13-14(下)高数期末试题A 重理工资料库

合集下载

(完整版)高等数学下册期末考试试题及答案,推荐文档

(完整版)高等数学下册期末考试试题及答案,推荐文档


1 zx2
z
2 y
a
a2 x2 y2 ,…..………【3】
第3页共2页
高数

dS z
Dxy
adxdy a2 x2 y2
a
2 d
0
a2 h2 0
d a2 2
2
a
1 2
ln(a2
2
)0
a2 h2
2 a ln a ..【7】 h
三、【9 分】解:设 M (x, y, z) 为该椭圆上的任一点,则点 M 到原点的距离为 d x2 y2 z2 ……【1】
n1
n
4、设 z f (xy, x ) sin y ,其中 f 具有二阶连续偏导数,求 z ,
2z

y
x xy
5、计算曲面积分 dS , 其中 是球面 x2 y2 z2 a2 被平面 z h (0 h a) 截出的顶部.
z
三、(本题满分 9 分) 抛物面 z x2 y2 被平面 x y z 1 截成一椭圆,求这椭圆上的点到原点的距离
第1页共2页
的最大值与最小值.
高数
(本题满分 10 分)
计算曲线积分 (ex sin y m)dx (ex cos y mx)dy , L
其中 m 为常数, L 为由点 A(a, 0) 至原点 O(0, 0) 的上半圆周 x2 y2 ax (a 0) .
四、(本题满分 10 分)
xn
3 , 1 2
3 ,2
3),
1 M2( 2
3 , 1 2
3 ,2
3). …………………【7】
又由题意知,距离的最大值和最小值一定存在,所以距离的最大值与最小值分别在这两点处取得.

高等数学下期末试题(七套附答案)

高等数学下期末试题(七套附答案)

⾼等数学下期末试题(七套附答案)⾼等数学(下)试卷⼀⼀、填空题(每空3分,共15分)(1)函数的定义域为(2)已知函数,则(3)交换积分次序,=(4)已知是连接两点的直线段,则(5)已知微分⽅程,则其通解为⼆、选择题(每空3分,共15分)(1)设直线为,平⾯为,则() A. 平⾏于 B. 在上 C.垂直于D. 与斜交(2)设是由⽅程确定,则在点处的() A.B.C. D.(3)已知是由曲⾯及平⾯所围成的闭区域,将在柱⾯坐标系下化成三次积分为() A. B. C.D.(4)已知幂级数,则其收敛半径()A.B. C.D.三、计算题(每题8分,共48分)1、求过直线:且平⾏于直线:的平⾯⽅程2、已知,求,3、设,利⽤极坐标求4、求函数的极值5、计算曲线积分,其中为摆线从点到的⼀段弧 6、求微分⽅程满⾜的特解得分阅卷⼈四.解答题(共22分)1、利⽤⾼斯公式计算,其中由圆锥⾯与上半球⾯所围成的⽴体表⾯的外侧2、(1)判别级数的敛散性,若收敛,判别是绝对收敛还是条件收敛;()(2)在求幂级数的和函数()⾼等数学(下)试卷⼆⼀.填空题(每空3分,共15分)(1)函数的定义域为;(2)已知函数,则在处的全微分;之间的⼀段弧,则;(5)已知微分⽅程,则其通解为 .⼆.选择题(每空3分,共15分)(1)设直线为,平⾯为,则与的夹⾓为();A. B. C. D.(2)设是由⽅程确定,则(); A.B.C. D.(3)微分⽅程的特解的形式为(); A.B.C. D.(4)已知是由球⾯所围成的闭区域, 将在球⾯坐标系下化成三次积分为(); A B.C.D.(5)已知幂级数,则其收敛半径().B. C.D.三.计算题(每题8分,共48分)得分阅卷⼈5、求过且与两平⾯和平⾏的直线⽅程.6、已知,求,.8、求函数的极值.得分9、利⽤格林公式计算,其中为沿上半圆周、从到的弧段.6、求微分⽅程的通解.四.解答题(共22分)1、(1)()判别级数的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)()在区间内求幂级数的和函数 .2、利⽤⾼斯公式计算,为抛物⾯的下侧⾼等数学(下)模拟试卷三⼀.填空题(每空3分,共15分)1、函数的定义域为.2、= .3、已知,在处的微分 .4、定积分 .5、求由⽅程所确定的隐函数的导数 .⼆.选择题(每空3分,共15分)1、是函数的间断点(A)可去(B)跳跃(C)⽆穷(D)振荡2、积分= .(A) (B)(C) 0 (D) 13、函数在内的单调性是。

