年产20万吨丙烯腈生产概念设计
丙烯腈生产概念设计方案

三、技 术 分 析---分离系统结构设计
反应气
反应产物 冷 凝 塔
CO2、CO、原料气 HCN
冷
精
凝
馏
塔
塔
氨、水
丙烯腈
精 馏 塔
乙腈
四、流程模拟与优化---工艺流程图
Aspen plus 模拟流程图
四、流程模拟与优化--冷凝塔F-101操作条件确定
冷凝塔F-101温度对分离效果的影响
四、流程模拟与优化--冷凝塔F-101操作条件确定
五、 经济分析--反应过程对比经济分析
收率为60% 时丙烷法与丙烯法反应器参数对比
项目
丙烷氨氧化法 (A)
反应器热负荷 MMkcal/hr
-53.664016
反应出料物流体积流量 106027.352 Cum/hr
丙烯氨氧化法 A/B (B)
-45.26637
1.19
98368.434
1.08
产物丙烯腈流量 (纯度99.5%)
2 25 1 1 440 0 0 0 0 0 0 0 0 440 7493.5 0.6927 17.031
5 70 1 1 440 0 0 0 0 0 0 0 0 440 7493.5 0.6002 31.999
7 410 1.2
1 55.5808 98.0035
325.6 8.5536 50.2656 1597.38 90.3936 25.7664 53.2224 2304.8 58895 0.5407 25.553
三、技 术 分 析---反应过程分析
丙烷 氧气 氨
C3H8 + NH3 +1.5 O2 → CH2 =CHCN + 3 H2O C3H8 + 1.5NH3 + 2O2 → 1.5CH3CN + 4H2O C3H8 + 3NH3 + 3.5O2 → 3HCN + 7H2O C3H8 + 5O2 → 3CO2 + 4H2O C3H8 + 3.5O2 → 3CO + 4H2O
年产10万吨丙烯腈生产流程概念设计

《化工过程分析和合成设计》课程设计报告 《Analysis, synthesis, and Design of Chemical Processes》Design Report年产10万吨丙烯腈生产流程概念设计林英光 喻冬秀指导教师:钱 宇 教授陆恩锡 教授专业名称:化学工程年 级:2004 博士单位名称:化工学院完成日期: 2005年3月目 录一、丙烯腈概述.......... ..................................... ........................................ (2)1.1 丙烯腈性质 (2)1.2 国内外生产现状 (3)1.3 丙烯腈生产方法 (4)1.4 项目设计背景 (4)1.5 设计目标 (4)1.6 设计任务 (4)二、合成丙烯腈技术分析 (4)2.1 反应过程分析 (4)2.2 分离过程分析....................... ....................... .. (7)三、流程叙述 (8)3.1 原料规格 (8)3.2 工艺流程 (8)四、流程模拟与优化........ . (8)4.1 工艺流程模拟 (9)4.2 冷凝塔F-101操作条件确定 (9)4.3 冷凝塔F-102操作条件确定 (10)4.4 精馏塔T-101操作条件确定 (11)4.5 精馏塔T-102操作条件确定........... .. (13)4.6 全流程模拟结果与物料衡算 (15)4.7 全流程模拟计算输出报告 (16)五、丙烷与丙烯氨氧化法对比经济分析 (16)5.1 反应过程对比经济分析 (16)5.2 投资成本对比经济分析 (17)六、总结 (18)七、建议 (18)八、参考文献 (18)九、附录:流程模拟计算输出报告 (19)一、 丙烯腈概述1.1丙烯腈的性质1.1.1 丙烯腈的物理性质丙烯腈是一种非常重要的有机化工原料,在合成纤维、树脂、橡胶急胶粘剂等领域有着广泛的应用。
年产20万吨丙烯腈概念设计

丙烷直接氨氧化法研究进展
生产工艺改进:日本三菱化学公司引入了BOG公 司的Petrox烃类循环工艺;BP-Amoco公司提出了 未反应氨回收工艺。近年来,随着各国对环保和 可持续发展理念的不断提高,丙烯腈生产技术的 改进也主要集中在节能降耗、环保等方面。
催化剂的改进:日本三菱化学和旭化成两公司只 要开发钼酸钒催化剂,目前该催化剂能够获得高 达60%以上的丙烯腈收率;BP-Amoco主要开发锑 酸钒催化剂;第三种新型催化剂是钒铝氧氮化物, 对丙烯腈时空收率(单位催化剂每小时丙烯腈生 成量)远远高于其它催化剂。
Aji=1601.3070 Aji=1313.6823 Aji=216.3372
Bij=-5.9440
Bij=0
Bij=0
Bji=702030 Cij=0.3000
Bji=0 Cij=0.4347
Bji=0 Cij=0.3100
热力学方法选 择时,Aspen 不自带水、丙 烯腈和乙腈的 相互作用参数, 需根据卓越公 司提供的数据 自己输入,如 左图。
10
国际现状
地区 欧洲
2001年 130
2002年 130
2003年 130
2004年 125
2005年 100
2010年 100
中东/非洲
30
30
30
30
35
35
亚洲
230
250
270
280
315
340
拉丁美洲
20
20
25
25
30
25
北美
70
60
45
45
40
40
全世界
约480 约490 约500 约510 约520 约550
流化床设计

