最新七年级数学下册练习题及答案
最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习卷(含答案解析)(1)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。
人教版七年级数学下册平面直角坐标系练习题(含答案)

人教版七年级数学下册 第7章平面直角坐标系专练(含答案)一、单选题(共有12道小题) 1.点P(4,3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图所示,黑方的位置为(5,4),则红方的位置为 , .3.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,-4)B .(4,-3)C .(-4,3)D .(-3,4)4.如图,如果点A 表示是(1,2),B 表示位置是 ,C 的位置是 .5.教室中甲同学座位是(2,3),表示第2列第3排,在甲同学后面一位同学的座位可记为 .6.点 N (x ,y )的坐标满足 xy <0,则点 N 在第 象限。
7.从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则( )A .小强家在小红家的正东B .小强家在小红家的正西车炮炮炮车(0,0)BAOC .小强家在小红家的正南D .小强家在小红家的正北8.在平面直角坐标系中,线段 A ′B ′是由线段 AB 经过平移得到的,已知点 A(-2,1)的对应点为 A ′(3,-1),点 B 的对应点为 B ′(4,0),则点 B 的坐标为( )A. (9,-1)B. (-1,0)C. (3,-1)D. (-1,2)9.已知点平面内不同的两点()4,2+a A 和()22,3+a B 到 x 轴的距离相等,则 a的值为( )A. -3B. -5C. 1 或-3D. 1 或-510.在平面直角坐标系中,P 点关于原点的对称点183,3P ⎛⎫-- ⎪⎝⎭,P 点关于x 轴的对称点为()2,P a b 3ab =()A.-2B.2C.4D.-411.如图所示,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,得到点1A (0,1),2A (1,1),3A (1,0),4A (2,0),...,那么点2016A 的坐标为()。
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
最新人教版初中七年级下册数学《平方根》同步练习题

《平方根》同步测试(第1课时)一、选择题1.9的算术平方根是( ).A. 3 B.±3 C.81 D.±81考查目的:本题考查算术平方根的概念.答案:A.解析:根据算术平方根的概念,因为,所以9算术平方根为3.故答案选A.2.已知,则=( ).A.0. 5 B.±0.5 C.0.0625 D.±0.0625考查目的:考查算术平方根的概念和符号表示.答案:C.解析:符号表示的算术平方根.因为算术平方根等于0.25的数是0.0625,即,所以.3.(2010?贺州)的算术平方根是( ).A.±2 B.2 C.±4 D.4考查目的:本题考查算术平方根的概念和符号表示.答案:B.解析:表示16的算术平方根.因此本题应先求“=?”,再求“?”的算术平方根.由于,4的算术平方根是2,故答案选B.二、填空题4.一个面积为0.64m的正方形桌面,它的边长是.考查目的:本题考查运用算术平方根的概念解决问题.答案:0.8m.解析:因为正方形的面积为边长的平方,所以边长是面积的算术平方根,故边长为.5.算术平方根等于它的相反数的数是______.考查目的:本题考查算术平方根的性质.答案:0.解析:因为算术平方根一定是非负数(0和正数),所以算术平方根等于它的相反数的数是一定是非正数(0和负数).既是非负数,又是非正数的数只有0,故算术平方根等于它相反数的数是0.6.请你观察思考下列计算过程:因为,所以;同样:因为,所以;…,由此猜想=__________.考查目的:本题考查运用算术平方根概念探究规律.答案:111111111.解析:观察过程:“因为,所以;同样:因为,所以;…”可发现:算术平方根全由1组成,1的个数与被开方数的中间的数字相同.由此猜想=111111111.三、解答题7.“欲穷千里目,更上一层楼,”说的是登得高看得远,如图,若观测点的高度为,观测者视线能达到的最远距离为,则=,其中是地球半径(通常取6400km).小丽站在海边一块岩石上,眼睛离海平面的高度为20m,她观测到远处一艘船刚露出海平面,求此时的值.考查目的:本题考查算术平方根的应用.答案:16km.解析:根据题意,将,代入=,得=16(km).8.(1)计算:①,②,③,④;(2)观察你计算的结果,用你发现的规律直接写出下面式子的值:.考查目的:本题考查算术平方根的求法以及分析结果发现规律的能力.答案:(1)①1,②3,③6,④10;(2)406.解析:(1)根据算术平方根的求法,可得:①,②,③,④;(2)分析①②③④的结果,可发现:①=1,②=3=1+2,③=6=1+2+3,④=10=1+2+3+4.所以=1+2+3+4+…+28=406.《平方根》同步测试(第2课时)一、选择题1.估计的值在( ).A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间考查目的:本题考查用有理数估计一个带算术平方根符号的(无理)数的大致范围.答案:B.解析:解题的关键是找出10在哪两个连续整数的平方之间.因为,,所以3<<4,故在3与4之间.答案选B.2.是的( ).A.10倍B.100倍C.1000倍 D.10000倍考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律的应用.答案:A.解析:根据被开方数的变化与算术平方根的变化之间的规律“被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动位(为正整数)”解答.因为110是1.1的小数点向右移动2位,所以的小数点相应的向右移动1位,就得到的值,即是的10倍.3.下列关于的说法错误的是( ).A.1<<2 B.1.7<<1.8 C. D.是一个无限不循环小数考查目的:本题考查无限不循环小数的概念以及用有理数估计无理数的大小.答案:C.解析:因为,,所以1<<2,即选项A正确;因为,,所以1.7<<1.8,即选项B正确;因为是一个无限不循环小数,而1.732是一个有限小数,所以选项C错误,选项D正确.故答案选C.二、填空题4.若将边长为1的五个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图1中剪开的斜线的长是_______.考查目的:本题考查运用算术平方根解决问题.答案:.解析:由于每个小正方形面积为1,所以图1的面积为5.剪开后拼成图2的正方形的面积也是5,边长是.因为图1中剪开的斜线的长就是图2正方形的边长,所以图1中剪开的斜线的长是.5.已知,则约是_______.考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律,以及算术平方根的符号表示.答案:0.0735.解析:由于被开方数0.005403是由54.03小数点向左移动四位得到的,则0.005403的算术平方根就是54.03的算术平方根的小数点向左移动两位得到,即.故答案选B.6.已知,为两个连续整数,且<<,则.考查目的:本题考查用有理数估计一个(带算术平方根符号的)无理数的大致范围.答案:5.解析:因为,,所以2<<3,对比已知条件,可得,,所以.三、解答题7.根据下表回答下列问题:28.028.128.228.328.428.528.628.728.8784.00789.61795.24800.89806.56812.25817.96823.69829.44(1)795.24的算术平方根是;(2)≈;(3)在哪两个数之间?