高等数学(下册)期末复习试题及答案

高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为 Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n,则{}3,2,1111121=--=k j i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解 ⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yzx z ∂∂∂∂,.解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -= ,xz F y -= ,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x . (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为 )!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分)五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x ,且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅. 由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→n n a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(l n 3)(+=x x f . (5分)八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为 )(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有 x x x x e C e C xe e y --++='2212,x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 4. 设Ω是曲面222y x z --=及22y x z +=所围成的区域积分,则⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分形式是⎰⎰⎰-22120d ),sin ,cos (d d r rz z r r f r r θθθπ.5. 设L 是圆周22x x y -=,取正向,则曲线积分=+-⎰Ly x x y d dπ2.6. 幂级数∑∞=--11)1(n nn n x 的收敛半径1=R .7.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.8.设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.9.全微分方程0d d =+y y x x 的通解为Cxy =.10.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共42分 每小题6分)1.求过点)1,2,1(且垂直于直线⎩⎨⎧=+-+=-+-03202z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分) 所求平面方程为 032=++z y x (2分)2.函数),(y x z z =由方程z y x z y x 32)32sin(-+=-+所确定,求xz ∂∂. 解:令z y x z y x z y x F 32)32sin(),,(+---+=, (2分)则,1)32cos(--+=z y x F x 3)32cos(3+-+-=z y x F z . (2分))32c o s (33)32c o s (1z y x z y x F F x z z x -+--+-=-=∂∂ . (2分) 3.计算⎰⎰Dxy σd ,其中D 是由直线2 ,1==x y 及x y =所围成的闭区域.解法一: 原式⎰⎰=211d ]d [xx y xy (2分)x y x x d ]2[2112⎰⋅=x xx d )22(213⎰-= 811]48[2124=-=x x . (4分)解法二: 原式⎰⎰=212d ]d [y y x xy 811]8[2142=-=y y .(同上类似分)4.计算⎰⎰--Dy x y x d d 122,其中D 是由122=+y x 即坐标轴所围成的在第一象限内的闭区域.解: 选极坐标系原式⎰⎰-=2012d 1πθr r r d (3分))1(1)21(22102r d r ---⋅=⎰π6π= (3分) 5.计算⎰Γ-+-z x y yz x z y d d 2d )(222,其中Γ是曲线,t x =,2t y =3t z =上由01=t 到12=t 的一段弧.解:原式⎰⋅-⋅+-=122564d ]322)[(t t t t t t t (3分)⎰-=146d )23(t t t 1057]5273[t t -=351= (3分)6.判断级数∑∞=-1212n n n 的敛散性. 解: 因为 n n n nn n n n u u 2122)12(lim lim11-+=+∞→+∞→ (3分) 121<=, (2分) 故该级数收敛. (1分) 7.求微分方程043=-'-''y y y 满足初始条件,00==x y 50-='=x y 的特解. 解:特征方程 0432=--r r ,特征根 1,421-==r r通解为 x xe C e C y -+=241, (3分)x xe C e C y --='2414,代入初始条件得 1,121=-=C C ,所以特解x x e e y -+-=4.(3分)三、(8分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的 空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x ⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (2分)34213π⋅⋅=π2=. (2分) 四、(8分)设曲线积分⎰-+Ly x x xf x x yf d ])(2[d )(2在右半平面)0(>x 内与路径无关,其中)(x f 可导,且满足1)1(=f ,求)(x f .解:由xQy P ∂∂=∂∂, 得x x f x x f x f 2)(2)(2)(-'+=,即1)(21)(=+'x f xx f , (3分) 所以)d ()(d 21d 21C xeex f x x x x +=⎰⎰-⎰)(2121C dx x x+=⎰-)32(2321C x x+=-, (3分)代入初始条件,解得31=C ,所以xx x f 3132)(+=. (2分)五、(6分)求函数xy y x y x f 3),(33-+=的极值. 