伊蒙混层 胶结不坚固的碎屑微粒:石英、长石等 油层酸化处理后释放的碎屑微粒
3. 流体性质对速敏性的影响
盐度、 PH值、分散剂 低盐度流体: 水敏矿物水化、膨胀和分散,
在较低流速下发生迁移。
高PH值:减弱颗粒与基质间结构力,胶结差的地层微粒
释放到流体中,使地层微粒增加。
(3)油水分层流动的情况
在油流区,水 湿微粒受束缚 水影响被约束 不移动; 在水流区水湿 微粒会移动。
(由于压力波动,一般不形成稳定的桥堵)
(4)混性润湿微粒在油流中的迁移情况
(当储层中的油流动时,微粒位于束缚水与油的油水界面处, 微粒受油的拉力而沿油-水界面运动)
(5)在注入油-水互溶剂时的微粒迁移情况
发生迁移: 堵塞孔隙; 解堵
加入油-水互溶剂时,会使得本来由于润湿性和界面张力 控制而固定的微粒发生迁移作用。相反,发生解堵作用。
三、储层酸敏性
酸化液进入地层后,与地层中的 酸敏矿物发生反应,产生沉淀或释放 微粒,使地层渗透率下降的现象。 酸敏矿物:
HCl: 含铁矿物(绿泥石、铁碳酸盐等) 生成Fe(OH)3 SiO2 HF: 高含钙矿物(如方解石、钙长石、沸石等) CaF2 SiO2
与喉道微粒匹配的微粒 开始移动,形成“桥堵” 速度大,移动微粒数量 骤然增加。

什么叫做储层敏感性

什么叫做储层敏感性

1、什么叫做储层敏感性?储层敏感性包含哪些方面?答:广义概念:油气储层与外来流体发生各种物理或化学作用而使储层孔隙结构和渗透性发生变化的性质,即称为储层的敏感性。

狭义概念:储层与不匹配的外来流体作用后,储层渗透性往往会变差,会不同程度地损害油层,从而导致产能损失或产量下降。

因此,人们又将储层对于各种类型储层损害的敏感性程度,称为储层敏感性。

储层敏感性包含:速敏性、水敏性、盐敏性、酸敏性和碱敏性。

2、简略概述如何评价储层的敏感性?答:储层敏感性评价包括两方面的内容:一是从岩相学分析的角度,评价储层的敏感性矿物特征,研究储层潜在的伤害因素;二是在岩相学分析的基础上,选择代表性的样品,进行敏感性实验,通过测定岩石与各种外来工作液接触前后渗透率的变化,来评价工作液对储层的伤害程度。

3、在注水开发过程中储层的性质会有哪些变化?答:1)储层岩性参数的变化;2)储层物性参数的变化;3)储层孔隙结构参数的变化;4)储层含油性的变化;5)储层渗流参数的变化。

4、储层速敏的机理是什么?开发过程中应注意哪些问题?答:在储层内部,总是不同程度地存在着非常细小的微粒,这些微粒或被牢固地胶结,或呈半固结甚至松散状分布于孔壁和大颗粒之间。

当外来流体流经储层时,这些微粒可在孔隙中迁移,堵塞孔隙喉道,从而造成渗透率下降。

在开发过程中:1)确定油井不发生速敏伤害的临界产量;2)确定注水井不发生速敏伤害的临界注入速率,如果注入速率太小,不能满足配注要求,应考虑增注措施;3)确定各类工作液允许的最大密度。