年产20万吨丙烯腈流化床设计学院: 化工与药学院 班 级: 2012化学工程与工艺 1班 姓 名: 兖志国 边界 郑紫阳武晓杰 王琛完成日期: 2015年12月7日 指导教师评语:___________________________________________________________________________________ _____________________________________________成绩:教师签名:JINGCHU UNIVERSITY OF TECHNOLOGY目录1设计生产能力及操作条件 (3)2 床径的确定 (3)2.2 扩大段直径的确定 (4)3 流化床床高 (4)3.1 流化床基本结构 (4)3.2 催化剂用量 (4)4.床层的压降 (5)5.选材 (5)6椭圆封头 (6)7裙座 (6)8水压试验及其强度校核 (7)9旋风分离器 (7)10 主反应器设计结果 (8)年产20万吨丙烯腈流化床反应器设计1设计生产能力及操作条件20万吨/年;年操作时间:8000小时 反应温度为:440℃ 反应压力为:1atm丙烯腈氨氧化法催化剂选用sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为50μm 催化剂平均密度为1200kg/m 3 催化剂装填密度为640kg/m 3催化性能:丙烯腈单收>78.0%;乙腈单收<4.0%;氢氰酸单收<7.0%。
耐磨强度<4.0wt%每小时输入原料量为:413.5kmol/h2 床径的确定2.1 密相段直径确定本流化床反应器设计处理能力为413.5kmol/h 原料气体。
根据公式:T D 其中有:pt n V 1013.02732734.22⨯+⨯⨯= 即其处理的体积流量为:smh m V 3372.68103.241901013.01013.027********.225.413==⨯+⨯⨯=U 0=0.6m/s 因此:mm 378078.36.014.372.6440==⨯⨯==m U VD T π即流化床反应器密相段的公称直径圆整为DN=3800mm 2.2 扩大段直径的确定在该段反应器中,扩大反应器的体积,可以减缓催化剂损失,本段的0U 为密相段的一半,计算过程如下:s m U O 3.0216.0=⨯=将流速带入公式中mm 534034.53.014.372.6440==⨯⨯==m U VD T π即流化床反应器稀相段的公称直径圆整为DN=5400mm3 流化床床高3.1 流化床基本结构床高分为三个部分,即反应段,扩大段,以及锥形段高度。
年产20万吨丙烯烃项目初步设计说明书 精品

集团年产20万吨丙烯烃项目初步设计说明书目录第一章总论 (1)1.1 项目概况 (2)1.2 设计依据 (2)1.3 设计思想及原则 (2)1.4 工艺特点 (3)1.5 产品方案 (3)1.6 辅助设计软件的应用 (4)第二章厂址选择 (5)2.1 选择原则 (5)2.2厂址选定 (6)2.3地理位置 (7)2.4 原料和市场 (7)2.5自然概况 (9)第三章工艺设计方案 (11)3.1设计目标 (11)3.1.1概述 (11)3.1.2生产规模 (11)3.2 工艺方案选择 (11)3.2.1流程模拟说明 (11)3.2.2 生产任务 (12)3.2.3合成工段的模拟 (12)3.3 Aspen Plus 11.1流程模拟 (14)3.3.1合成工段物料衡算 (14)3.3.2预分离工段物料衡算 (16)3.3.3分离工段物料衡算 (18)3.3.4脱丙烷塔操作参数的优化 (21)3.3.5乙烯塔操作参数的优化 (29)3.3.6丙烯精馏塔操作参数的优化 (33)3.3.7精馏工段各塔操作参数总结 (38)3.4 全流程模拟 (38)第四章自动控制及仪表 (40)3.1 设计依据 (40)3.2 自动控制要求 (40)3.3 设备的自动控制 (41)第五章供电与通信 (41)5.1 设计说明 (41)5.1.1 设计范围 (41)5.3.2 总降压变电所设计 (44)5.4 照明系统 (45)5.5 接地防雷系统 (45)5.5.1 接地系统 (45)5.5.2 防雷保护系统 (46)5.6 电信工程 (48)第六章供热 (49)6.1 概述 (49)6.2 标准与规范 (50)6.3 供热方案 (50)6.4 锅炉给水系统 (51)6.4.1 水质要求 (51)6.4.2 蒸汽冷凝水的处理方法 (51)6.4.3 本分厂的锅炉给水系统 (52)6.5 供热系统配套设施 (52)6.5.1 蒸汽管道 (52)6.5.2 阻汽排水阀 (53)6.5.3 汽-水分离器 (53)第七章环境保护 (53)7.1 设计依据 (53)7.2 环保治理措施 (54)7.2.1 废气 (54)7.2.2 废水 (54)7.2.3 废渣 (55)7.2.4 噪声 (55)7.3 场内绿化 (55)毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
产万吨丙烯腈生产概念设计