解:⎪⎩⎪⎨⎧=-==-=033),(033),(22x y y x f y x y x f y x 得驻点 )1,1(),0,0( (3分),6),(x y x f xx = ,3),(-=y x f xy y y x f yy 6),(=在点)0,0(处,,092>=-AC B 故)0,0(f 非极值;在点)1,1(处,,0272<-=-AC B 故1)1,1(-=f 是极小值. (3分)六、(6分)试证:曲面)(xyxf z =上任一点处的切平面都过原点.证:因),()(xyf x y x y f x z '-=∂∂ )(1)(x y f x x y f x y z '=⋅'=∂∂ (3分) 则取任意点),,(0000z y x M ,有)(0000x y f x z =,得切平面方程为))(())](()([)(00000000000000y y x yf x x x y f x y x y f x y f x z -'+-'-=- 即 0)()]()([0000000=-'+'-z y x y f x x y f x y x y f 故切平面过原点. (3分)07A一、 填空题(每小题3分,共21分).1.设向量}5,1,{},1,3,2{-==λb a ,已知a 与b垂直,则=λ1-2.设3),(,2,3π===b a b a ,则=-b a 6-3.yoz 坐标面上的曲线12222=+bz a y 绕z 轴旋转一周生成的旋转曲面方程为122222=++bz a y x4.过点)0,4,2(且与直线⎩⎨⎧=--=-+023012z y z x 垂直的平面方程0832=+--z y x5.二元函数)ln(y x x z +=的定义域为}0,0,({>+≥=y x x y x D6.函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(gradf }1,0,1{7.设xy e z=,则=dz )(xdy ydx e xy +8.设),(x y x xf u =,f 具有连续偏导数,则=∂∂x u21f xyxf f -+ 9.曲线32,,t z t y t x ===上点)1,1,1(处的切向量=T}3,2,1{10.交换积分顺序:⎰⎰=ydx y x f dy 010),(⎰⎰110),(xdyy x f dx11.闭区域Ω由曲面222y x z+=及平面1=z 所围成,将三重积分⎰⎰⎰Ωdv z y x f ),,(化为柱面坐标系下的三次积分为⎰⎰⎰πθθθ20101),sin ,cos (r dz z r r f rdr d12.设L 为下半圆周21x y--=,则=+⎰ds y xL )(22π13.设L 为取正向圆周922=+y x,则=-+-⎰dy x x dx y xy L )4()22(2π18-14.设周期函数在一个周期内的表达式为⎩⎨⎧<≤≤<-=ππx xx x f 000)(则它的傅里叶级数在π=x 处收敛于2π15.若0lim ≠∞→nn u ,则级数∑∞=1n n u 的敛散性是 发散16.级数∑∞=1!2n n n nn 的敛散性是 收敛17.设一般项级数∑∞=1n n u ,已知∑∞=1n n u 收敛,则∑∞=1n n u 的敛散性是 绝对收敛18.微分方程05)(23=+'-''xy y y x 是 2 阶微分方程19.微分方程044=+'+''y y y 的通解=y xx xe C e C 2221--+20.微分方程x xe y y y 223=+'-''的特解形式为xe b ax x 2)(+二、(共5分)设xy v y x u v u z ===,,ln 2,求yz x z ∂∂∂∂,解:]1)ln(2[1ln 2222+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy y x y v u y v u x v v z x u u z x z]1)ln(2[)(ln 23222--=⋅+-⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy yx x v u y x v u y v v z y u u z y z 三、(共5分) 设022=-++xyz z y x ,求xz∂∂ 解:令xyz z y x z y x F 22),,(-++=x y zyzxyz F x -=xyzxyxyz F z -=xyxyz xyz yz F F x zz x --=-=∂∂ 四、(共5分)计算⎰⎰⎰Ωxdxdydz ,其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域解:y x z x y x --≤≤-≤≤≤≤Ω10,10,10:⎰⎰⎰⎰⎰⎰⎰⎰----Ω--==xyx xdy y x x dx xdz dy dx xdxdydz 1010101010)1(241)2(21)1(213102102=+-=-=⎰⎰dx x x x dx x x 五、(共6分)计算⎰-+-Lx x dy y e dx y y e )1cos ()sin (,其中L 为由点)0,(a A 到点)0,0(O 的上半圆周ax y x =+22解:添加有向辅助线段OA ,则有向辅助线段OA 和有向弧段OA 围成闭区域记为D ,根据格林 公式⎰-+-Lxx dy y e dx y y e )1cos ()sin ( ⎰⎰⎰-+--=DOAx x dy y e dx y y e dxdy )1cos ()sin (0)2(212-=a π 381a π= 六、(共6分)求幂级数∑∞=-13)3(n nn n x 的收敛域 解:对绝对值级数,用比值判敛法3313131lim 333)1(3lim lim 111-=-⋅+=-+-=∞→++∞→+∞→x x n n n x n x u u n n nn n n n n n 当1331<-x 时,即60<<x ,原级数绝对收敛 当1331>-x 时,即60><x x 或,原级数发散 当0=x 时,根据莱布尼兹判别法,级数∑∞=-1)1(n nn收敛当6=x时,级数∑∞=11n n发散,故收敛域为)6,0[七、(共5分) 计算dxdy z⎰⎰∑2,其中∑为球面1222=++z y x 在第一卦限的外侧解:∑在xoy 面的投影xy D :0,0,122≥≥≤+y x y xdxdy z ⎰⎰∑2dxdy y x xyD )1(22--+=⎰⎰rdr r d )1(20102⎰⎰-=πθ412⋅=π8π=八、(共7分)设0)1(=f ,求)(x f 使dy x f ydx x f x x )()](1[ln ++为某二元函数),(y x u 的全微分,并求),(y x u解:由x Q y P ∂∂=∂∂,得)()(1ln x f x f x x '=+,即x x f xx f ln )(1)(=-' 所以)ln 21()1ln ()ln ()(211C x x C dx x x x C ex ex f dxx dxx+=+⋅=+=⎰⎰⎰⎰---带入初始条件,解得0=C,所以x x x f 2ln 21)(=⎰++=),()0,0(22ln 21)ln 21(ln ),(y x xdy x ydx x x y x u⎰⎰+=xyxdy x 002ln 210x xy 2ln 21=07高数B一、(共60分 每题3分)1. 