考查目的:本题考查算术平方根的概念,以及用文字语言、符号语言表示算术平方根的能力和估算能力.答案:(1)28.2;(2)28.7;(3)28.4与28.5之间.解析:可根据算术平方根的定义解答,但需要一定的估算能力.(1)从表中可直接看出795.24的算术平方根是28.2;(2)表示823.7的算术平方根,表中平方数最接近823.7数是823.69,而,所以≈28.7;(3)因为 806.56<810<812.25,所以28.4<<28.5.8.某农场有一块长30米,宽20米的场地,要在这块场地上建一个正方形鱼池,使它的面积为场地面积的一半,问能否建成?若能建成,请你估计鱼池的边长为多少?(精确到0.1米)考查目的:本题考查估计算术平方根的大小的实际应用.答案:能,约17.3米.解析:设鱼池的边长为米,则,,<20,故能建成.因为,,所以17.3<<17.4,且与17.3更接近,所以可以估计鱼池的边长为17.3米.《平方根》同步测试(第3课时)一、选择题1.“16的平方根是±4”用数学式子表示正确的是( ).A.=±4 B.±=±4 C.=4 D.- =-4考查目的:本题考查平方根的符号表示.答案:B.解析:“16的平方根”用符号表示是“”,因此“16的平方根是±4”用符号表示是“”.故答案选B.2.下列命题中,正确的个数有( ).①=±3;②2的平方根是4;③的平方根是±1.A.0个 B.1个 C.2个 D.3个考查目的:本题考查平方根的概念,以及平方根与算术平方根的区别.答案:B.解析:因为,所以①错误;因为2的平方根是,所以②错误;因为=1,1的平方根是±1,所以③正确,故答案选B.3.如果一个正数的平方根为和,则这个正数为( ).A.25 B.36 C.49 D.64考查目的:本题考查平方根的定义以及相反数的概念.答案:C.解析:由平方根的定义可知,和是一对相反数,即,解这个方程得.当时,,,所以这个正数为.故答案选C.二、填空题4.已知=,则20.14的平方根为__________(用含的代数式表示).考查目的:本题考查平方根与算术平方根之间的区别,以及被开方数的变化与算术平方根的变化之间的规律.答案:.解析:因为20.14是2014的小数点向右移动2位得到的,所以应由小数点向右移动1位得到.根据可得,所以20.13的平方根为.5.如果的平方根等于±2,那么=______.考查目的:本题考查平方根与算术平方根的概念以及它们之间的区别.答案:16.解析:根据平方根的定义,可知,4的平方根等于±2,所以;再根据算术平方根的定义,可知,算术平方根等于4的数是16.故答案应填16.6.若和是数的平方根,则=______.考查目的:本题考查平方根概念的运用.答案:256或576.解析:本题没有说明和是否为数的不同的平方根,所以有两种情况.当+=0时,解得,所以,,所以;当=时,解得,则,故答案为256或576.(注意本题与“数的平方根是和”的区别)三、解答题7.如图所示是计算机程序计算,(1)若开始输入,则最后输出= ;(2)若输出的值为22,则输入的值= .考查目的:本题考查平方运算与开平方运算是互逆运算.答案:(1)-2;(2)±3.解析:(1);(2)根据题意,可得,整理得,.8.已知正数的两个平方根分别是、.请计算代数式的值.考查目的:本题考查平方根的概念和性质.答案:0.解析:由平方根的性质:正数有两个平方根,它们互为相反数.可得;由平方根的概念和性质,可得,所以.。
七年级最新数学下册单元测试题初一数学章节练习题带图文答案解析100篇第八章3实际问题与二元一次方程组

第八章8.3实际问题与二元一次方程组同步练习实际问题与二元一次方程组1同步练习(答题时间:20分钟)1. 成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇。
相遇时,小汽车比小客车多行驶20千米。
设小汽车和客车的平均速度分别为x千米/时和y千米/时,则下列方程组正确的是()A. B.C. D.**2. 一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为()A.39832x yy x+=⎧⎨-=⎩B.39832x yy x+=⎧⎨+=⎩C.29834x yy x+=⎧⎨-=⎩D.39824x yx y-=⎧⎨+=⎩**3. 如下图所示,高速公路上,一辆长为4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间大约是多少秒(保留整数)?*4. 甲乙两个施工队在六安(六盘水·安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离。
若设甲队每天铺设x米,乙队每天铺设y米。
(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?*5. 根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高__________cm,放入一个大球水面升高__________cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?*6. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时75千米的速度行驶,则可提前24分钟到达乙地,求甲、乙两地间的距离。
*7. 现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液各取多少?**8. 甲、乙、丙三队要完成A、B两项工程,B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别为20天、24天、30天,为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程。
最新京改版七年级数学下册第七章观察、猜想与证明专项练习试题(含详细解析)

京改版七年级数学下册第七章观察、猜想与证明专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下列条件能判断直线l 1//l 2的有( )①13∠=∠;②24180∠+∠=︒;③45∠=∠;④23∠∠=;⑤623∠=∠+∠A .1个B .2个C .3个D .4个2、下列有关“线段与角”的知识中,不正确的是( )A .两点之间线段最短B .一个锐角的余角比这个角的补角小90︒C .互余的两个角都是锐角D .若线段AB BC =,则B 是线段AC 的中点3、若∠A 与∠B 互为补角,且∠A =28°,则∠B 的度数是( )A .152°B .28°C .52°D .90°4、下列说法正确的个数是( )①平方等于本身的数是正数;②单项式﹣π2x3y2的次数是7;③近似数7与7.0的精确度不相同;④因为a>b,所以|a|>|b|;⑤一个角的补角大于这个角本身.A.1个B.2个C.3个D.4个5、一个角的余角比这个角的补角的一半小40°,则这个角为()A.50°B.60°C.70°D.80°6、若∠α=55°,则∠α的余角是()A.35°B.45°C.135°D.145°7、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于()A.40°B.36°C.44°D.100°8、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有()对.A.5 B.4 C.3 D.29、若一个角比它的余角大30°,则这个角等于()A .30°B .60°C .105°D .120°10、如图,将一副三角尺按不同位置摆放,下列选项的摆放方式中∠1与∠2互余的是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若∠A=20°18',则∠A 的补角的大小为__________.2、如图,EF AB ⊥于点F ,CD AB ⊥于点D ,E 是AC 上一点,12∠=∠,则图中互相平行的直线______.3、75°的余角是______.4、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.5、若α∠与β∠互余,且:2:3αβ∠∠=,则2536αβ∠+∠=______.