国内表观需求量120万吨/年,生产能力只有76万吨/年。
通过市场调研我们发现随着石油价格的节节攀升,丙烯腈 的价格随之上涨,而且丙烯腈的制备工艺在我国还有待发
展,做好这个项目模拟有很广阔的市场前景。
2019/2/25
8
来源:
3.目标与任务
该项目来源于卓越化学公司(Excellent Chemicals)。
目标:
设计规模:年产20万吨(4亿磅)的生产设计模拟
与优化
产品要求:丙烯腈的最小质量纯度达到99.0%
2019/2/25 9
设计任务
根据生产要求和工艺条件设计出年产20万吨丙烯腈的生产流 程 用Aspen plus 对流程进行模拟,确定设备的操作参数(温度, 压力,采出量,回流比等),输出设计报告 根据各单元操作的工艺特点优化操作参数,降低操作的难度, 从而节约成本 对模拟流程进行经济核算
CN基:水解反应,水合反应,醇解反应等 CH2=CHCN+H2O CH2=CHCNH2
∥
2019/2/25
O
4
产品规格
序号 1 2 外观 色度(Pt-CO),号 指标名称
产品标准(GB7717.1-94)
指标 优等品 < 5 一等品 透明液体、无悬浮物 5 10 合格品
3
4 5 6 7 8
酸度
密度(20℃)/(g/cm3) PH值(5%水溶液) 滴定值(5%的水溶液)/ml 水分/%(质) 总醛(以乙醛计)/%(质)
<
0.0020
0.0035
0.800~0.807 6.0~9.0
-
< < <
2.0 0.45 0.05
20万吨年聚丙烯生产项目-设备设计说明书