设向量}4 ,2 ,6{-=a ,}2 ,1 ,{-=λb ,已知a 与b平行,则=λ3-.2. yoz 坐标面上的曲线12222=-c z a y 绕z 轴旋转一周生成的旋转曲面方程为122222=-+bz a y x . 3.设3),(,1,2π===∧b a b a ,则a b -=3.4. 设一平面经过点)1,1,1(,且与直线⎩⎨⎧=+=--03042z y y x 垂直,则此平面方程为032=-+z y x .5. 二元函数12ln2+-=x y z 的定义域为{}012|),(2>+-x y y x .6. 设xye z =,则=z d )d d (y x x y e xy +.7. 函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(grad f )1,0,1(.8.设(,)y u xf x x =,f 具有连续导数,则u x ∂=∂12yf xf f x''+-.9. 曲面1222=++z y x 在点)2,0,1(-处的法向量=n{}4,0,2-. 10. 交换积分顺序:⎰⎰=1d ),(d x y y x f x ⎰⎰101d ),(d yx y x f y .11.闭区域Ω由曲面22y x z +=及平面1=z 所围成,将三重积⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分为⎰⎰⎰11202d ),sin ,cos (d d rz z r r f r r θθθπ.12. 设∑是闭区域Ω的整个边界曲面的外侧,V 是Ω的体积,则 ⎰⎰∑++y x z x z y x y x d d d d d d =V 3.13. 设L 为上半圆周21x y -=,则=+⎰Ls y x d )(22π.14. 设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.15. 若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 16. 级数∑∞=1!5n n nn n 的敛散性是 收敛 .17.级数∑∞=12sin n nn的敛散性是 收敛 . 18. 微分方程06)(542=+'+''y y y x 是 2 阶微分方程. 19. 微分方程02=+'-''y y y 的通解为)(21x C C e x +.20.微分方程x xe y y y 2365-=+'+''的特解的形式xe bx ax y 22*)(-+=.三、(共5分)函数),(y x z z =由方程04222=-++z z y x 所确定,求xz∂∂. 解:令=),,(z y x F z z y x 4222-++, (1分)则 ,2x F x = ,42-=z F z (2分)zxF F x z z x -=-=∂∂2 (2分) 五、(共6分)计算曲线积分⎰+--Ly y x x y x d )sin (d )2(22,其中L 为由点)0,2(A 到点)0,0(O 的上半圆周x y x 222=+.解:添加有向辅助线段,它与上半圆周围成的闭区域记为D ,根据格林公式⎰+--Ly y x x y x d )sin (d )2(22⎰⎰⎰+---+-=OADy y x x y x y x d )sin (d )2(d d )21(22 (3分)⎰⎰=Dy x d d ⎰-22d x x 3823212132-=-⋅⋅=ππ (3分)七、(共6设0)1(=f ,确定)(x f 使y x f x xyx f x d )(d )]([sin +-为某二元函数(,)u x y 的全微分.解: 由xQy P ∂∂=∂∂ 得 )()(sin x f x x f x '=-, 即 xxx f x x f s i n )(1)(=+' (2分) 所以 )d sin ()(d x 1d 1C xe xx ex f x x x+⋅=⎰⎰⎰-)d sin (ln ln C x e xx e xx +⋅=⎰- (2分) )cos (1C x x+-=, (1分) 代入初始条件,解得1cos =C ,所以)cos 1(cos 1)(x xx f -=. (1分) 八、(共6分) 计算⎰⎰∑y x z d d 2,其中∑是球面1222=++z y x 外侧在,0≥x 0≥y 的部分.解:⎰⎰∑y x z d d ⎰⎰∑=1d d y x z ⎰⎰∑+2d d y x (2分)⎰⎰--=xyD y x y x d d )1(22⎰⎰----xyD y x y x d )d 1()1(22 (2分) ⎰⎰--=xyD y x y x d )d 1(222r r r d )1(d 21220⋅-=⎰⎰πθ 4π=(2分)08高数A一、选择题(共24分 每小题3分)1.设{}1111,,p n m s =,{}2221,,p n m s =分别为直线1L ,2L 的方向向量,则1L 与2L 垂直的充要条件是 (A )(A )0212121=++p p n n m m (B )212121p p n n m m ==(C )1212121=++p p n n m m (D )1212121=++p pn n m m 2.Yoz 平面上曲线12+=y z 绕z 轴旋转一周生成的旋转曲面方程为 ( C )(A )12+=y z (B )22x y z +=(C )122++=x y z (D )x y z +=23.二元函数12ln2+-=x y z 的定义域为 (B )(A ){}02|),(2>-x y y x (B ){}012|),(2>+-x y y x (C ){}012|),(2≤+-x y y x (D ){}0,0|),(≥>y x y x4.交换积分顺序:1d (,)d yy f x y x =⎰⎰ ( A )(A )dy y x f dx x ⎰⎰110),((B )dx y x f dy y ⎰⎰110),((C )dx y x f dy y⎰⎰110),((D )dy y x f dx x⎰⎰110),(5.空间闭区域Ω由曲面1=r 所围成,则三重积分⎰⎰⎰Ωv d 2= ( C ) (A )2 (B )2π (C )38π (D )34π 6.函数),(y x z z =由方程04222=-++z z y x 所确定,则xz∂∂= ( D ) (A )zy -2 (B )y x-2 (C )zz-2 (D )zx-27.幂级数∑∞=13n n nn x 的收敛域是 ( C )(A )][3,3- (B )](3,0(C ) [)3,3- (D )()3,3-8.已知微分方程xe y y y =-'+''2的一个特解为x xe y =*,则它的通解是( B )(A )x xe x C x C ++221(B )x x x xe e C e C ++-221(C )x e x C x C ++221(D )x x x xe e C e C ++-21二、填空题(共15分 每小题3分)1.曲面z y x =+22在点)1,0,1(处的切平面的方程是012=--z x . 2.若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 3.级数∑∞=12cos n nn的敛散性是 绝对收敛 . 4.二元函数2221sin)(),(xy x y x f +=,当()()0,0,→y x 时的极限等于 0 。