三、解答题(5小题,每小题10分,共计50分)1、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.2、如图,在下列解答中,填写适当的理由或数学式:(1)∵∠A =∠CEF ,( 已知 )∴________∥________; (________)(2)∵∠B +∠BDE =180°,( 已知 )∴________∥________;(________)(3)∵DE ∥BC ,( 已知 )∴∠AED =∠________; (________)(4)∵AB ∥EF ,( 已知 )∴∠ADE =∠________.(________)3、如图1所示,MN //PQ ,∠ABC 与MN ,PQ 分别交于A 、C 两点(1)若∠MAB=∠QCB=20°,则B的度数为度.(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE,∠BCP=m∠DCP,试探究∠CDA 与∠ABC的数量关系4、已知AB∥CD,点是AB,CD之间的一点.(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴PE∥CD(),∴∠BAE=∠1,∠DCE=∠2(),∴∠BAE+∠DCE=+ (等式的性质).即∠AEC,∠BAE,∠DCE之间的数量关系是.(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.①若∠AEC=74°,求∠AFC的大小;②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.5、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.(1)如图①,若∠BEF=130°,则∠FGC=度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC=度.解:如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC()又∵EM∥FG∴∠FGC=∠EMC()∠EFG+∠FEM=180°()即∠FGC=()(等量代换)∴∠FEB ﹣∠FGC =∠FEB ﹣∠BEM =( )又∵∠EFG =90°∴∠FEM =90°∴∠FEB ﹣∠FGC =即:无论∠BEF 度数如何变化,∠FEB ﹣∠FGC 的值始终为定值.---------参考答案-----------一、单选题1、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴12//l l ;②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴12//l l ;③∠4,∠5互为同位角,∠4=∠5,∴12//l l ;④∠2,∠3没有位置关系,故不能证明12//l l ,⑤623∠=∠+∠,621∠=∠+∠,∴∠1=∠3,∴12//l l ,故选D .此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.2、D【分析】根据线段的性质及余角补角的定义解答.【详解】解:两点之间线段最短,故A选项不符合题意;一个锐角的余角比这个角的补角小90︒,故B选项不符合题意;互余的两个角都是锐角,故C选项不符合题意;若线段AB BC=,则B不一定是线段AC的中点,故D选项符合题意;故选:D.【点睛】此题考查线段的性质,余角与补角的定义,熟记定义及线段的性质是解题的关键.3、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A本题考查了补角,解决本题的关键是熟记补角的定义.4、A【分析】根据平方等于本身的数是0和1,即可判断①;根据单项式次数的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数,即可判断②;根据近似数的精确度可以判断③;根据绝对值的定义可以判断④;根据补角的定义:如果两个角的和为180度,那么这两个角互补即可判断⑤.【详解】解:①平方等于本身的数是1和0,故此说法错误;②单项式﹣π2x3y2的次数是5,故此说法错误;③近似数7精确到个位,近似数7.0精确到十分位,两者的精确度不相同,故此说法正确;④因为a>b,不一定有 |a|>|b|,如1>-2,但是|1|<|-2|,故此说法错误;⑤一个角的补角可能大于等于或小于这个角本身,故此说法错误;故选A.【点睛】本题主要考查了有理数的乘方,绝对值,单项式次数,补角和近似数,解题的关键在于能够熟练掌握相关知识进行求解.5、D【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.【详解】设这个角为x,则它的余角为(90°-x),补角为(180°-x),依题意得()()118090402x x ︒--︒-=︒解得x =80°故选D .【点睛】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.6、A【分析】根据余角的定义即可得.【详解】由余角定义得∠α的余角为90°减去55°即可.解:由余角定义得∠α的余角等于90°﹣55°=35°.故选:A .【点睛】本题考查了余角的定义,熟记定义是解题关键.7、A【分析】首先根据1240∠=∠=︒得到PQ MN ∥,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQ MN ,∴∠4=180°﹣∠3=40°,【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.8、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.9、B【分析】设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.【详解】解:设这个角为α,则它的余角为:90°-α,由题意得,α-(90°-α)=30°,解得:α=60°,故选:B本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.10、D【分析】由题意直接根据三角板的几何特征以及余角的定义进行分析计算判断即可.【详解】解:A .∵∠1+∠2度数不确定,∴∠1与∠2不互为余角,故错误;B .∵∠1+45°+∠2+45°=180°+180°=360°,∴∠1+∠2=270°,即∠1与∠2不互为余角,故错误;C .∵∠1+∠2=180°,∴∠1与∠2不互为余角,故错误;D .∵∠1+∠2+90°=180°,∴∠1+∠2=90°,即∠1与∠2互为余角,故正确.故选:D .【点睛】本题主要考查余角和补角,熟练掌握余角的定义即若两个角的和为90°,则这两个角互为余角是解题的关键.二、填空题1、159°42'(或159.7°)【分析】根据补角的定义可直接进行求解.【详解】解:由∠A=20°18',则∠A 的补角为180201815942''︒-︒=︒;故答案为159°42'.