5、储层水敏的机理是什么?开发过程中应注意哪些问题?答:在储层中,粘土矿物通过阳离子交换作用可与任何天然储层流体达到平衡。

但是,在钻井或注水开采过程中,外来液体会改变孔隙流体的性质并破坏平衡。

当外来液体的矿化度低(如注淡水)时,可膨胀的粘土便发生水化、膨胀,并进一步分散、脱落并迁移,从而减小甚至堵塞孔隙喉道,使渗透率降低,造成储层损害。

注水储层敏感性及其试验方法

注水储层敏感性及其试验方法
二、储层损害的机理
油气储层损害总的来说不外乎在各作业 期间外来流体进入储层与储层中的液体、岩 石表面、所含矿物相互作用或带入的固相微 粒对储层的堵塞等原因造成的。
储层水敏性、盐敏性、速敏性、酸敏性、碱敏性
二、储层损害的机理
• 储层的敏感性是由储层岩石中含有的敏感性矿 物所引起的。敏感性矿物是指储层中与流体接 触易发生物理、化学或物理化学反应,并导致 渗透率大幅下降的一类矿物,它们一般粒径很 小(<20μm),比表面积很大。
影响因素
流体性质的影响
多相流体共存及微粒润湿 性影响
(二)、储层速敏性
1、外来流体速度的影响 减渗速敏现象:储层质量由很差到中等。临界流速Vc •V<Vc:迁移微粒细小、数量少,难于形成稳定“桥 堵”。 •Vc<V<某一定值Vkmin:启动与喉道直径匹配的微粒, 同时迁移微粒量较多,稳定“桥堵”大量形成,致使渗 透率骤然下降。 •V>Vkmin:迁移微粒粒径过大、流速过大,冲击、破坏 “桥堵”,渗透率增加。
(三)、储层酸敏性
盐酸: 酸敏性矿物:含铁高的矿物,包括绿泥石(鲕绿泥石、 蠕绿泥石);绿/蒙混层矿物、海绿石、水化黑云母、 铁方解石;铁白云石、赤铁矿、黄铁矿、菱铁矿等; 反应产物:Fe(OH)3↓、SiO2胶体、 氢氟酸: 酸敏性矿物:含钙高的矿物,方解石、白云石、钙长 石、沸石类(浊沸石、钙沸石、斜钙沸石、片沸石、 辉沸石等) 反应产物:CaF2↓、SiO2胶体
•已存在的“桥堵”由于加 入油-水互溶剂而发生解堵
加入油-水互溶剂,能释放被润湿 力和界面张力而固定的微粒,从 而导致微粒在高浓度溶中的酸敏矿物 发生反应,产生沉淀或释放出微粒,使储层渗透率 下降的现象。 •HCl:碳酸盐岩油层、含碳酸盐胶结物较多的砂岩 油层 •土酸(HCl+HF):碳酸盐含量较低、泥质含量较 高的砂岩油层

10第十章 储层敏感性解析

10第十章 储层敏感性解析

储集层损害是由储集层内部潜在损害因素及 外部条件共同作用的结果。 内部潜在损害因素主要指储集层的岩性、物 性、孔隙结构、敏感性及流体性质等储集层固 有的特性。 外部条件主要指施工作业过程中引起储集层 孔隙结构及物性的变化,使储集层受到损害的 各个外界因素。
一、岩石成分及孔隙结构对储集层损害 的影响 1、敏感性矿物的影响 2、孔隙结构的影响
可能损害地层的几类敏感性矿物
2、孔隙结构的影响
孔隙结构也是影响储集层损害的一个重 要因素,特别是喉道的大小、几何形状对 储集层的伤害最为敏感。
二、外来流体与储集层相互作用导致 储集层的损害
1、外来流体中固相颗粒的侵入
固相颗粒可分为两大类: 一类是为了达到流体某种性质而加入的添加剂;
另一类是混入流体中的矿物或其它杂质的碎屑。
1、敏感性矿物的影响
敏感性矿物的概念
指储集层中与流体接触易发生物理、化学或物理化 学反应并导致渗透率大幅度下降的一类矿物。
常见的敏感性矿物可分为水敏性矿物、酸敏性矿物 、碱敏性矿物、盐敏性矿物及速敏性矿物。矿物当与水溶液作用时,将产生晶 格膨胀或分散破碎,从而堵塞孔隙或喉道,使储集层 渗透率下降,此类矿物称之为水敏性矿物,通常具有 阳离子交换容量大的特点。
2、储集层内部颗粒运移
储集层中的细小矿物颗粒在外来流体的流速过大或 存在压力激烈波动时,在流体冲刷作用下,未胶结或胶 结疏松的颗粒发生运移,至狭窄的喉道处,形成堵塞。 有时还会形成“油井出砂”。
3、储集层内部化学沉淀或结垢
外来流体与组成储集岩的矿物或储集岩中流体相接 触时,在地层条件下,经物理、化学、生物作用,将在 孔隙壁上形成化学沉淀或结垢,使孔隙缩小、吼道堵塞 ,储集层物性变差。 乳化物、有机结垢、无机结垢、某些化 学沉淀物