高等数学期末试题(含答案)

高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。

选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。

3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。

4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。

5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。

二。

填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。

2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。

3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。

4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。

高数-下-期末考试试卷及答案

高数-下-期末考试试卷及答案

2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知a 与b都是非零向量,且满足-=+a b a b ,则必有( )。

(A)-=0a b (B)+=0a b (C)0⋅=a b (D)⨯=0a b 2。

极限2222001lim()sinx y x y x y →→+=+( ).(A ) 0(B) 1 (C) 2(D )不存在 3.下列函数中,d f f =∆的是( )。

(A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数(C )(,)f x y =(D )(,)e x y f x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ).(A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域22:(1)(1)2D x y -+-≤,若1d 4D x y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( )。

(A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰( ). (A) l (B ) l 3 (C) l 4 (D ) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( )。

(A)该级数收敛 (B )该级数发散(C )该级数可能收敛也可能发散 (D )该级数绝对收敛 8.下列四个命题中,正确的命题是( )。

(A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散(B)若级数21nn a∞=∑发散,则级数1nn a∞=∑也发散 (C)若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛二、填空题(7个小题,每小题2分,共14分).1。

2020-2021大学《高等数学》(下)期末课程考试试卷A1(含答案)

2020-2021大学《高等数学》(下)期末课程考试试卷A1(含答案)