【点睛】本题主要考查补角,熟练掌握求一个角的补角是解题的关键.2、EF CD ∥,∥DE BC【分析】由EF AB ⊥,CD AB ⊥,可得,EF CD ∥再证明,AED ACB 可得.DE BC ∥【详解】 解: EF AB ⊥,CD AB ⊥,,EF CD ∥,AEF ACD 12,∠=∠,AED ACB,DE BC ∥故答案为:,EF CD ∥∥DE BC【点睛】本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键. 3、15°【分析】根据和为90︒的两个角互为余角计算即可.【详解】解:75°的余角是90°﹣75°=15°.故答案为:15°.【点睛】此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.4、116°【分析】由图示可得,∠1与∠BOC 互余,结合已知可求∠BOC ,又因为∠2与∠COB 互补,即可求出∠2的度数.【详解】解:∵126∠=︒,∠AOC =90°,∴∠BOC =64°,∵∠2+∠BOC =180°,∴∠2=116°.故答案为:116°.【点睛】此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.5、69°【分析】由题意可设∠α=2x ,∠β=3x ,根据α∠与β∠互余可得关于x 的方程,解方程即可求出x ,然后代值计算即可;【详解】解:因为:2:3αβ∠∠=,所以设∠α=2x ,∠β=3x ,因为α∠与β∠互余,所以2x+3x=90°,解得x=18°,所以∠α=36°,∠β=54°,所以2525365469 3636αβ∠+∠=⨯︒+⨯︒=︒;故答案为69°.【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.三、解答题1、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析【解析】【分析】根据题意画出图形,然后结合题意可进行求解.【详解】解:如图,由图可知两条相交的直线,两两相配共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).【点睛】本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.2、(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等【解析】【分析】(1)根据平行线的判定定理:同位角相等,两直线平行,即可得;(2)根据平行线的判定定理:同旁内角互补,两直线平行,即可得;(3)根据平行线的性质:两直线平行,同位角相等,即可得;(4)根据平行线的性质:两直线平行,内错角相等,即可得.【详解】解:(1)∵A CEF∠=∠,(已知)∴AB EF∥,(同位角相等,两直线平行);(2)∵180B BDE∠+∠=︒,(已知)∴∥DE BC,(同旁内角互补,两直线平行);(3)∵∥DE BC,(已知)∴AED C∠=∠,(两直线平行,同位角相等)(4)∵AB EF∥,(已知)∴ADE DEF∠=∠(两直线平行,内错角相等).故答案为:(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等.【点睛】题目主要考查平行线的判定定理和性质,熟练掌握理解平行线的性质定理并结合图形是解题关键.3、(1)40;(2)①见解析;②11802n ︒-︒;(3)m ∠CDA +∠ABC =180°【解析】【分析】(1)作MN 、PQ 的平行线HG ,根据两直线平行,内错角相等即可解答;(2)①根据题意作图即可,②过F 作//ST MN ,根据两直线平行,同旁内角互补和内错角相等即可解答;(3)延长AE 交PQ 于点G ,设∠MAE =x °,∠DCP =y °,知∠BAM =m ∠MAE =mx °,∠BCP =m ∠DCP =my °,∠BCQ =180°−my °,根据(1)中所得结论知∠ABC =mx °+180°−my °,即y °−x °=180ABC m︒-∠ ,由MN //PQ 知∠MAE =∠DGP =x °,根据∠CDA =∠DCP −∠DGC 可得答案. 【详解】解:(1)作//HG MN ,∵MN //PQ ,∴////PQ HG MN ,∴20,20MAB ABH QCB CBH ∠=∠=︒∠=∠=︒ ,∴40B ABH CBH ∠=∠+∠=︒ ;(2)①如图所示,②过点F 作//ST MN ,∴////ST MN PQ , ∴11,22TFA NAF MAF TFC FCP PCB ∠=∠=∠∠=∠=∠ ,∵180,180NAB ABH HBC PCB ∠+∠=︒∠+∠=︒ ,∴360NAB B PCB ∠+∠+∠=︒ ,∵B n ∠=︒∴360MAB PCB n ∠+∠=︒-︒ , ∴()136022n MAB PCB ︒-︒∠+∠= , ∵TFA TFC AFC ∠+∠=∠ , ∴360118022n AFC n ︒-︒∠==︒-︒ ; (3)延长AE 交PQ 于点G ,设∠MAE =x °,∠DCP =y °,则∠BAM =m ∠MAE =mx °,∠BCP =m ∠DCP =my °,∴∠BCQ =180°−my °,由(1)知,∠ABC =180MAB BCQ MAB BCP ∠+∠=∠+︒-∠=mx °+180°−my °,∴y °−x °=180ABC m︒-∠, ∵MN //PQ ,∴∠MAE =∠DGP =x °,则∠CDA =∠DCP −∠DGC=y °−x ° =180ABC m ︒-∠, 即m ∠CDA +∠ABC =180°.【点睛】本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.4、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC =∠BAE +∠DCE ;(2)①37°;②52°【解析】【分析】(1)结合图形利用平行线的性质填空即可;(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=12∠BAE,∠DCF=12∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=12∠AEC即可;②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.【详解】解:(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,∵AB∥CD,FG∥AB,∴CD∥FG,∴∠BAF=∠AFG,∠DCF=∠GFC,∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAF=12∠BAE,∠DCF=12∠DCE,∴∠AFC=∠BAF+∠DCF,=12∠BAE+12∠DCE,=1(∠BAE+∠DCE),2∠AEC,=12=1×74°,2=37°;②由①得:∠AEC=2∠AFC,∵∠AEC+∠AFC=126°,∴2∠AFC+∠AFC=126°∴3∠AFC=126°,∴∠AFC=42°,∠AEC=84°,∵CG⊥AF,∴∠CGF=90°,∴∠GCF=90-∠AFC=48°,∵CE平分∠DCG,∴∠GCE=∠ECD,∵CF平分∠DCE,∴∠DCE=2∠DCF=2∠ECF,∴∠GCF=3∠DCF,∴∠DCF=16°,∴∠DCE=32°,∴∠BAE=∠AEC﹣∠DCE=52°.【点睛】本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.5、(1)40°;(2)见解析;(3)70°【解析】【分析】(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点F作FN∥AB,∵FN∥A B,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,∴FN∥CD,∴∠FGC=∠NFG=40°.故答案为:40°;(2)如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)∠EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点E作EH∥FG,交CD于点H.∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHC∠EFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.。