储层地质学

储层地质学

第八章储层敏感性油气储层中普通存在着粘土和碳酸盐等矿物。

在油田勘探开发过程中的各个施工环节——钻井、固井、完井、射孔、修井、注水、酸化、压裂直到三次采油过程,储层都会与外来流体以及它所携带的固体微粒接触。

如果外来流体与储层矿物和流体不匹配,会发生各种物理化学作用,导致储层渗流能力下降,从而在不同程度上损害了油气储层的生产能力,甚至不能发现或产出油气。

油气储层与外来流体发生各种物理或化学作用而使储层孔隙结构和渗透性发生变化的性质,即称为储层的敏感性。

这是广义的储层敏感性的概念。

储层与不匹配的外来流体作用后,储层渗透性往往会变差,会不同程度地损害油层,从而导致产能损失或产量下降。

因此,人们又将储层对于各种类型地层损害的敏感性程度,称为储层敏感性。

为了保护油气储层,充分发挥其潜力,必须充分认识储层,了解储层敏感性机理,进行各种敏感性评价。

第一节储层损害的原因与类型几乎所有井的油层都会受到不同程度的损害。

储层损害的类型很多,专家学者从不同的角度对储层损害的类型作了不同方式的归纳(Basan,1985;keysey,1986;Amaefule等,1988;Alegve,1989;张绍槐等,1993)。

储层伤害的内因是储层本身的岩石性质、孔隙结构及流体性质,它是储层本身的固有特性,是储层伤害的客观条件和潜在可能性。

储层伤害的外因是各种工作液的固相和液相性质以及井下作业造成的压差、温度、作用时间等,它是破坏储层原始物理的、化学的、热动力学和水动力学平衡状态的因素。

储层内因和外因的综合作用便导致了储层的损害。

根据储层损害的原因,可将储层损害分为以下四种因素十种类型(表8—1)。

一、外来颗粒的侵入外来流体携带的颗粒进入储层后可能导致储层伤害,包括二种损害类型,其一为外来固相颗粒的侵入和堵塞,其二为外来微粒的侵入和堵塞。

1.外来固相颗粒的侵入和堵塞钻井液、完井液等各种工作液以及压井流体和注入流体往往含有二种固相颗粒:一类是为保持工作液密度、粘度和流变性等而添加的有用颗粒及排堵剂、暂堵剂等,另一类是有害颗粒及杂质甚至岩屑、砂子等固相物质及固相污染物质。

储层敏感性研究

储层敏感性研究

无微粒运动:<0.05 有微粒运动0.05-0.25 中等0.25-0.5 严重>0.5
6. 体积流量评价试验
(流体低于临界流速,考察胶结物的稳定性)
体积敏感指数: Iq = (KL - KLp)/ KL
Iq :体积敏感指数; KL :用标准盐水或地层水测定的渗透率; KLp :用工作液测定的渗透率。
第三节 储层敏感性评价
潜在敏感性分析 岩心流动试验与储层敏感性评价 储层性质动态变化的空间规律研究
一、潜在敏感性分析
1. 储层岩石基本性质的实验分析 岩石薄片鉴定:提供基本性质 X衍射分析:鉴定微小矿物 扫描电镜分析:确定粘土矿物和胶结物类型 粒度分析:并非所有粒度都运动 常规物性分析:选择合适储层进行专项实验 毛管压力分析:获取孔隙结构参数
2. 水敏性流动实验与评价
水敏指数: Iw = (KL- K*w)/ KL
Iw :水敏指数; KL :岩样水化膨胀前的液体渗透率, 通常用标准盐水测得的渗透率; K*w :去离子水(或蒸馏水)测得的渗透率
3. 盐敏性流动实验与评价
临 界 盐 度
(Sc)
临界盐度越大,盐敏性越强
4. 酸敏性实验与评价
2. 流体(成分)分析
地层水、注入水、射孔液、泥浆滤液
3. 水敏性预分析
粘土膨胀实验 阳离子交换实验 测定膨胀率 测定阳离子交换容量
4. 酸敏性预分析
酸溶分析:酸溶失率,检验酸-岩反应过程中是否存在 产生二次沉淀的可能性。 浸泡观察:盐酸、土酸、氯化钾溶液、蒸馏水浸泡
二、岩心流动试验与储层敏感性评价
与喉道微粒匹配的微粒 开始移动,形成“桥堵” 速度大,移动微粒数量 骤然增加。
临 界 速 度
高速流体冲击“桥塞” , 并使微粒带出岩石, 导致渗透率增大。