20万吨/年聚丙烯生产项目设备设计说明书目录20万吨/年聚丙烯生产项目 (1)设备设计说明书 (1)第一章原料及辅助物质 (5)1.1原料 (5)1.1.1原料简介 (5)1.1.2助催化剂 (5)1.1.3助催化剂 (5)1.1.4主催化剂 (6)1.1.5添加剂 (6)第二章计算方法的选择 (6)2.1 计算方法的选择 (6)2.1.1 计算方法的选择 (6)2.1.2 软件的优势 (7)第三章物料衡算 (7)3.1 概论 (7)3.2 物料衡算原则 (7)3.3 总项目核算 (8)3.3.1 工艺流程图 (8)3.3.2 物料衡算任务 (8)3.3.3 总流程物料衡算 (9)3.3.3.1 计算基础 (9)3.3.3.2设计条件 (9)3.3.3.3丙烯进料量 (9)3.3.3.4催化剂及其他辅料的用量 (10)3.3.3.5氢气的用量 (10)3.3.3.6原材料消耗定额 (10)3.3.4主要设备的物料衡算 (11)3.3.4.1CO汽提塔T701物料衡算 (11)3.3.4.2预聚反应器R200的物料衡算 (11)3.3.4.3预聚反应器R201的物料衡算 (12)3.3.4.4闪蒸罐的物料衡算 (13)3.3.4.5气蒸罐D501的物料衡算 (14)3.3.4.6干燥器D502的物料衡算 (16)3.3.4.7挤压造粒单元的物料衡算 (16)3.3.4.8总物料平衡表 (17)第四章热量衡算 (17)4.1 概述 (17)4.2 能量衡算的原则 (18)4.3 热量衡算任务 (18)4.4 热量衡算 (18)4.4.1物料流股数据 (18)4.4.2计算基准温度计热力学数据 (19)4.4.3各工段热量衡算 (19)4.4.3.1预聚反应器R200热量衡算 (19)4.4.3.2聚合反应器R201热量衡算 (21)4.4.3.3闪蒸罐D301热量衡算 (23)4.4.3.4汽蒸罐D501热量衡算 (25)4.4.3.5干燥器D501热量衡算 (27)4.4.3.6总热量平衡表 (29)第五章设备选型及典型设备设计 (29)5.1塔设备设计 (29)5.1.1设计规范 (29)5.1.2设计目标 (29)5.1.3塔设备选型原则 (29)5.1.3.1塔类型的选择 (29)5.1.3.2塔选型原则 (31)5.1.3.3板式塔内构件选型原则 (31)5.1.4 板式塔设计原则 (31)5.1.4.1 塔板布置和流动类型 (31)5.1.4.2 降液管设计 (32)5.1.4.2 浮阀板设计 (32)5.1.5塔设备选型结果 (33)5.2换热器选型 (35)5.2.1概述 (35)5.2.2选型规范 (35)5.2.3选型原则 (35)5.2.4换热器的选型结果 (35)5.2.4.1设计方案 (36)5.2.4.2换热器的主要结构尺寸和计算结果 (36)5.3泵选型 (39)5.3.1泵的分类 (39)5.3.2工业用泵的选用要求和相关标准 (40)5.3.2.1工业用泵的特点和选用要求 (40)5.3.2.2工业装置对泵的要求 (40)5.3.3.3选型原则 (41)5.3.3.4泵的选型结果 (41)5.4反应器选型 (43)5.4.1概述 (43)5.4.2反应器的基本类型 (44)5.4.3反应器设计的基本方法 (44)5.4.4反应器设计数学模型的组成 (44)5.4.5反应器的选型结果 (44)5.4.5.1预聚合反应器R200的设计 (45)5.4.5.2聚合反应器R201/R202的设计 (45)5.5其他设备的选型 (46)5.5.1气蒸罐D501的设计 (48)5.5.1.1气蒸罐D501高度的计算 (50)5.5.1.2气蒸罐D501直径的计算 (51)5.5.1.3气蒸罐D501容积的计算 (51)5.5.2干燥器D502的设计 (51)5.5.2.1干燥器D502高度的计算 (53)5.5.2.2干燥器D502容积的计算 (54)第六章物料性质 (54)6.1概述 (54)6.1.1助催化剂的理化性质 (54)6.1.2给电子的理化性质 (55)6.1.3主催化剂 (55)6.1.4添加剂 (55)第一章原料及辅助物质1.1原料1.1.1原料简介本过程的原料丙烯来自工业园区大炼油项目,通过采购得到,纯度为99.5%以上,含少量杂质丙烷(0.5%以下)和乙烷(0.1%以下)杂质,其余杂质均为ppm级,可以稍作处理后直接进料。
年产20万吨丙烯腈概念设计

≥99.3
0.800~0.807
6.0~9
6.0~10.0
≤2.0
≤3.0
≤5
≤16
≤0.45
≤0.50
≤0.005
≤0.010
≤0.0005
≤0.0010
≤0.00002
≤0.00003
≤0.00001
≤0.00002
≤0.020
≤0.030
≤0.010
≤0.020
≤0.0015
≤0.0040
合格品
7
物化性质:
丙烯腈是无色或淡黄色液体,有特殊气味, 分子量 53.06,沸 点 77.3℃, 冰 点 -83.5 ℃,闪 点 0℃,自燃点 481℃,聚合热 72.4 kJ/mol,剧毒 ,溶 于丙酮、苯、四氯化碳、乙醚、乙醇等有 机溶剂,微溶于水 。
丙烯腈由于分子结构带有C=C 双键及-CN 键,所以化学性质非常活泼,可以发生加 成、聚合、腈基及氢乙基化等反应。
△H = -1925KJ/mol
14
丙烷氨氧化法
主反应: C3H8 + NH3 +2 O2 → CH2 =CHCN(AN) + 4 H2O C3H8 + 0.5O2 →C3H6 (PEN) + H2O C3H6 + NH3 +1.5 O2 → CH2 =CHCN(AcN) + 3 H2O
副反应: ①C3H6 + 1.5NH3 + 1.5O2 → 1.5CH3CN + 3H2O ②C3H6 + 3NH3 + 3O2 → 3HCN + 6H2O ③C3H8+ 4O2 → 2CO+CO2 +4 H2O ④2NH3 + 1.5 O2 →N2 + 3 H2O