最新京改版七年级数学下册第五章二元一次方程组专题练习试题(含详细解析)

京改版七年级数学下册第五章二元一次方程组专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD ,若设小长方形的长为x ,宽为y ,则可列方程为( )A .()27,2746x y y x y =⎧⎨++=⎩B .27,746x y y x y =⎧⎨++=⎩C .()27,2746x y x x y =⎧⎨++=⎩D .72,746x y x x y =⎧⎨++=⎩2、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A .3种B .4种C .5种D .6种 3、关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,04、下列方程中,①6x y +=;②()16x y +=;③31x y z +=+;④7mn m +=,是二元一次方程的有( )A .1个B .2个C .3个D .4个5、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).A .11支B .9支C .7支D .5支6、下列各组数值是二元次方程2x ﹣y =5的解是( )A .21x y =-⎧⎨=⎩B .05x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .31x y =⎧⎨=⎩7、关于x ,y 的方程组03x my x y +=⎧⎨+=⎩的解是1•x y =⎧⎨=⎩,其中y 的值被盖住了,不过仍能求出m ,则m 的值是( )A .12- B .12 C .14- D .148、下列方程是二元一次方程的是( )A .x ﹣xy =1B .x 2﹣y ﹣2x =1C .3x ﹣y =1D .1x﹣2y =1 9、小明在解关于x 、y 的二元一次方程组331x y x y +⊗=⎧⎨-⊗=⎩时得到了正确结果1x y =⊕⎧⎨=⎩.后来发现⊗、⊕处被墨水污损了,请你帮他计算出⊗、⊕处的值分别是( ).A .1、1B .2、1C .1、2D .2、210、解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ) A .由①得743n m +=再代入② B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若42m a b -与225n m n a b ++可以合并成一项,则m +n 的值_____.2、已知关于x ,y 的二元一次方程3mx -y =-1有一组解是12x y =⎧⎨=-⎩,则m 的值是 ___. 3、如图,为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A ,B ,C 的机动车辆数如图所示.图中123x x x ,,分别表示该时段单位时间通过路段AB ,BC ,CA 的机动车辆数.(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),试比较123x x x ,,的大小关系_________.4、已知实数x ,y 满足x +y =3,且x >﹣3,y ≥1,则x ﹣y 的取值范围____.5、若x 2a ﹣3+yb +2=3是二元一次方程,则a ﹣b =__.三、解答题(5小题,每小题10分,共计50分)1、解下列方程组:(1)3 236x yx y+=⎧⎨-=⎩;(2)569 745x yx y-=⎧⎨-=-⎩.2、已知关于x,y的方程组353312x y ax y+=⎧⎨--=⎩,若该方程组的解x,y的值互为相反数,求a的值和方程组的解.3、定义数对(x,y)经过一种运算φ可以得到数对(x',y'),并把该运算记作φ(x,y)=(x',y'),其中x ax byy ax by=+⎧⎨=-''⎩(a,b为常数).例如,当a=1,且b=1时,φ(﹣2,3)=(1,﹣5).(1)当a=1且b=1时,φ(0,1)=;(2)若φ(1,2)=(0,4),则a=,b=;(3)如果组成数对(x,y)的两个数x,y满足二元一次方程2x﹣y=0,并且对任意数对(x,y)经过运算φ又得到数对(x,y),求a和b的值.4、一辆汽车从A地驶向B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A到B地一共行驶了2.2h.那么汽车在高速公路上行驶了多少千米?5、解下列方程组:(1)54 76 x yx y-=⎧⎨-=⎩(2)111 522x yx y+-⎧-=-⎪⎨⎪+=⎩---------参考答案-----------一、单选题1、A【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x ,宽为y ,由题意得:()272746x y y x y =⎧⎨++=⎩ 或()272246x y x x y =⎧⎨++=⎩, 故选A .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.2、A【分析】设购买50元和25元的两种换气扇的数量分别为x ,y ,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x ,y由题意得:5025200x y +=,即28x y +=,∵x 、y 都是正整数,∴当x =1时,y =6,当x =2时,y =4,当x =3时,y =2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.3、A【分析】将12x=时,12y=-代入y kx b=+,得1122k b-=+①,再由k比b大1得1k b-=②,将两个方程联立解之即可【详解】将12x=时,12y=-代入y kx b=+,得1122k b-=+①,再由k比b大1得1k b-=②,①②联立11221k bk b⎧-=+⎪⎨⎪-=⎩,解得13k=,23b=-.故选:A.【点睛】此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.4、A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.【详解】解:①根据二元一次方程定义可知6x y +=是二元一次方程,此项正确;②()16x y +=化简后为6xy x +=,不符合定义,此项错误;③31x y z +=+含有三个未知数不符合定义,此项错误;④7mn m +=不符合定义,此项错误;所以只有①是二元一次方程,故选:A .【点睛】本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.5、D【分析】根据题意列出三元一次方程组消元,再求解即可.【详解】解:设购买甲、乙、丙三种钢笔分别为x 、y 、z 支,由题意,得4566034548x y z x y z ++=⎧⎨++=⎩①② ①×4-②×5得0x z -=,所以x z =,将z x =代入①,得45660x y x ++=.