煤层气储层敏感性实验研究

煤层气储层敏感性实验研究

煤层气储层敏感性实验研究一、本文概述随着能源需求的日益增长,煤层气作为一种清洁、高效的能源,其开发利用受到了广泛关注。

然而,在煤层气储层开发过程中,储层敏感性问题常常会对开发效果产生重要影响。

本文旨在对煤层气储层的敏感性进行系统的实验研究,分析不同因素对储层敏感性的影响,为煤层气储层的合理开发提供理论支持和实践指导。

本文首先介绍了煤层气储层敏感性的基本概念和研究意义,阐述了储层敏感性对煤层气开发的影响。

接着,详细描述了实验材料、实验方法以及实验过程,包括实验设备、实验步骤、实验条件等。

在实验结果分析部分,本文将通过实验数据,对储层敏感性进行定量评估,并深入探讨不同因素对储层敏感性的影响机制。

本文总结了实验研究的主要结论,提出了针对性的建议,以期为我国煤层气储层的合理开发提供有益的参考。

通过本文的实验研究,旨在深入理解煤层气储层的敏感性特征,揭示储层敏感性对煤层气开发的影响规律,为煤层气储层的科学开发提供理论支撑和实践指导。

本文的研究结果也可为其他类似储层的敏感性研究提供借鉴和参考。

二、煤层气储层敏感性实验研究方法煤层气储层敏感性实验研究是评估煤层气储层对各种外部因素(如压力、温度、化学处理等)响应程度的关键手段。

本研究采用了一系列实验方法,系统地探讨了煤层气储层的敏感性特征。

我们采用了渗透率测试技术,通过改变储层压力、温度等条件,实时监测渗透率的变化情况。

这一技术能够直观反映储层在外部条件变化下的渗透性能,是评估储层敏感性的重要指标之一。

为了深入研究储层敏感性机理,我们采用了扫描电子显微镜(SEM)和射线衍射(RD)等微观分析手段。

这些技术能够揭示储层微观结构的变化,包括孔隙结构、矿物成分等,从而深入理解储层敏感性的内在原因。

我们还采用了化学处理实验,通过模拟储层中可能遇到的化学环境(如酸碱溶液、氧化剂等),研究储层对这些化学因素的响应情况。

这一方法有助于评估储层在开采过程中的稳定性,预测潜在的风险因素。

第024章:储层敏感性及其评价

第024章:储层敏感性及其评价
四、 储层敏感性 及其评价技术
储层敏感性
油气储层与外来流体发生各种物理或 化学作用而使储层孔隙结构和渗透性 发生变化的性质
(一) 储层损害的原因和类型
外来颗粒的侵入和堵塞 外来固相颗粒的侵入和堵塞 外来微粒的侵入和堵塞 外来流体与岩石的相互作用 粘土矿物的水化膨胀 地层内部微粒迁移 酸化过程中的化学沉淀 外来流体与储层流体的不配伍性 乳化堵塞 无机结垢 有机结垢 铁锈与腐蚀产物的堵塞 微生物作用 细菌堵塞