2020-2021《高等数学》(下)期末课程考试试卷A1适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题:(共5小题,每小题3分,共15分)1.设(,)z f u v =可微2(,)z f xy x =,则zx∂=∂ ,z y ∂=∂ .2.微分方程220y y y '''-+=的通解为 .3.改变积分顺序1210(,)x dx f x y dy ⎰⎰= .4.函数u=xyz 在点(1,1,1)处最大的方向导数是 .5.设以2π为周期函数()f x 傅里叶级数为1[cos sin ]2n n n a a nx b nx ∞=++∑ , 那么n a = ,n b = .二.单项选择. (共7小题,每小题2分,共14分)1.下列说法正确的是( );(A)函数),(y x f z =在点),(00y x 处偏导数存在,则一定连续. (B)函数),(y x f z =在点),(00y x 处可微,则一定连续.(C)函数),(y x f z =在点),(00y x 处偏导数存在,则一定可微. (D) 函数),(y x f z =在点),(00y x 处无极限,,则偏导数一定不存在. 2.级数1(1)nn ∞=-∑一定 ( ); (A) 绝对收敛 (B)条件收敛 (C)发散 (D)无法确定收敛性. 3.积分(,)(,)LP x y dx Q x y dy +⎰与路径无关的充要条件是( );(A)x Q y P ∂∂=∂∂ , (B) xQ y P ∂∂-=∂∂, (C) y Q x P ∂∂=∂∂ , (D) y Q y P ∂∂=∂∂. 4. 设),(y x f z =可微,则曲面)32,(y x xy f z +=的一个法向量是( );(A)12{,,1}f f - , (B) 1212{2,3,1}yf f xf f ++-, (C) {,2,1}yf f ''-, (D) 1212{2,3,1}yf f xf f ++5.设Ω是由锥面22y x z +=与平面2z =围成,则3dxdydz Ω⎰⎰⎰=( );(A) 83π , (B) 3π , (C) 4π, (D)8π.6.若∑是上半球面z =,则对面积的曲面积分∑⎰⎰=( );(A) 0 , (B) 2π , (C) 4π, (D)8π. 7. 微分方程2dyxy dx=,(0)2y =的解为( ). (A) 2x ce , (B) 2x e , (C) 22x e , (D) 22x ce . 三、计算下列各题.(共5小题,每小题8分,共40分)1.设01xu yv yu xv -=⎧⎨+=⎩,求,u v x x ∂∂∂∂.2.求曲面22y x z +=夹在平面z=0,z=4之间的曲面面积.3.222()Lx y z ds ++⎰,其中L 是曲线cos ,sin ,x a t y a t z t ===上相应于t 从0到2π的一段弧.4.求I=⎰⎰∑++zdxdy ydxdz xdydz ,其中∑是上半球面z =的上侧.5.求(sin )(cos )x x L I e y ky dx e y k dy =-+-⎰,其中L 是由点)0,(a 到点(0,0)的上半圆周022=-+ax y x (y ≥0).四.(8分)验证方程2223(36)(64)0x xy dx x y y dy +++=是全微分方程,求其通解.五.(11分)求幂级数210121n n x n ∞+=+∑的收敛半径,收敛区域与和函数()s x .并且求201(21)3nn n ∞=+∑的和.六.(12分)在第一卦限内作球面2221x y z ++=的切平面,使切平面与三坐标平面所围的四面体体积最小,并且求切点坐标.2020-2021《高等数学》(下)期末课程考试试卷A1答案适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题:(共5小题,每小题3分,共15分)1.设2(,)z f xy x =,则zx∂=∂122yf xf + ,z y ∂=∂1xf .2.微分方程220y y y '''-+=的通解为12(cos sin )x y e C x C x =+ .3.改变积分顺序121(,)x dx f x y dy ⎰⎰=1/2211/011/21(,)(,)ydy f x y dx dy f x y dx +⎰⎰⎰⎰. 4.函数u=xyz 在点(1,1,1)5.设以2π为周期函数()f x 傅里叶级数为01[cos sin ]2n n n a a nx b nx ∞=++∑ , 那么n a =1()cos f x nxdx πππ+-⎰,n b =1()sin f x nxdx πππ+-⎰ .二.单项选择. (共7小题,每小题2分,共14分)1.下列说法正确的是( B );(A)函数),(y x f z =在点),(00y x 处偏导数存在,则一定连续. (B)函数),(y x f z =在点),(00y x 处可微,则一定连续.(C)函数),(y x f z =在点),(00y x 处偏导数存在,则一定可微. (D) 函数),(y x f z =在点),(00y x 处无极限,,则偏导数一定不存在. 2.设曲线L 为正方形 1x y += 的边界,则Ldsx y+⎰ =( D ); (A) 0(B)(C) 3.积分(,)(,)LP x y dx Q x y dy +⎰与路径无关的充要条件是(A ).(A)x Q y P ∂∂=∂∂ , (B) xQ y P ∂∂-=∂∂, (C) y Q x P ∂∂=∂∂ , (D) y Q y P ∂∂=∂∂. 4.曲面2224x y z ++=在点的一个法向量是( B ).(A){1,1,1}- ,(B) {,(C) {1,1,, (D) {1,--5.函数22(,)44f x y x y x y =---的极大值为( C ).(A) (2,2)8f =- , (B) (0,0)0f = , (C) (2,2)8f -=, (D)不存在. 6. 若∑是上半球面z=,则对面积的曲面积分∑⎰⎰=(A ).(A)0 , (B) 2π , (C) 4π, (D)8π. 7. 微分方程2dyxy dx=,(0)2y =的解为(C ). (A) 2x ce , (B) 2x e , (C) 22x e , (D) 22x ce . 三、计算下列各题.(共5小题,每小题8分,共40分)1.设01xu yv yu xv -=⎧⎨+=⎩,求,u v x x ∂∂∂∂.解22u xu yvx x y ∂+=-∂+,…….. 4分 ……22u yu xv x x y∂-=∂+……. 8分 2.求曲面22y x z +=夹在平面z=0,z=4之间的曲面面积.解 ⎰⎰++=Ddxdy y x S 22441 ………… 4分=)11717(64120202-=+⎰⎰ππθrdr r d ……….. 8分3.222()Lx y z ds ++⎰,其中L 是曲线cos ,sin ,x a t y a t z t ===上相应于t 从0到2π的一段弧.解 222()L x y z ds ++⎰=dt a t t a t a 1)cos sin (2202222+++⎰π…… 4分222)a ππ+ (8)分4.求I=dydz dxdy ∑+,其中∑是上半球面z =的上侧.解 因为2221x y z ++=,则I xdydz ydxdz zdxdy ∑=++⎰⎰由高斯公式得I=⎰⎰∑+∑++1zdxdy ydzdx xdydz - ⎰⎰∑++1zdxdy ydxdz xdydz ……4分=dxdydz ⎰⎰⎰Ω3-0………… 6分=2π-0=2π………… 8分5.求(sin )(cos )x x L I e y ky dx e y k dy =-+-⎰,其中L 是由点)0,(a 到点(0,0)的上半圆周022=-+ax y x (y ≥0).解k yPx Q =∂∂-∂∂,由格林公式 1(sin )(cos )x x L L I e y ky dx e y k dy +=-+-⎰1(sin )(cos )x x L e y ky dx e y k dy --+-⎰=⎰⎰-Dkdxdy 0=28a kπ……… 8分四.(8分)设函数()y f x =满足全微分方程2(())(())0xy yf x dx f x x dy -++=,求()f x . 解 因为是全微分方程,则()()2P Qx f x f x x y x∂∂'=-==+∂∂,………. 4分 于是()(),f x f x x '+=-或y y x '+=-则 1x y x Ce =++,即 ()1x f x x Ce =++………..8分五.(12分)求幂级数210(1)21n n n x n ∞+=-+∑的收敛半径,收敛区域与和函数()s x .并且求0(1)(21)3nnn n ∞=-+∑的和. 解 R=1lim+∞→n nn a a =1 ……3 分. 因为1-=x ,1=x ,210(1)21n n n x n ∞+=-+∑发散,所以收敛区域为(1,1)-......5分 (21)0(1)arctan 21n n n x x n ∞+=-=+∑=()s x …………………8分令x =1)0(1)(2nn n n ∞+=-+∑=arctan 6π=…(1)(21)36n nn n ∞=-=+∑…..12分 六.(10分)求均匀半球体0z ≤≤的质心坐标.解 设 质心坐标为(,,)x y z , 球体密度为ρ ,则x = 0y =… ..2分因为 32,,3zdv z dv a dv ρρρπρΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰ 2/22401cos sin 4azdv d d r r d a ππρρθϕθθθρπΩ==⎰⎰⎰⎰⎰⎰………..8分 于是,38z a =则质心坐标为3(0,0,)8π………..10分。