即212y x +=.∵0y >,∴6x <,∴x 为小于6的正整数,四个选项中只有D 符合题意;【点睛】本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.6、D【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把21xy=-⎧⎨=⎩代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把5xy=⎧⎨=⎩代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把13xy=⎧⎨=⎩代入方程2x﹣y=5,2-3=-1≠5,不满足题意;D. 把31xy=⎧⎨=⎩代入方程2x﹣y=5,6-1=5,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.7、A【分析】把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.解:把x=1代入方程组,可得1013myy+=⎧⎨+=⎩,解得y=2,将y=2代入1+my=0中,得m=12 -,故选:A.【点睛】此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.8、C【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、1x﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴1x﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.9、B【分析】将方程组的解代入方程求解即可.【详解】将1x y =⊕⎧⎨=⎩代入331x y x y +⊗=⎧⎨-⊗=⎩,得331⊕+⊗=⎧⎨⊕-⊗=⎩, 解之得12⊕=⎧⎨⊗=⎩. 故选:B .【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.10、C【分析】观察两方程中m 系数关系,即可得到最好的解法.【详解】解:解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是由①得347m n =+,再代入②. 故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题1、2【解析】【分析】先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)可得一个关于,m n二元一次方程组,解方程组求出,m n的值,再代入计算即可得.【详解】解:由题意得:42m a b-与225n m na b++是同类项,则224m nm n=+⎧⎨+=⎩,解得2mn=⎧⎨=⎩,所以202m n+=+=,故答案为:2.【点睛】本题考查了同类项、二元一次方程组的应用,熟记同类项的定义是解题关键.2、-1【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12x y =⎧⎨=-⎩代入方程3mx -y =-1中得:3m +2=-1, 解得:m =-1.故答案为:-1.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3、x 2>x 3>x 1【解析】【分析】先对图表数据进行分析处理得:132132555020303530x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩,再结合数据进行简单的合情推理得:132355x x x x =-⎧⎨=+⎩,所以得到x 2>x 3>x 1.【详解】解:由图可知:132132555020303530x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 即132355x x x x =-⎧⎨=+⎩, 所以x 2>x 3>x 1,故答案为:x 2>x 3>x 1.【点睛】本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题.4、91x y --≤<【解析】【分析】先设x ﹣y =m ,利用x +y =3,构造方程组,求出用m 表示x 、y 的代数式,再根据x >﹣3,y ≥1,列不等式求出m 的范围即可.【详解】解:设x ﹣y =m ,∴3x y m x y -=⎧⎨+=⎩①②, ②+①得32m x +=, ②-①得32m y -=, ∵y ≥1, ∴312m -≥, 解得1m ,∵x >﹣3, ∴332m +>-, 解得9m >-,∴91m ≤-<,x ﹣y 的取值范围91x y --≤<.故答案为91x y --≤<.【点睛】本题考查方程与不等式综合问题,解题关键是设出x ﹣y =m ,与x +y =3,构造方程组从中求出3 2mx+=,32my-=,再出列不等式.5、3【解析】【分析】先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.【详解】解:∵x2a﹣3+yb+2=3是二元一次方程,∴2a﹣3=1,b+2=1,∴a=2,b=﹣1,则a﹣b=2﹣(﹣1)=2+1=3.故答案为:3.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.三、解答题1、(1)3xy=⎧⎨=⎩;(2)34xy=-⎧⎨=-⎩.【分析】利用加减法解二元一次方程组即可求解.【详解】解:(1)3 236 x yx y+=⎧⎨-=⎩①②①×3得 339x y +=③,②+③得 5x =15,解得x =3,把x =3代入①得 3+y =3,解得y =0,∴二元一次方程组的解是30x y =⎧⎨=⎩; (2)569745x y x y -=⎧⎨-=-⎩①②①×2得 10x -12y =18③,②×3得 21x -12y =-15④,④-③得 11x =-33,解得 x =-3,把x =-3代入①得 -15-6y =9,解得y =-4,∴二元一次方程组的解是34x y =-⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.2、4a =-,66x y =⎧⎨=-⎩ 【分析】根据x 、y 互为相反数得出y =-x ,代入方程组中的两个方程求解即可.【详解】解:因为x ,y 的值互为相反数,所以y x =-.将y x =-代入312x y --=中,得312x x -+=,解得6x =,所以6y =-,所以原方程组的解是66x y =⎧⎨=-⎩, 将66x y =⎧⎨=-⎩,代入353x y a +=中,得:4a =-. 【点睛】本题考查相反数、解二元一次方程组,理解相反数的意义以及二元一次方程组的解,正确求出方程组的解是解答的关键.3、(1)(1,﹣1);(2)2,﹣1;(3)3214a b ⎧=⎪⎪⎨⎪=-⎪⎩【分析】(1)当a =1且b =1时,分别求出x ′和y ′即可得出答案;(2)根据条件列出方程组即可求出a ,b 的值;(3)根据对任意数对(x ,y )经过运算φ又得到数对(x ,y ),得到ax by x ax by y+=⎧⎨-=⎩,根据2x -y =0,得到y =2x ,代入方程组即可得到答案.