(二) 储层敏感性机理
储层的水敏性 储层速敏性 储层酸敏性
1、储层水敏性
(1) 概念 当与地层不配伍的外来流体进入地层 后,引起粘土矿物的水化、膨胀、分散、 迁移,从而导致渗透率下降的现象
(2) 粘土矿物的膨胀性 水敏性矿物:蒙脱石、伊蒙混层 (3) 外来流体性质与临界盐度
2、储层速敏性
(1)概念 储层因外来流体流动速度的变化引 起地层内部微粒迁移,堵塞喉道,造成 渗透率下降的现象。
(2)水敏性流动实验与评价
水敏指数: Iw = (KL- K*w)/ KL
(3)盐敏性流动实验与评价
(4)酸敏性实验与评价
酸敏指数: Ia = (Kw - Kwa)/ Kw
(5) 正反向流动试验
运移敏感指数:
Im = (Kmax - Kmin)/ K反
(6) 体积流量评价试验
(胶结物的稳定性)
(2)速敏矿物与地层微粒
储层中的速敏矿物:高岭石、毛发状伊利石 膨胀后的水敏矿物:蒙脱石、伊蒙混层 胶结不坚固的碎屑微粒 油层酸化处理后释放的碎屑微粒
(3)流体性质对速敏性的影响
低盐度:水敏矿物膨胀 高PH值:使地层微粒增加 分散剂:释放地层微粒
3、储层酸敏性
酸化液进入地层后,与地层中的 酸敏矿物发生反应,产生沉淀或释放 微粒,使地层渗透率下降的现象。 酸敏矿物:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微孔隙堵塞 酸敏 K2SiF6↓
速敏性 酸敏 Al(OH)3↓ 酸敏 Fe(OH)3↓ 酸敏 MgF2↓ 水敏性 速敏性 酸敏性 酸敏 Fe(OH)3↓ 硫化物沉淀 酸敏 CaF2↓
酸敏 CaF2↓ 酸敏 速敏
敏感性 程度
3 2 2
2 2 1
3 2
3 2 2 2 1
2 1 2
1 1 2
敏感性产生条件 淡水系统 淡水系统、较高流速 酸化作业 高流速 淡水系统 HF 酸化 高流速、PH 值、瞬变压力 酸化作业
(2)浸泡观察 岩样浸泡液:盐酸、土酸、氯化钾溶液和蒸馏水 观察现象: •是否有颗粒胶结或骨架坍塌等现象 •浸泡前后岩样表面的显微变化
二、岩心流动实验与储层敏感性评价
1、速敏性流动试验与评价 •渗透率伤害率
DK

K L K LA KL
Dk:渗透率伤害率 KL KLA
渗透率伤害程度与渗透率伤害率的关系(据姜德全等,1994)
2、水敏性流动实验与评价(驱替速度低于临界流速)
水敏指数:
IW