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( ) A.dx dy +B.dx +D.dx(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin)()yLxy x dx x e dy++-⎰,其中L为摆线sin1cosx t ty t=-⎧⎨=-⎩从点(0,0)O到(,2)Aπ的一段弧6、求微分方程xxy y xe'+=满足11xy==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面z=与上半球面z=(10)'2、(1)判别级数111(1)3nnnn∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x∈-求幂级数1nnnx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z=的定义域为;(2)已知函数xyz e=,则在(2,1)处的全微分dz=;(3)交换积分次序,ln10(,)e xdx f x y dy⎰⎰=;(4)已知L是抛物线2y x=上点(0,0)O与点(1,1)B之间的一段弧,则=⎰;(5)已知微分方程20y y y'''-+=,则其通解为.二.选择题(每空3分,共15分)(1)设直线L为30x y zx y z++=⎧⎨--=⎩,平面π为10x y z--+=,则L与π的夹角为();A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a-=确定,则zx∂=∂();A.2yzxy z- B. 2yzz xy- C. 2xzxy z- D. 2xyz xy-(3)微分方程256xy y y xe'''-+=的特解y*的形式为y*=();A.2()xax b e+ B.2()xax b xe+ C.2()xax b ce++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为();A222000sin ad d r drππθϕϕ⎰⎰⎰B.22000ad d rdrππθϕ⎰⎰⎰C.2000ad d rdrππθϕ⎰⎰⎰D.22000sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D. 三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin 3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy ∑++⎰⎰,∑为抛物面22z xy =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx = .二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学〔下〕试卷一一、填空题〔每空3分,共15分〕〔1〕函数11z x y x y =++-的定义域为〔2〕函数arctany z x =,那么zx ∂=∂〔3〕交换积分次序,2220(,)y y dy f x y dx⎰⎰=〔4〕L 是连接(0,1),(1,0)两点的直线段,那么()Lx y ds +=⎰〔5〕微分方程230y y y '''+-=,那么其通解为二、选择题〔每空3分,共15分〕 〔1〕设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,那么〔〕 A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交〔2〕设是由方程2222xyz x y z +++=确定,那么在点(1,0,1)-处的dz =〔〕A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - 〔3〕Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为〔〕 A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰〔4〕幂级数,那么其收敛半径〔〕A. 2B. 1C. 12 D.2〔5〕微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=〔〕A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题〔每题8分,共48分〕1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 22(,)z f xy x y =,求z x ∂∂,zy ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰,其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程xxy y xe '+=满足11x y ==的特解四.解答题〔共22分〕1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体外表的外侧(10)'2、〔1〕判别级数111(1)3n n n n ∞--=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔6'〕〔2〕在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数〔6'〕高等数学〔下〕试卷二一.填空题〔每空3分,共15分〕〔1〕函数24x y z -=的定义域为; 〔2〕函数xyz e =,那么在(2,1)处的全微分dz =;〔3〕交换积分次序,ln 1(,)e x dx f x y dy⎰⎰=;〔4〕L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,那么L yds =⎰;〔5〕微分方程20y y y '''-+=,那么其通解为.二.选择题〔每空3分,共15分〕〔1〕设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,那么L 与π的夹角为〔〕;A. 0B. 2πC. 3πD. 4π〔2〕设是由方程333z xyz a -=确定,那么z x ∂=∂〔〕;A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D.2xy z xy - 〔3〕微分方程256x y y y xe '''-+=的特解y *的形式为y *=〔〕;A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++〔4〕Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为〔〕; A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰〔5〕幂级数1212nnn n x ∞=-∑,那么其收敛半径〔〕.A. 2B. 1C. 12 D.2三.计算题〔每题8分,共48分〕5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、(sin cos ,)x yz f x y e +=,求z x ∂∂,zy ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1y y x x '-=++的通解.四.解答题〔共22分〕1、〔1〕〔6'〕判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔2〕〔4'〕在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学〔下〕模拟试卷三一.填空题〔每空3分,共15分〕1、函数arcsin(3)y x =-的定义域为.2、22(2)lim 332n n n n →∞++-=.3、2ln(1)y x =+,在1x =处的微分dy =. 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题〔每空3分,共15分〕1、2x =是函数22132x y x x -=-+的连续点 〔A 〕可去 〔B 〕跳跃 〔C 〕无穷 〔D 〕振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
2
2 及直线 y x 所
(6)计算
围成的闭区域.
zdv ,其中 是由 z 2 ( x

1
2
y 2 ) 与 z 1 围成的闭区域.
-2-
微信关注:重理工资料库
重理工资料库
重庆理工大学考试试题卷
2013~ 2014 学年第二学期
班级 学号 姓名 考试科目 高等数学[(2)机电] A卷 闭卷 共 3 页
得分
评卷人
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
(1)设 a (1, 2,1), b (0,3, 4) ,则 Prj a
b