【详解】解:(1)当a =1且b =1时,x ′=1×0+1×1=1,y ′=1×0﹣1×1=﹣1,故答案为:(1,﹣1);(2)根据题意得:2024a b a b +=⎧⎨-=⎩, 解得:21a b =⎧⎨=-⎩, 故答案为:2,﹣1;(3)∵对任意数对(x ,y )经过运算φ又得到数对(x ,y ),∴ax by x ax by y +=⎧⎨-=⎩, ∵2x ﹣y =0,∴y =2x ,代入方程组解得:222ax bx x ax bx x+=⎧⎨-=⎩, ∴222ax bx x ax bx x+=⎧⎨-=⎩, 解得3214a b ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.4、120km【分析】根据题意,设出未知数,由等量关系:高速公路=2×普通公路,普通公路上的时间+高速公路的时间=总时间,列方程组求解即可.【详解】解:设普通公路长为x (km ),高速公路长为y (km ). 根据题意,得2 2.260100y x x y =⎧⎪⎨+=⎪⎩, 将2y x =代入 2.260100x y +=得: 2 2.260100x x +=,解得:60x =, ∴2120y x ==,∴方程组的解为60120x y =⎧⎨=⎩, 答:汽车在高速公路上行驶了120km .【点睛】此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.5、(1)11x y =⎧⎨=⎩;(2)13x y =-⎧⎨=⎩ 【分析】(1)用加减消元法解二元一次方程组即可;(2)先化简方程组,再用加减消元解方程组即可.【详解】解:(1)5476x y x y -=⎧⎨-=⎩①②, ②-①得:22x =,解得1x =,把1x =代入①得:54y -=,解得:1y =,∴方程组的解为11x y =⎧⎨=⎩; (2)111522x y x y +-⎧-=-⎪⎨⎪+=⎩①②, 由②可得y =2-x ,把y =2-x 代入①,可得x =-1,把x =-1代入y =2-x ,可得y =3,∴方程组的解为13x y =-⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.。
七年级数学下册《一元一次不等式组》练习题及答案

七年级数学下册《一元一次不等式组》练习题及答案一、单项选择题1.如图,在数轴上所表示的关于x 的不等式组的解集是( )A .x ≥2B .x >2C .x >-1D .-1<x≤22.若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .⎩⎪⎨⎪⎧x≥-2x<3 B .⎩⎪⎨⎪⎧x≤-2x≥3 C .⎩⎪⎨⎪⎧x≥-2x≤3 D .⎩⎪⎨⎪⎧x>-2x≤33.不等式组⎩⎪⎨⎪⎧x +1>2,x -1≤2 的解集是( )A .x <1B .x ≥3C .1≤x <3D .1<x≤34.不等式组⎩⎪⎨⎪⎧x -1≤0,①x +23-x 2<1②的解集在数轴上表示正确的是( )5.关于x 的不等式组⎩⎪⎨⎪⎧x >a ,x >1 的解集为x >1,则a 的取值范围是()A .a >1B .a <1C .a ≥1D .a ≤16.不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x -1≤7-32x的非负整数解有( )A .4个B .5个C .6个D .7个7.若关于x 的不等式组⎩⎪⎨⎪⎧x <3a +2x >a -4 无解,则a 的取值范围是( )A .a ≤-3B .a <-3C .a >3D .a ≥3二、填空题8.关于x 的不等式组⎩⎪⎨⎪⎧2x>4,x -5≤0 的解集是_________.9.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为____.10.已知关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>b , 其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为____.11.关于x 的不等式组⎩⎪⎨⎪⎧2x +1>3,a -x >1 的解集为1<x <3,则a 的值为____.三、解答题12.解不等式组:(1)⎩⎪⎨⎪⎧3x -2<4,2(x -1)≤3x+1;(2)⎩⎪⎨⎪⎧5x -3>2x ,2x -13<x 2.13.解不等式组,并把它的解集在数轴上表示出来.(1)⎩⎪⎨⎪⎧10-x 3≤2x+1,x -2<0;(2)⎩⎪⎨⎪⎧4x -2≥3(x -1),①x -52+1>x -3.②14. 解不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.15.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =a +2,x -2y =4a -10 的解为正数,且x 的值小于y 的值,求a 的取值范围.16.已知关于x 的不等式组⎩⎪⎨⎪⎧x>-1,x ≤1-k. (1)如果这个不等式组无解,求k 的取值范围(2)如果这个不等式组有解,求k 的取值范围(3)如果这个不等式组恰好有2021个整数解,求k 的取值范围.参考答案1-7 AADCD BA8. 2<x≤59. 010. x >a11. 412. 解:(1) 解不等式3x -2<4,得x<2,解不等式2(x -1)≤3x+1得x≥-3,则不等式组的解集为-3≤x<2(2) 解不等式5x -3>2x ,得x >1,解不等式2x -13 <x 2得x <2,则不等式组的解集为1<x <213. 解:(1) 不等式组的解集是1≤x<2,它的解集在数轴上表示为:(2) 解:由①,得x≥-1,由②,得x <3∴原不等式组的解集为-1≤x<3,它的解集在数轴上表示为:14. 解:解不等式组得0≤x≤3,所以不等式组的整数解之和为0+1+2+3=615. 解:解方程组得⎩⎪⎨⎪⎧x =2a -2,y =4-a , 根据题意得 ⎩⎪⎨⎪⎧2a -2>0,4-a >0,2a -2<4-a , 解得1<a <216. 解:(1)根据题意,得-1≥1-k ,解得k≥2(2)根据题意,得-1<1-k ,解得k <2(3)∵不等式恰好有2021个整数解∴-1<x <2021,∴2020≤1-k <2021,解得-2020<k≤-2019。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. 1. 1. 用一副三角板不能画出 1 A.75°角 B.135°角 C.160°角 D.105°角 2 3 4 5 6
2. 如图,直线a,b相交于点O,若∠1=40°,则∠2等于 7 A.50° B.60° C.140° D.160° 8 9 10 11 12
3. 在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是 13 14 15 16 17 18 19 20 21 22
4. 下面正确的是 23 A.三条直线中一定有两条直线平行 24 B.两条直线同时与第三条直线相交,那么它们一定平行 25 C.若直线∥22,ll∥3l,…1nl∥nl,那么1l∥nl 26
D.直线13221,,lllll则∥3l 27
b . 2. 28 29 30
5. 下列命题正确的是 31 A.若∠MON+∠NOP=90º则∠MOP是直角 32 B.若α与β互为补角,则α与β中必有一个为锐角.另一个为钝角 33 C.两锐角之和是直角 34 D.若α与β互为余角,则α与β均为锐角 35 36 37 38
6. 如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=55º,则39 ∠BOD的度数是 40
A.35º B.55º C.70º D.110º 41 42 43 44 45 46 47 48 49 50
7. 已知:如图,ABCD,垂足为O,EF为过点O的一51 条直线,则1与2的关系一定成立的是 52
A.相等 B.互余 53 C.互补 D.互为对顶角 54 55
B E C O
A B
C
D E
F 2 1 O .