KL KW KL
Iw
KL K*w:去离子水(或蒸镏水)
水敏性强度与水敏指数关系(据姜德全等,1994):
无水敏
Iw≤0.05
弱水敏 0.05<Iw≤0.30
★★
第二节 储层敏感性机理
储层水敏性、盐敏性、速敏性、酸敏性、碱敏性
一、储层水敏性 概念:当与地层不配伍的外来流体进入地层后,引起粘土矿 物水化、膨胀、分散、迁移,从而导致渗透率不同程度地下 降的现象。
1、粘土矿物的膨胀性
特征 高岭石 伊利石 蒙脱石 绿泥石 伊/蒙混层
阳离子交换 mg/100g 3~15 10~40 76~150 0~40
影响因素:
•层间阳离子交换能力:交换能力强→膨胀能力强 •层间阳离子种类:Ca2+、Na+―有膨胀性(离子半径小)
•外来流体性质:高浓度盐水―膨胀性很弱,淡水―膨胀性极强 临界盐度:盐度>临界盐度:渗透率变化不大
盐度<临界盐度:盐度下降,渗透率大幅度减小
二、储层速敏性 概念:因外来流体流动速度的变化引起地层内微粒迁移,堵 塞喉道,造成渗透率下降的现象。
1、外来流体速度的影响 减渗速敏现象:储层质量―很差到中等。临界流速Vc •V<Vc:迁移微粒细小、数量少,难于形成稳定“桥堵”。 •Vc<V<某一定值Vkmin:启动与喉道直径匹配的微粒,同时迁移微
粒量较多,稳定“桥堵”大量形成,致使渗透率骤然下降。
•V>Vkmin:迁移微粒粒径过大、流速过大,冲击、破坏“桥堵”,渗透率
特点: 侵入深度大,堵塞孔喉,降低渗透率,损害储层。 •泥浆滤液:深度可达2~6米。影响因素有:
压差、浸泡时间、泥饼质量、失水速度、渗透率。 •注入流体:如开发中的注入水,可侵入地层深处。
二、外来流体与岩石的相互作用 1、粘土矿物膨胀 储层水敏性:易水敏的矿物主要有:蒙脱石、伊/蒙混层矿 物等。 2、地层内部微粒迁移 储层速敏性:易速敏的矿物主要有:高岭石、伊利石、微
(2)X衍射分析 鉴定微小的粘土矿物,测定其相对和绝对含量:
•蒙脱石 •伊利石 •高岭石 •绿泥石 •伊/蒙混层
•绿/蒙混层
(3)扫描电镜分析 •粘土矿物及其它胶结物:类型、形状、产状、分布 •岩石孔隙结构:特别是喉道大小、形态及喉道壁特征 •孔隙结构与颗粒、充填物之间的空间联系 • 粘土矿物水化前后的膨胀特征 •电子探针:了解岩样化学成分、含铁矿物含量及位置
三、储层酸敏性 概念:指酸化液进入地层后,与地层中的酸敏矿物发生反应, 产生沉淀或释放出微粒,使储层渗透率下降的现象。 •HCl:碳酸盐岩油层、含碳酸盐胶结物较多的砂岩油层 •土酸(HCl+HF):碳酸盐含量较低、泥质含量较高的砂 岩油层
•盐酸:
酸敏性矿物:含铁高的矿物,包括绿泥石、绿/蒙混层矿物、海绿石、水 化黑云母、铁方解石、铁白云石、赤铁矿、黄铁矿、菱铁矿等 反应产物:Fe(OH)3↓、SiO2胶体、
地层内部微粒迁移 酸化过程中的化学沉淀
乳化堵塞 无机结垢 有机结垢 铁锈与腐蚀产物的堵塞 细菌堵塞
一、外来颗粒侵入 •外来固相颗粒的侵入和堵塞 •外来微粒的侵入和堵塞
1、外来固相颗粒的侵入和堵塞
•有用颗粒:如排堵剂、暂堵剂等,为保持工作液密度、粘度和流变性 等而添加的颗粒。 •有害颗粒:杂质、岩屑、砂子固相污染物质等。
(4)粒度分析 原因:未胶结或胶结差的细粒→外来液体→冲散、运移
分析方法: •较疏松碎屑岩―筛析法、沉降法 •泥质外的胶结物―
(5)常规物性分析 岩石孔隙度、渗透率、流体饱和度 低孔、
(6)毛管压力测定 Barkman & Davidson研究成果(1975): 孔隙结构越差↑→储层损害↑
2、流体分析 分析不同流体化学成分,预测化学结垢的可能性 流体种类: 地层流体―地层水 外来流体―注入水、工作液(泥浆滤液、射孔液等)
(3)油水分层流动 •油流区:水湿微粒受束缚水约束,不 能流动 •水流区:水湿微粒发生流动 多相流体引起压力波动→微粒扰动: 不易形成稳定“桥堵”
(4)混性润湿微粒在油流中 在油流的拉力下,微粒沿油-水界面 运动
(5)注入某些油-水溶剂(表面活性剂)时 两种效应: •使原来被润湿性和界面张力控制的微粒发生运移→“桥堵” •已存在的“桥堵”由于加入油-
膨胀性 无 很弱 强 弱 较强
m2/cm3 8.8 39.6 34.9 14
39.6~34.9
相对溶解度
盐酸 氢氟酸
轻微
轻微
Hale Waihona Puke 轻微 轻微至中等轻微
中等