(2)交换积分次序

1 0
dx
2 2x
f ( x, y )dy

(3)设 : x y z 1 ,则
2 2 2
) . B、
1 1 1 1 1 3 6 9 12 15
1 n 1 4 n

ቤተ መጻሕፍቲ ባይዱ
C、
1 n 1 n( n 1)


D、
3
n 1

1
n
8 n
(9)函数 f ( x)
1 1
x 0 展开成傅里叶级数,其系数 an ( 0 x
( 2 ) 设 函 数 z f ( x, y ) 由 方 程 x 2 y z ye
xyz
(1) 求通过点 P (1, 2, 1) 、 Q(1, 0,3) 且垂直于平面
0 确定,求函数
3x y z 2 0 平面方程.
z f ( x, y ) 在点 (1, 0) 处的全微分 dz






(6)设 D ( x, y ) x y 2 x ,则二重积分
2 2



D
x 2 y 2 dxdy 可表示为(
A、

2 0
d 2 d
0 2
1
B、
2

2 0
d
2cos 0
2d
C、



2
2 d d 2 0
D、
d
( x

2
y 2 ) zdv

(4)幂级数

2n 1 n x 的收敛区间是 3n n 1


(5)函数 z xe y 在点 (1, 0) 处沿 l (1, 1) 方向的方向导数

z l
x 1 y 0


得分
评卷人
三、求解下列各题(本大题共 10 小题,每小题 6 分,共 60 分) 。
2 2
B、 x y ( z 1)
2 2
2
C、 x y 1 z
D、 ( x 1) y z
2 2
2
(3)
( x , y ) (0,0)
lim
xy ( 2 xy 4
B、 4
) .
A、 4
2 2
C、
1 4
D、不存在 ) D、
(4)曲面 x y z x y z 10 0 在点 (2,1, 2) 处的切平面方程为(
( x y z )ds ,其中 L 为连接点 (1, 2, 2) 与点 (4, 2, 6)
L
(8)计算
(x
L
3
y )dx ( x y 3 )dy , 其 中 L 为 以 点 O(0, 0) ,
的直线段.
A(1, 0) , B (1,1) 为顶点的三角形 OAB 的正向边界.
重理工资料库
重庆理工大学考试试题卷
2013~ 2014 学年第二学期
班级 学号 姓名 考试科目 高等数学[(2)机电] A卷 闭卷 共 3 页
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 密· · · · · · · · · · · · · · · · · · · · · · · ·封· · · · · · · · · · · · · · · · · · · · · · · ·线· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 学生答题不得超过此线
班级 学号 姓名 考试科目 高等数学[(2)机电] A卷 闭卷 共 3 页
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 密· · · · · · · · · · · · · · · · · · · · · · · ·封· · · · · · · · · · · · · · · · · · · · · · · ·线· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 学生答题不得超过此线
题号
分数




总分
总分人
得分
评卷人 一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分) 。
(1)点 (7, 1, 2) 关于( A、 x 轴
)的对称点是 (7, 1, 2) . B、 xoy 面 C、 yoz 面 D、 zox 面 ) .
2 2 2
(2)将 yoz 面上的直线 y z 1 绕 z 轴旋转而成的曲面方程是( A、 x y z 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 密· · · · · · · · · · · · · · · · · · · · · · · ·封· · · · · · · · · · · · · · · · · · · · · · · ·线· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 学生答题不得超过此线 (7) 计算
x 2 y z 1 3x 6 y 3 z 5 与直线 L2 : 平行. 2 x y z 2 2 x y z 4
-3-
微信关注:重理工资料库
2
A、 x y z 5 0
2 2
B、 3 x 3 y 3 z 5 0
2
C、
x 2 y 1 z 2 1 1 1
) D、 i j k )
1
x yz 3 3 3
(5)设 f ( x, y, z ) 5 x y 6 z x y z ,则 grad f (0, 0, 0) ( A、 1 B、 3 C、 i j k
x 1 y 0

(3)设函数 z (2 x y )
3 x 2 y
,求
z x
x 1 , y 1
z y
x 1 y 1

(4)求函数 f ( x, y ) 2(3 x y ) 3 x y 的极值.
2 2
(5)计算
xd ,其中 D 是由抛物线 y x
(9)计算
1 (10)将函数 f ( x) 展开成 x 1 的幂级数. ,其中 为球 (2 x 4) dydz (5 y ) dzdx (2 z 7) dxdy x

2 2
面 x y z 1 的外侧.
2
得分
评卷人
四、证明题(5 分)
证明:直线 L1 :
2


2cos 0
2d
) .
2
(7)曲面 是 z xy 被柱面 x y 1( x 0, y 0) 截下部分, D 为曲面 在 xoy 面投影区域,则曲面 的面积是( A、
xyd
D
B、
d
D
C、
xydS

D、
dS

(8)下列级数收敛的是( A、
B、
4 A、 n
(10)级数
2 n
C、 0
0 D、 4 n
n为偶数 n为奇数
sin 2n ( 3n n 1

) . B、绝对收敛 C、发散 D、可能收敛可能发散
A、条件收敛
-1-
微信关注:重理工资料库
重理工资料库
重庆理工大学考试试题卷
2013~ 2014 学年第二学期
相关文档
最新文档