3. 56 57 58 59 60
8. 已知∠α=35°19′,则∠α的余角等于 61 A.144°41′ B. 144°81′ C. 54°41′ D. 54°81′ 62 63 64 65
9. 如图,直线l1与l2相交于点O,1OMl,若44,则等66 于 67 A.56 B.46 C.45 D.44 68 69 70 71 72 73
10. 如图,已知∠1=∠2,∠3=80O,则∠4= 74 A.80O B. 70O C. 60O D. 75 50O 76 77 78 79 80 81
11. 如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=______________度。 82
Ol2
l1
β
α .
4. 83 84 85 86 87 88
12. 如图,经过平移,扇形上的点A移到了F,作出平移后的扇形. 89
90 91
92 93 13. 如图,如果AD∥BC,那么可以推出哪些结论?把可推出的94 结论都写出来:95 ___________________________________________. 96
97 98 99 100 101 102
14. 已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,……, nA平分103 1nAA, 则nAA=_______________cm. 104
E A D .
5. 105 106
107 15. 如图,直线ABCD∥,EFCD,F为垂足.如果108 20GEF∠,那么1∠的度数是 °. 109
110 111 112 113 114
16. 线段AB=8cm,C是AB的中点,D是BC的中点,A、D两点间的距离是115 _____cm. 116
117 118 119 120 121 122 123 124 125 126 127 128 129
17. 小宁和婷婷在一起做拼图游戏,他们用“、△△、=”构思出了独130 特而有意义的图形并根据图形还用简洁的语言进行了表述: 131
132
A B
C D
1 E
F G .
6. 133 观察以上图案 134 (1)这个图案有什么特点? 135 136 137
(2)它可以通过一个“基本图案”经过怎样的平移而形成? 138 139 140
(3)在平移的过程中,“基本图案”的大小、形状、位置是否发生了变化?141 你能解释其中的道理吗? 142
143 144 145 146 147
18. 如图,在△ABC中,DE∥BC,EF∥AB,则∠B相等的角148 有____个. 149
150 151 152 153 154 155 156
19. 如图,不添加辅助线,请写出一个能判定ACEB//的条157 件: . 158
A
D E .
7. GFEDCB
A
21
159 160 161 162 163 164 165 166
167 20. 如下图中,AO⊥BO,CO⊥DO,∠AOC=55º,则∠168 BOD=______. 169
170 171 172
21. 如图,设DE∥BC,∠1=∠2,CD⊥AB,请说明 173 (1)FG⊥AB. 174 (2)若把题设中的“DE∥BC”与结论中的“FG⊥AB”对调后,175 还正确吗?试说明. 176
(3)若把题设中的“∠1=∠2”与结论中的“FG⊥AB”177 对调呢? 178
179 180 181 182 183 184 185 186 187 188 189 190 191
D A C
.
8. 22. 已知线段AB=10cm,直线AB上有一点C ,且BC=4cm,M是线段AC的中点,192 求AM 的长. 193
194 195 196 197 198
23. 一个角的补角与它的余角的度数之比是3:1,求这个角的度数. 199 200 201 202 203 204
205 206 207
24. 如图,已知AB∥CD∥EF,GC⊥CF,∠ABC=65º,∠EFC=40208 º,求∠BCG的度数. 209
210 211 212 213 214 215 216 217 218 219 220 221 222 223
25. 根据下列语句画图: 224
A B
G .
9. (1)画∠AOB=120°;(2)画∠AOB的角平分线OC; 225 (3)反向延长OC得射线OD; 226 (4)分别在射线OA、OB、OD上画线段OE=OF=OG=2cm; 227 (5)连接EF、EG、FG; 228 (6)你能发现EF、EG、FG有什么关系?∠EFG、∠EGF、∠GEF有什么关系? 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
26. 如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE 的244 反向延长线. 245
(1)求∠2和∠3的度数. 246 (2)OF平分∠AOD吗?为什么? 247 .
10. 321OF
CADEB 248 249 250 251 252 253
(1)不等式组的解集是________,整数解有________. 254 255 256 257
(2)不等式组,483212xx的解集是________. 258 259 260 261
(3)不等式组422xxx的解集是_______. 262 263 264 265