变化
变化
膨胀机理:
•第一阶段
粘土表面水合能→发生渗透效应,吸附水→外表面水化膨胀→水膜→膨胀。可 逆化学反应
•第二阶段
液体中阳离子交换和层间内表面电特性作用→水分子进入可扩张晶格的粘土单 元层之间→层间内表面水化→层间膨胀:体积膨胀率有时可达100倍以上。不可 逆化学反应
(2)阳离子交换实验 粘土矿物与地层水之间进行离子交换→矿物膨胀 离子交换能力依次降低:蒙脱石→伊利石→绿泥石→高岭石 影响因素: •粘土矿物种类、结晶程度、有效粒级 •粘土矿物及水溶液的离子化学性质,以及体系的PH值
水敏性分析指标(据姜德全等,1994)
水敏性程度
弱 中 强
水敏粘土含量 %
0~10 10~20 >20
•氢氟酸:
酸敏性矿物:含钙高的矿物,方解石、白云石、钙长石
沸石类(浊沸石、钙沸石、斜钙沸石、片沸石、辉沸石等)
储层矿物与敏感性分析表(据姜德全等,1994,有修改)
敏感性矿物 蒙脱石
伊利石
高岭石
绿泥石 混层粘土
含铁矿物 方解石 白云石 沸石类 钙长石 非胶结微粒: 石英、长石
潜在敏感性
水敏性 速敏性 酸敏性

Dk≥0.70
中等偏强 0.70>Dk≥0.50
中等偏弱 0.50>Dk>0.30
弱 0.30≥Dk>0.05

Dk≤0.05
•速敏强度
IV

DK
c
Iv:速敏指数
Dk:渗透率伤害率 Vc:临界流速
速敏强度与速敏指数的关系
强速敏 中等偏强速敏 中等偏强速敏
弱速敏 无速敏
Iv≥0.70 0.70>Iv≥0.25 0.25>Iv>0.10 Iv≤0.10 Iv ≤0.05
3、水敏性预分析
(1)岩石的膨胀试验 测定方法:样品―一定量通过100目筛网的粉碎岩样 •量筒法:比较简单。将粉碎岩样放入量筒,注入液体(水、处 理剂溶液或泥浆滤液等),定时记录岩样体积,直到膨胀达到 平衡,求出样品膨胀率。
•膨胀仪法:将样品在膨胀仪的样品测量室中压实后,注入液 体,通过千分表或传感器记录样品的线膨胀或体膨胀率,记 录并绘制膨胀动力学曲线。
注:3―强;2―中;1―较弱
第三节 储层敏感性评价
一、潜在敏感性分析
1、岩石基本性质实验分析 测试项目:岩石薄片鉴定、X衍射分析、毛管压力测定、粒 度分析、阳离子交换试验等。
(1)岩石薄片鉴定 岩石最基本性质、敏感性矿物的存在与分布。鉴定内容: •碎屑颗粒、胶结物 •自生矿物和重矿物 •生物或生物碎屑 •含油情况 •
膨胀率 %
0~3 3~10 >10
阳离子交换量 mg/100g 0~1.4 1.4~4 >4
4、酸敏性预分析
(1)酸溶分析
-岩反应中是否产生二次沉淀
分析参数:
酸溶失率,碳酸盐含量,钙、镁、铁离子含量
RW
WO W WO
Rw:酸溶失率,% Wo:酸溶前岩样重量,g W:酸溶后岩样重量,g
影响因素
不同类型储层损害程度:
•低孔、低渗砂岩储层:颗粒侵入浅且数量少,与滤液侵入相比,可能不 是主要危害。 •中、高(孔、渗)砂岩储层:颗粒侵入深度较大,损害相对较大。 •缝洞型碳酸盐岩储层:颗粒侵入更容易,损害更严重。储层发生井漏, 堵漏和压井等作业可造成严重损害。
2、外来微粒侵入和堵塞 外来微粒:泥浆滤液和注入流体携带的微粒―粘土、有机 化合物
球状颗粒易形成稳定桥堵
3、多相流体共存及微粒润湿性的影响 Muecke(1978)二维微模型可视实验:
(1)单相流体 流速足以使微粒保持悬浮时: •宽喉道处:微粒随流体通过喉道 •窄喉道处:可发生桥堵 •已存在桥堵:可被反向流动扰动而解堵
(2)油水两相共存 影响因素:颗粒和微粒的表面润湿性、界面张力 注水开发中,储层和微粒均为水湿性: •含油区:水湿微粒受束缚水约束,不发生迁移 •含水区:水湿微粒发生迁移 水驱油过程:含油区→含水区,微粒由不移动态→可移动态
富氧系统,酸化后高 PH 值 HF 酸化 淡水系统 高流速 酸化作业 高 PH 值,富氧系统 流体含 Ca2+、Sr2+、Ba2+ HF 酸化
相关文档
最新文档